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Abstract

I have developed a low momentum track reconstruction program to mainly

improve the reconstruction eÆciency of slow � form the D� decay. It is impor-

tant to achieve a good reconstruction eÆciency of D� since B ! D
�+
D
�� decay

is one of decay mode in which CP violation can be measured in the BELLE.

Reconstruction eÆciency of D� is improved by 36% by introducing the low mo-

mentum track reconstruction. I also have developed kinematic �tters to obtain

vertices of particles such as B mesons and improve momentum resolution. A de-

termination of vertices are essential for the the measurement of the CP violation

in the BELLE.



Contents

1 Introduction 6

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 B Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 CP Violation and Neutral K Meson . . . . . . . . . . . . 7

1.2.2 Kobayashi�Masukawa Theory and Unitarity Triangle . . 7

1.2.3 Determination of �1 . . . . . . . . . . . . . . . . . . . . . 9

1.2.4 Measurement of �1 . . . . . . . . . . . . . . . . . . . . . . 12

2 BELLE Experiment 15

2.1 Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 SVD { Silicon Vertex Detector . . . . . . . . . . . . . . . 19

2.2.3 CDC { Central Drift Chamber . . . . . . . . . . . . . . . 20

2.2.4 ACC { Aerogel �Cerenkov Counter . . . . . . . . . . . . . 23

2.2.5 TOF { Time of Fight Counter . . . . . . . . . . . . . . . 25

2.2.6 ECL { Electromagmetic Calorimeter . . . . . . . . . . . . 25

2.2.7 Superconducting Solenoid . . . . . . . . . . . . . . . . . . 26

2.2.8 KLM { KL/� Detector . . . . . . . . . . . . . . . . . . . 26

3 Development of The Low Momentum Track Reconstruction

Program 28

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Curl Finder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Stereo Finder for Curl Tracks . . . . . . . . . . . . . . . . . . . . 35

3.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Development of The Kinematic Fitter 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Fitting with Constraints . . . . . . . . . . . . . . . . . . . 53

4.2.3 Fitting with Constraints for Unknown Parameters . . . . 54

4.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

1



4.3.1 Vertex Fitter . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.2 Mass Constraint Fitter . . . . . . . . . . . . . . . . . . . . 58

4.3.3 Vertex and Mass Constraint Fitter . . . . . . . . . . . . . 59

4.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Summary 65

A Quantum mechanics of the neutral meson system 67

A.1 B meson : B0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B Helix Fit 71

B.1 Calculation of The Closest Point from Helix to Each Wire and

@�i=@a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

C The Simulation and The Reconstruction Programs in BELLE 77

2



List of Tables

2.1 Sense Wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 S/N Ratio etc. of B0 ! D
�
�
+
�
+
�
� . . . . . . . . . . . . . . . . 63

3



List of Figures

1.1 Unitarity Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Tree Diagram of b! ccs . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Penguin Diagram of b! ccs . . . . . . . . . . . . . . . . . . . . . 10

1.4 Proper Time Distribution . . . . . . . . . . . . . . . . . . . . . . 12

1.5 An Example of Decay Process of B ! J=	KS . . . . . . . . . . 13

2.1 KEK Beamline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 BELLE Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Side View of The BELLE Detectors . . . . . . . . . . . . . . . . 17

2.4 The De�nition of The Coordinate in The BELLE . . . . . . . . . 18

2.5 The De�nition of r�� . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Side View of The SVD . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Top View of The SVD . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8 Side View of The CDC . . . . . . . . . . . . . . . . . . . . . . . . 21

2.9 R�� View of The CDC . . . . . . . . . . . . . . . . . . . . . . . . 22

2.10 Sense and Field Wires . . . . . . . . . . . . . . . . . . . . . . . . 23

2.11 Barrel Part of The ACC . . . . . . . . . . . . . . . . . . . . . . . 24

2.12 Endcap Part of The ACC . . . . . . . . . . . . . . . . . . . . . . 24

2.13 A Module of The TOF . . . . . . . . . . . . . . . . . . . . . . . . 25

2.14 Barrel and Endcap Parts of The ECL . . . . . . . . . . . . . . . 26

2.15 Side View of The KLM . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Conformal Transformation . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Reconstructed Tracks in The CDC. . . . . . . . . . . . . . . . . . 30

3.3 A Curling Track in The CDC . . . . . . . . . . . . . . . . . . . . 31

3.4 Finding of The Segment . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 A Segment in The CDC . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 A Magni�ed Segment . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.7 Positive and Negative Charged Tracks . . . . . . . . . . . . . . . 35

3.8 Expansion of The Cylinder into A Plane . . . . . . . . . . . . . . 36

3.9 \Right" Side of Stereo Wires . . . . . . . . . . . . . . . . . . . . 37

3.10 Determination of Arc and Z of Stereo Wires . . . . . . . . . . . . 38

3.11 Determination of Arc and Z of Stereo Wires with 4 Solutions . . 38

3.12 De�nition of dZ1 and dZ2. . . . . . . . . . . . . . . . . . . . . . . 39

4



3.13 Five Consecutive Wires! Three Combinations of Three Consec-

utive Wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.14 Association of Wires between The First and Second Layers . . . 40

3.15 Association of Wires between The First and Third Layers . . . . 41

3.16 Validity of The Maximum or Minimum Z Wire . . . . . . . . . . 41

3.17 Merging of Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.18 Generated Momentum .vs. Reconstructed Momentum . . . . . . 44

3.19 Generated Transverse Momentum .vs. Reconstructed Transverse

Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.20 Track Finding EÆciency as a Function of Pt for Single Pion Events 46

3.21 Mass Di�erence between D
�� - D0 . . . . . . . . . . . . . . . . . 48

3.22 Track Finding EÆciency as a Function of Pt . . . . . . . . . . . . 49

3.23 Multiplicity of Generated Tracks .vs. Reconstructed Tracks . . . 50

4.1 Vertex Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Mass Constraint Fit . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Mass Constraint Fit . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 �momentum of Vertex and Mass Constraint Fit to D� . . . . . 61

4.5 �z of B0 Vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 CL of Vertex and Mass Constraint Fit to D� . . . . . . . . . . . 63

4.7 B
0 Mass Distribution without Kinematic Fitter . . . . . . . . . . 64

4.8 B
0 Mass Distribution with Kinematic Fitter . . . . . . . . . . . . 64

A.1 Box Diagram of B0 �B0 Mixing . . . . . . . . . . . . . . . . . . 67

5



Chapter 1

Introduction

1.1 Introduction

A major unresolved issue is how the current Universe, which is composed

entirely of matter, evolved from the matter-antimatter symmetric Big Bang.

The CP violation has played a key role in the development of the Universe.

Kobayashi-Masukawa theory[1], which is one foundation of the Standard

Model, was introduced to describe an origin of the violation of the CP symmetry.

Kobayashi and Masukawa described the CP violation within the Standard Model

by introducing third generation of quarks. Sanda and Carter[2] pointed out that

the large CP violation can be observed in the B meson decays. The BELLE

experiment[3] at KEK1 is being constructed to observe the CP violation in B

decays.

The CP violation can be observed in decay modes such as B ! J=	KS,

B ! D
�
D
�, and B ! ��. Low Pt track reconstruction is very important to

observe the CP violation in the B ! D
�+
D
�� decay since D

�+ decays into

D
0 and �

+, and the pion momentum is very low(<� 200 MeV/c) due to small

Q-value of the decay. I have developed a low Pt track reconstruction program

to increase the reconstruction eÆciency of the slow � from the D�+ decay.

Measurement of the B decay vertex is crucial to observe the CP violation

in the BELLE as explained in the following sections. Improvement of the S/N

ratio is important in our interesting decay modes such as B ! D
�+
D
�� since

their branching ratio(BR) is small(10�5�7). I have developed a kinematic �tter

which can calculate decay vertices of B etc. and can improve S/N ratio.

1High Energy Accelerator Research Organization at Japan
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1.2 B Physics

1.2.1 CP Violation and Neutral K Meson

The parity(P ) transformation changes the sign of the spatial coordinate and

does not change the sign of the time coordinate:

x = (t;a)
P�! xP = (t;�a):

The charge conjugation(C) transformation exchanges particle and anti-particle.

These P and C transformations do not violate a symmetry in the strong inter-

action and electro-magnetic interaction, however, violate it in the weak inter-

action. The combination of C and P transformations had been considered to

keep a symmetry in the weak interaction.

The avor eigenstates of the neutral K meson are K0 and its anti-particle

K0 :

CP jK0i = jK0i:

This is not a CP eigenstate. Newly, jK0
1i and jK0

2 i are de�nes as,

jK0
1 i =

1p
2
(jK0i+ jK0i); jK0

2 i =
1p
2
(jK0i � jK0i):

From it,

CP jK0
1 i = +jK0

1 i; CP jK0
2 i = �jK0

2i:

CP eigenstates can be created from the new de�nition.

The neutral K meson decays to �+�� or �+���0. Since a spin of the neutral

K meson is 0, the system of 2� is CP = +1 and that of 3� is CP = �1. If the CP
symmetry is conserved, always K0

1(CP = +1) decays to 2� and K
0
2(CP = �1)

decays to 3�. In these decays, the phase space of the 2� decay is larger than

that of 3�. Because of this, a life time of K0
1 is shorter than that of K0

2 . K
0
1 is

called KS and K0
2 is called KL. However, Christenson et al.[4] found KL ! 2�

in 1964, that is, CP violation.

1.2.2 Kobayashi�Masukawa Theory and Unitarity Trian-

gle

To describe the CP violation within the Standard Model, Kobayashi and

Masukawa introduced an existence of the 3 generation quarks and a 3�3 matrix
to mix these quarks 2 in 1973. This matrix is called CKM matrix and the

complex phase of it is a source of the CP violation.

2This is an extension of 2� 2 Cabbibo matrix.
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In the original thesis of Kobayashi and Masukawa, CKM matrix (V ) is rep-

resented using three angle parameters (�1; �2; �3), and one complex phase pa-

rameter (eiÆ) :0
@ d

0

s
0

b
0

1
A = V

0
@ d

s

b

1
A ; (1.1)

V =

0
@ Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1
A (1.2)

=

0
@ c1 �s1c3 �s1s3

s1c2 c1c2c3 � s2s3e
iÆ

c1c2s3 + s2c3e
iÆ

s1s2 c1s2c3 + c2s3e
iÆ

c1s2s3 � c2s3e
iÆ

1
A (1.3)

ci = cos �i; si = sin �i

The CKM matrix is expanded around the Cabbibo angle � = sin �c
3 :

V =

0
@ 1� �

2
=2 � A�

3(�� i�)

�� 1� �
2
=2 A�

2

A�
3(1� �� i�) �A�2 1

1
A+ O(�4): (1.4)

In these 4 parameters (�;A; �; �), � and A were measured in good precision,

however parameters related with the complex phase, � and � were not measured,

only the relation equation was measured as,

� = sin �c = 0:221� 0:002;

A = 0:839� 0:041� 0:082;p
�2 + �2 = 0:36� 0:14:

Because the CKM matrix is a unitarity matrix, these elements satisfy a

following equation,

VijV
�

ik = Æjk :

Particularly, an equation of j = b, k = d is associated with the neutral B

meson decays,

VtdV
�

tb + VcdV
�

cb + VudV
�

ub = 0: (1.5)

This relation can be represented as a triangle4, so called unitarity triangle,

shown in Figure 1.1.

3This method is called the usage of Wolfenstein
4Other relations can be represented as triangles. However it is diÆcult to create a triangle

with measurements because one side of the triangle is much smaller than others.
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VtdVtb*

VcdVcb*

VudVub*

φ (α)2

φ (γ)3 φ (β)1

Figure 1.1: Unitarity Triangle

Three angles of this triangle are called the unitatiry angles and are de�ned

as,

�1 � arg

�
VcdV

�

cb

VtdV
�

tb

�
; (1.6)

�2 � arg

�
VudV

�

ub

VtdV
�

tb

�
; (1.7)

�3 � arg

�
VcdV

�

cb

VudV
�

ub

�
: (1.8)

And sometimes these angles are quoted as,

� = �2; � = �1;  = �3: (1.9)

Primary goal of the BELLE experiment is measurement of the angles and

the sides of the unitatiry triangle. If it turns out to be consistent with a triangle,

it means that Kobayashi-Masukawa theory within the Standard Model is right,

however if not, it means that there should be a new physics beyond the current

Standard Model.

1.2.3 Determination of �1

It is important to determine the value of �1 in the unitary triangle, since

it is easier to measure than other values. The B ! J=	KS decay is the most

promising mode since the branching fraction is relatively large (� 10�4) and

the signals is very clean.

B ! J=	KS

J=	KS is a CP eigenstate 5.

5Exactly, KS is not a CP eigenstate, but the CP violation in the K meson is much small

so that it is negligible.
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Two contributions are considered in this decay, one is a tree diagram and

the other is a penguin diagram.

In case of the tree diagram, as shown in Figure 1.2, the amplitude can be

written as,

hJ=	K0jB0i = V
�

cbVcsAt; (1.10)

where At is an amplitude except for the elements of the CKM matrix.

c

dd

W

Vcb*

Vcs

Ks

b
J/ Ψ

s

K0

B0

c

Figure 1.2: Tree Diagram of b! ccs

c

dd

W

Vib* Vis
b

J/ Ψ

s

B0

c

KsK0

g

Figure 1.3: Penguin Diagram of b! ccs

In case of the penguin diagram, as shown in Figure 1.3, V �

ibVis(i = u; c; t)

contributes to this amplitude. But this penguin diagram can be ignored because

V
�

cbVcs
�= �V �

tbVts from the relation (1.5) V �

ibVis = 0 and jV �

cbVcsj; jV �

tbVtsj �
jV �

ubVusj.
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Therefore, in the �nal state: J=	KS,

hJ=	KS jB0i = hKS jK0ihJ=	K0jB0i

=
p
�

Kp
jpK j2 + jqK j2

V
�

cbVcsA;

hJ=	KS jB0i

=
q
�

Kp
jpK j2 + jqK j2

VcbV
�

csA: (1.11)

From the box diagrams of the neutral K and B meson, q(K)=p(K) can be calcu-

lated as follows.

qK

pK

�= VcdV
�
cs

V
�

cdVcs
(1.12)

q

p

�= VtdV
�

tb

V
�

tdVtb
(1.13)

Finally, from Equation (A.18), the time dependent CP asymmetry is,

Asy [J=	KS; t] =
1

1 + 12

�
2Im

�
VtdV

�

tb

V �

tdVtb

�
VcdV

�
cs

V �

cdVcs

��
VcbV

�
cs

V �

cbVcs

�
sin(�Mt)

� (12 � 1) cos(�Mt)

�

= sin

�
arg

�
VtdV

�

tbV
�

cdVcb

V �

tdVtbVcdV
�

cb

��
sin(�Mt)

= sin (� � �1 + � � �1) sin(�Mt)

= � sin(2�1) sin(�Mt): (1.14)

Other equations to determine �1 are obtained from Equations (A.14) and

(A.15) 6 as follows.

�(B0(t)! J=	KS) / f(t) or f(�)

=
1

2
e
��jtj(1� sin 2�1 sin�Mt)

=
1

2
e
�j� j(1� sin 2�1 sinxd�) (1.15)

�(B0(t)! J=	KS) / f(t) or f(�)

=
1

2
e
��jtj(1 + sin 2�1 sin�Mt)

=
1

2
e
�j� j(1 + sin 2�1 sinxd�); (1.16)

6They can prove at t > 0. At t < 0, the time evolution factor is ei�t in Equation (A.8).

It can prove at t < 0.
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where � � t�7 and xd � �M=�. f(�) is normalized as,Z 1

�1

d�f(�) = 1: (1.17)

Equations (1.15) and (1.16) are shown in Figure 1.4. A solid and dashed

lines are Equations (1.16) and (1.15), respectively.

When the CP violation does not exist, �1 is 0, that is, Equation (1.14)

is equal to 0 and Equations (1.15) and (1.16) do not have an asymmetry for

� = 0(in Figure 1.4).

B

Figure 1.4: Proper time distribution, t0 � t=�B corresponds to �� in Equation

(1.23).

1.2.4 Measurement of �1

It is necessary to obtain the information of the avor of B meson and � in

Equations (1.15) or (1.16). Figure 1.5 shows the decay process of B ! J=	KS.

7In Appendix A, � is written as �0.
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(4S) B

B

J/

l

π

π

π
π

l

l

K

ΨΥ
Ks0

0

+

+

+

-

-

-

-

e e+-

∆z

+

Figure 1.5: An example of the decay process of B ! J=	KS.

Measurement of �

�(4S) decays to B+
B
� or B0

B0 with the same probability. Let us consider

�(4S) ! B
0
B0. B

0 and B0 ight with the B0
B0 mixing, however when one

decays to some particles as B0(B0), the other have to be B0(B0) in the same

time. So that, a time when B0 decays can be selected as the origin of time. In

Equation (1.15), t can be written as �t which is de�ned as,

�t = tB0 � t
B0 ;

where tB0 and t
B0 are decay times of B mesons.

When the velocities of two B mesons are vB0 and v
B0 , respectively, �t can

be calculated as,

�t =
�lB0

vB0

�
�l

B0

v
B0

; (1.18)

where �lB0 and �l
B0 are the ight length of B mesons, respectively.

In the laboratory frame, the following approximate equations8 can be ob-

tained because of a large boost factor �. This large boost factor is important

for the measurement of the CP violation as I describe later.

vB0z
�= v

B0z
(1.19)

vB0T
�= v

B0T
�= 0 (1.20)

8vB0T is a transverse component of vB0 .
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In Equation (1.18), �lB0 ��l
B0 can be written as,

�lB0 ��l
B0
�= �z; (1.21)

�z � zB0 � z
B0 ;

where zB0(z
B0) is z component of the decay vertex of B0(B0).

From Equations (1.18), (1.19), (1.20), and (1.21),

�t �= �z

vB0

: (1.22)

� can be obtained from Equation (1.22) as,

�� = �t�

= �t=�B ; (1.23)

where �B is a life time of B0 meson.

Because of a large boost, vB0 can be approximately written as �c of �(4S).

Therefore, Equation (1.23) can be written as,

�� �= �z=�c�B : (1.24)

The measurement of �z is necessary to obtain �� . The �z is illustrated in

Figure 1.5.

And �c�B indicates that B mesons decay after they ight �c�B �= 200�m

in the BELLE. If a boost factor is zero, B mesons move by 30�m before their

decays and it is not possible to measure �z. Therefore a large boost factor is

important.

Flavor Tagging

B meson which decays to J=	KS is called BCP and the other B meson is

called Btag . And the method of the determination of BCP avor is called \avor

tagging".

The semileptonic decay of Btag(b ! cl
�
�l) provides one of the methods of

the avor tagging with reasonable eÆciency since the charge of lepton(electron

and muon) with high momentum indicates the avor of Btag . In Figure 1.5, it

is illustrated as a lepton with negative charge from B0. When Btag is B
0(B0),

a positive(negative) lepton with high momentum can be observed. Therefore if

there exists a positive(negative) lepton with high momentum, a BCP avor is

B0(B0).

The kaon charge also indicates the avor of Btag since b! c! s decay chain

is dominant process. In Figure 1.5, it is illustrated as a kaon with negative charge

from B0.

Good lepton identi�cation and good K=� separation are essential for the

avor tagging.

14



Chapter 2

BELLE Experiment

2.1 Accelerator

�(4S), which is a resonance state of b and �b quarks, is generated by the

collision of electron and position as shown in Figure 2.1.

TSUKUBA

FUJI

NIKKO

HER LE
R

HERLE
R

IR

Linac

R
F

R
F

RF

RF

e-
e+

e+/e-

HER LER

R
F

R
F

W
I
G
G
L
E
R

W
I
G
G
L
E
R

(TRISTAN  Accumulation Ring)

BY
PA
SS

Figure 2.1: KEK Beamline
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To give a large momentum to �(4S) in the laboratory frame, it is necessary

to make beam energy asymmetric, because the measurement of the di�erence

between B meson's vertices becomes more precise. Electron beam energy is 8.0

GeV=c and position beam energy is 3.5 GeV=c 1. To generate many B mesons,

the maximum luminosity is 1034cm�2 sec�1.

SVD
CDC
ACC
TOF
ECL
KLM
Superconducting
Solenoid

Figure 2.2: BELLE Detectors

2.2 Detector

The structure of BELLE detectors is shown in Figure 2.2. It is asymmetric

to its interaction point as shown in Figure 2.3. because the beam energy is

asymmetric. The de�nition of the xyz-axes is shown in Figure 2.4 and z axis

is parallel with the beampipe and its + direction is the going direction of the

electron beam. xy plane is also called r�� plane as shown in Figure 2.5.

I describe the overview of detectors and then I describe structures of each

1In the BELLE, a boost factor � is 0.425.
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detector in detail, particularly, the Central Drift Chamber(CDC) since the in-

formation from the CDC is used in the section 3.

e-

Nikko
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Barrel Yoke

KLM

End Yoke

SC coil

CDC

Backward
CsI

Pole Tip

SVD

Barrel TOF

e+

Oho
Side

Return Yoke

0     1     2     3(m)

Return Yoke

Barrel CsI

Barrel ACC Forward
CsI

end
cap
ACC

Figure 2.3: Side View of The BELLE Detectors
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Figure 2.4: The De�nition of The Coordinate in The BELLE

o x

y

r

φ

Figure 2.5: The De�nition of r��

2.2.1 Overview

The Silicon Vertex Detector(SVD) which measures vertices is situated just

outside of a cylindrical beryllium beampipe. It is important to measure ver-

tices precisely since �z is necessary to the observation of the CP violation.

Outside of the SVD, the CDC is situated, which provides charged particle

tracking. And then, the Aerogel �Cerenkov Counter(ACC), and the Time of

Fight Counter(TOF) are located outside of the CDC. They provide the particle

identi�cation, adding dE/dx measurement in the CDC. The particle identi�ca-
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tion is important to the tagging of B meson avor which is necessary to the

observation of the CP violation. Outside of the TOF, the Electromagmetic

Calorimeter(ECL) is situated, which detects electron and . The superconduct-

ing solenoid is located. It provides about 1.5 Tesla magnetic �elds. And outside

of it, the KL/� Detector(KLM) is situated, which detects KL and �.

2.2.2 SVD { Silicon Vertex Detector

The SVD provides measurements of the decay vertices of B mesons for the

observation of the CP violation. It is accurate enough to distinguish vertices

between decay to the CP eigenstate and tagging decay. The SVD has three

layers in Figure 2.6 and Figure 2.7. Each layer provides independent orthogonal

two coordinate measurements with its double-sides silicon microstrips. The SVD

system's angular coverage is 21Æ < � < 140Æ. �z resolution 2 is about 100�m

IP +50mm +100mm +150mm +200mm +250mm +300mm-50mm-100mm-150mm-200mm

Figure 2.6: Side View of The SVD

2It is a vertex of Btag � a vertex of BCP
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Layer 1: r=30.0mm, offset=9mm, 8φ, 2z
Layer 2: r=45.5mm, offset=9mm, 10φ 3z
Layer 3: r=60.5mm, offset=12mm, 14φ, 4z

Figure 2.7: Top View of The SVD

2.2.3 CDC { Central Drift Chamber

The CDC provides momentum and energy loss of the charged particles by

the reconstruction of these tracks. The information of the reconstructed tracks

is the starting point for the particle identi�cation (in the ACC and the TOF)

and detection of the electron(in the ECL) and the muon(in the KLM) since

reconstructed tracks are extrapolated to the ACC, TOF, ECL and KLM.

Structure

The radius of the most inner part is 8cm, that of the most outer past is

88cm, and the length is 235cm as shown in Figure 2.8. The most inner and

outer parts are made by 2mm and 5mm CFRP, respectively. The endplates are

made by 10mm Al. The ingredient of the �lled gas are helium and ethane and

this ratio is 1:1. The CDC system's angular coverage is 17Æ < � < 150Æ.
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Figure 2.8: Side View of The CDC(upper part: It is a magni�ed �gure of the

center of Figure 2.3)

Wire and Layer

The total number of the sense wires are 8400. That of the layers are 50

and cathode parts are 3 layers. These wires are divided to two types, one is an

axial wire which is not slant to z axis, the other is a stereo wire which is slant3.

Similarly, these layers are divided to two types, one is an axial super layer which

includes only axial wires and the other is a stereo super layer which includes

only stereo wires as shown in Figure 2.9. Wire con�guration is shown in Table

2.1. And there are other wires to create cells, that is, 24944 �eld wires. The

size of the cell is about 15mm � 15mm as shown in Figure 2.10.

3The slant is about 50 mrad and the number of the axial wires is 5280, that of the stereo

wires is 3120.
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A - Axial Super Layer
S  - Stereo Super Layer 

A
S

A
S

A
S

A

A
S

S
A

Figure 2.9: R�� View of The CDC

layer no. of wires per total index of index of index of

type the layer one layer wires the axial layer the stereo layer the super layer

axial 6 64 384 1 - 1

stereo 3 80 240 - 1 2

axial 6 96 576 2 - 3

stereo 3 128 384 - 2 4

axial 5 144 720 3 - 5

stereo 4 160 640 - 3 6

axial 5 192 960 4 - 7

stereo 4 208 832 - 4 8

axial 5 240 1200 5 - 9

stereo 4 256 1024 - 5 10

axial 5 288 1440 6 - 11

Table 2.1: Sense Wires
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Sense Wire

Field Wire

14.8mm

~15mm

Figure 2.10: Sense and Field Wires

Performance

The performance of the CDC[3][9] are as follows.

1. The spatial resolution is 120�m � 150�m.

2. The resolution of Pt
4 is ÆPt

Pt
� 0:5%

p
1 + P 2

t .

3. The resolution of the energy loss dE=dx is
ÆdE=dx
dE=dx

� 6%.

2.2.4 ACC { Aerogel �Cerenkov Counter

The ACC identi�es particles, that is, K=� separation, with momentum

greater than 1.2 GeV=c. �Cerenkov radiations occur in case of

n > 1=� =
p
1 + (m=p)2;

where p is a measured momentum value with the CDC and n is the index of

refraction.

The ACC, which consists of a single layer of aerogel detectors, is divided

into two parts: a barrel array occupying the volume bounded by 88:5 < r < 115

cm and �85 < z < 162 cm, and a forward endcap array occupying the region

bounded by 42 < 114 cm and 166 < z < 194 cm. These are shown in Figure

2.11 and Figure 2.12.

4Transverse momentum. A unit of Pt is GeV.
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Figure 2.11: Barrel Part of The ACC

Figure 2.12: Endcap Part of The ACC
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2.2.5 TOF { Time of Fight Counter

The TOF provides 3�K=� separation up to 1.2 GeV=c with a TOF time

resolution of 100ps. The following equation is satis�ed using a measured time-

of-�ght T with the TOF and a measured momentum p with the CDC.

T = L=c

p
1 + (m=p)2;

where L is a length of the �ght.

One TOF module is shown in Figure 2.13. It consists two trapezoidally

shared TOF counter and one TSC(Thin Scintillation Counter) counter. And

64 modules are mounted in BELLE. The TOF system's angular coverage is

33:7Æ < � < 120:8Æ.

TSC    5t x 120W x 2630 L

PMT

20

 1220

1825 1905

R= 1175

R=1250 + 2
               - 2

1170 + 2
          - 2

R= 1220
R=1200.5

1930

R= 1175R=1175

PMT PMT

- 725 - 805- 835- 915- 940

1200.5

Light guide

 TOF   40t x 60W x 2550 L

10

PMT
PMT

ForwardBackward

1825- 805

 40 

2820

2870

I.P (Z=0)

Figure 2.13: A Module of The TOF

2.2.6 ECL { Electromagmetic Calorimeter

The ECL detects s and electrons using the electromagmetic shower. In

case of , its energy and position are measured.  is important to the analysis

of �0 included decays such as B ! �
0
�
0. Electron is mainly necessary for

the tagging of the CP violation. And in case of electron, its identi�cation

is done by comparing its measured momentum with the CDC and its energy

deposit on the ECL. For the calorimeter, CsI(Tl) crystal is chosen. Its typical

size is around 6cm � 6cm � 30cm. The ECL consists of 3 parts: a barrel

part, whose angular coverage is 32:2Æ < � < 128:7Æ with 6624 crystals, and a

forward endcap, 12:4Æ < � < 31:4Æ with 1152 crystals, and a backward endcap,

130:7Æ < � < 155:0Æ with 960 crystals.
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Figure 2.14: Barrel and Endcap Parts of The ECL

2.2.7 Superconducting Solenoid

The superconducting solenoid provides a magnetic �eld of about 1.5T(Tesla)

in a cylindrical volume of 3:4m in diameter and 4:4m in length. It is not uniform

�eld and distorted �eld a little.

2.2.8 KLM { KL/� Detector

The KLM detects KL and � and measures their positions. KL is necessary

to the analysis of KL included decays such as B ! J=	KL from which the

CP violation can be measured. � is mainly necessary for the tagging of the CP

violation. It consists of octagonal barrel and two endcaps which are a sandwich

structure of 14 iron plates of 4.4cm thick and 14(15 for barrel part) layers of

4.7cm thick RPC(Resistive Plate Counter). The KLM system's angular coverage

is 25Æ < � < 145Æ. In case of KL, the hadron shower occurs in its iron plates,

however in case of �, it does not occur.
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Figure 2.15: Side View of The KLM
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Chapter 3

Development of The Low

Momentum Track

Reconstruction Program

3.1 Overview

The tracking program reconstructs trajectories of charged particles in a mag-

netic �eld. A curvature of each trajectory gives a momentum of the charged

particle. Since all of other reconstruction tools for the charged track depend

on the tracking information, the tracking program plays a crucial role in the

BELLE reconstruction program.

In the tracking program, tracks are found in the r�� plane using only axial

wires �rst, and then reconstructed in the three dimensional space using stereo

wires (\stereo �nder"). Tracks are found mainly by a \conformal �nder". In the

conformal �nder, hit position (x; y) is transformed into (X;Y ) by the conformal

transformation as,

X =
2x

x2 + y2
; Y =

2y

x2 + y2
:

By the conformal transformation, a circle which passes through the origin

(0; 0) is transformed into a line. The inverse of the distance of the line from the

origin in the conformal plane corresponds to a radius of the circle as shown in

Figure 3.1.
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Figure 3.1: Conformal Transformation

The conformal �nder �nds tracks by searching hits with similar � = tan
�1 Y

X

values to achieve fast reconstruction speed. In this method, the eÆciency to �nd

tracks degrades with lower transverse momentum (Pt) tracks since r
�1 become

too large. Therefore it is diÆcult to �nd tracks with Pt < 100MeV/c by the

conformal �nder.

I developed a \curl �nder" and an associated stereo �nder to �nd those low Pt

tracks not found by the conformal �nder. The curl �nder ignores axial hits used

to reconstruct tracks already found by the conformal �nder. However, all stereo

hits are used for the three dimensional reconstruction to improve the eÆciency

since a lack of stereo hits is a main source of ineÆciency for low Pt tracks. Figure

3.2 illustrates the di�erence between tracks found by the conformal �nder and

the curl �nder. The dashed and solid line indicate tracks found by the conformal

�nder and the curl �nder, respectively. As I mentioned above, the low Pt track

reconstruction is particularly important for physics analysis which involvesD�+,

such as B0 ! D
�+
D
��. In this chapter, the curl �nder and the associated stereo

�nder are described in detail.
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Figure 3.2: Reconstructed tracks in the CDC. Dashed line indicates tracks re-

constructed by the conformal �nder and solid line indicates tracks reconstructed

by the curl �nder. Cross marks represent axial hit wires. Stereo hit wires are

not shown.

3.2 Curl Finder

The curl �nder is designed to reconstruct low Pt charged tracks (50MeV<

Pt <200MeV). Those tracks are reconstructed as a circle in the r�� plane unlike

the conformal �nder. Figure 3.3 shows an example of a low Pt track. The

curl �nder �nds tracks by appending hit wires to \segments" which consists of

consecutive hit wires in the same super layer. A special treatment is made to
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break up segments which consists of two tracks. The segment with the largest

number of consecutive hit wires in one layer is used as the �rst seed segment

since hit wires remain as a segment which has consecutive hit wires in one layer

and the characteristic can not be in the high Pt track but be in the low Pt

track. And hit wires in segments are appended to the seed segment if they are

close to the circle which is calculated from the seed segment. And then a track

is reconstructed in the r�� plane from the seed segment and its appended hit

wires.

Figure 3.3: A Curling Track in The CDC

A segment is created by collecting neighboring hit wires within a super layer.

Figure 3.4 shows an example of the method how to �nd a segment. The segment

�nding can start from any hit wire. When there is a neighboring hit wire, it

moves to the neighboring hit wire. When there are more than one neighboring

hit wires, it move to one of them and the others are marked as \stocked seed

wire". When it cannot �nd any neighboring hit wire, it moves to one of stocked

seed wires and repeats the process. When it depletes all of the stock seed wires,

the segment is found. If the segment includes less than three hit wires, it is

discarded.
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Use a stocked seed.

Example

Stock the wire as a seed.

Searched Wire

Not Searched Wire

Stocked Seed Wire

Figure 3.4: An example of the segment �nding.

Figures 3.5 and 3.6 show an example of the segment. One track originates

from the interaction point(IP), however the other track comes from outside,

which can be caused by back scattering from the calorimeter etc.
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Figure 3.5: A segment in the CDC. One track originates from the interaction

point however the other track comes from outside, which can be caused by back

scattering from the calorimeter etc.

#0 #1
#2 #3

#4

Figure 3.6: A magni�ed segment of Figure 3.5.

A segment is divided by the layer whose number of consecutive hit wires is
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the largest in the segment. In the example, the layer #2 includes 10 consecutive

hit wires, and the hit wires in layer #3 and #4 are discard since tracks are

expected to come from inside. When the largest number of the consecutive hits

in a layer is less than 6, this treatment is not made.

A seed segment is selected based on the largest number of consecutive hit

wire in one layer. Circle parameters are calculated from wire positions in the

seed segment. Drift distance is not included in the calculation currently to save

CPU time. Hit wires in segments are appended to the seed segment if a distance

of the wire position from the circle is less than 8cm, and the circle parameters are

recalculated. After all hit wires in segments are examined, the circle parameter

may be recalculated with an IP constraint to improve the calculation. The IP

constraint is necessary when the number of wires in the circle is less than 5

and the distance between the circle and the IP is less than 10cm. In the IP

constraint, (0; 0) is treated as a wire in the �t of the circle. Hit wires which are

not included in segments are also appended if the distance of the wire position

from the circle is less than 5cm to further improve the �t. After all hits are

examined, the circle with less than 5 hit wires is discarded.

Two tracks, positive and negative tracks, can be reconstructed from one

circle since it is diÆcult to determine the charge of the curling track in the r���
plane. Since the trajectory of the low Pt track is not a perfect circle due to

energy loss, hit wires included in the circle are divided into two groups, one

for a positive track and the other for a negative track as shown in Figure 3.7.

The number of the wires in the group must be greater than or equal to three,

otherwise the circle cannot be calculated. Although the momentum of the true

track is expected to be greater than that of the false track, the resolution is not

good enough to distinguish the two.
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Negative Charged Track

Positive Charged Track

CDC r view−φ hit wire

Figure 3.7: Positive and negative charged tracks in the r��� plane. The direction
of the magnetic �eld runs upward.

At the �nal stage of the curl �nder, the circle is re�tted using drift distance

to improve the track parameters. If the distance between \a wire + its drift

distance" and the circle is greater than 4.5cm, the wire is removed from the

circle. The cut value is loose since the resolution of the track parameters them-

selves may not be good enough. After all bad hits are removed, the circle is

recalculated again. If the distance is greater than 1.5cm, the wire is removed

from the circle.

3.3 Stereo Finder for Curl Tracks

Tracks found by the curl �nder in r�� plane are reconstructed in the three

dimensional space using \stereo �nder". The stereo �nder associates stereo hit

wires with the tracks in the r�� plane. A cylinder on which the track trajectory

exists is expanded into a plane in the stereo �nder as shown in Figure 3.8. Stereo

hit wires are selected and checked in this plane. A horizontal axis is called \arc"

(= r � �) and a vertical axis corresponds to the z-coordinate. And then, track

parameters are obtained by three dimensional �t using selected axial and stereo

hit wires. In this �t, a track trajectory is treated as a spiral although it is not

exactly correct due to the energy loss and the multiple scattering. The Kalman

�ltering technique is applied later to take into account those e�ect and obtain

correct tracking parameters.
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Z

Charged Track

Arc

Z
Charged Track

Figure 3.8: Expansion of the cylinder into a plane. A horizontal axis is called

\arc" and a vertical axis corresponds to the z-coordinate.

As described above, the stereo �nder associates stereo hit wires to the r��
tracks in the r�� plane �rst. When a stereo wire is projected into the r��
plane, it becomes a line with a length of about 12cm. If a distance between r��
position of the stereo wire at z = 0 and the circle is less than 5 � 9cm, the

stereo wire is included in the track. The exact cut value depends on the super

layer since the wire length is di�erent among them. Since we have two track

candidates, positive and negative tracks, from one circle, stereo hit wires are

shared by those two candidates. Stereo wires in the \right" side are associated

with the tracks. Figure 3.9 illustrates the \right" and \wrong" side for positive

and negative tracks. The r�� position at z = 0 for each stereo wire is shown by

the cross mark in the �gure.
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Negative Charged Track

right

wrong

Positive Charged Track

right

wrong

CDC r view−φCDC r view−φ hit wire

Figure 3.9: \Right" and \wrong" side of stereo wires. The cross mark indicates

the r�� position at z = 0 for each stereo wire.

After stereo hit wires are associated with the circle, \arc" and z position of

each stereo wire are calculated. The arc and z pairs are obtained at the position

where the drift circle of the stereo hit and the track circle touches. Generally,

we have two solutions as illustrated in Figure 3.10. Sometimes, we have three or

four solutions as shown in Figure 3.11. The wire with more than two solutions

is not used since it is diÆcult to select the right solution in the �t. It does not

caused a problem since it rarely happens.

When we have two consecutive hit wires in one layer, z positions of the hits

are expected to be close to each other. One pair of (arc, z) with the minimum

z di�erence is selected among four possible pairs. If the minimum z di�erence

is greater than 10cm, the hits are considered bad and ignored afterward.
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Charged Track

Stereo Wire

Dirft Circle

Arc

Arc
Z

Z

Figure 3.10: Determination of \arc" and z position of stereo wires.

Charged Track

Stereo Wire

Dirft Circle

Arc

Arc

Z

Z

Arc

Figure 3.11: Determination of \arc" and z position of stereo wires with 4 solu-

tions.

When we have three consecutive stereo hit wires in one layer, the best com-
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bination of (arc, z) pairs is selected based on z-di�erences. In each combination,

we have three z-di�erences. The smallest of the three is called dZ1 and the sec-

ond smallest is called dZ2. Figure 3.12 illustrates the de�nition of the dZ1 and

dZ2. A combination with minimum dZ1 and dZ2 is selected. When dZ2 is less

than 20cm, the minZ, which is a new parameter to use in the case of the greater

than three consecutive wires, is de�ned as dZ2� 2 and three hits are considered

to be good. When dZ2 is greater than 20cm and dZ1 is less than 10cm, two

wires which give the dZ1 are considered to be good. The other wire is agged

as bad and ignored afterward. The minZ is de�ned as dZ1. Any combination

which does not satisfy either condition is considered bad and the minZ is not

de�ned.

Z1

Z3

Z2

Arc1 Arc3Arc2 Arc

Z

dZ2

dZ1

Figure 3.12: De�nition of dZ1 and dZ2.

When we have four or more consecutive stereo hit wires in one layer, the best

three consecutive wire combination is selected using the minZ. The other wires

are agged as unused and ignored afterward. Figure 3.13 illustrates three pos-

sible combinations of three consecutive wire hits when we have �ve consecutive

wire hits in one layer.

Three Patterns

Figure 3.13: Five Consecutive Wires ! Three Combinations of Three Consec-

utive Wires

When we have only one hit wire (isolated wire) in one layer, unique solution

for (arc,z) pair can not be obtained. Such hit wires are put aside until the line
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is found using the wires above.

After (arc, z) pairs are calculated for all good stereo hits in each super layer,

bad hits are removed further as follows.

Hits close to each other are associated to remove bad hits. The association

starts from the hits in the innermost layer for each super layer. Wires in the

second layer are selected when they are within \two distance" from the wires in

the innermost layer as shown in Figure 3.14.

First LayerSecond Layer

CDC r- viewφ

distance = 1

distance = 2

Figure 3.14: Association of wires between the �rst and second layers.

Wires in the third layer are associated with the wires in the second layer

in the same manner as above. When there is no associated wire in the second

layer, wires are associated with the wire in the �rst layer, as shown in Figure

3.15.

Wires in the subsequent layers are associated in the same manner as above.
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First LayerSecond Layer

CDC r- viewφ

distance = 1

distance = 2

Third Layer

Figure 3.15: Association of wires between the �rst and third layers.

Hits are also removed from the selected hits if the z value are apart from

the line de�ned by hits with minimum and maximum arc value. Figure 3.16

illustrates the case one hit is apart from the line.

Arc

Z

#1 #2 ... ... #n

Max

Z of #1

Zmid

Figure 3.16: Validity of the maximum or minimum z wire
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A value F is calculated for hits with the maximum or minimum z value (hits

with maximum and minimum arc value is excluded) to evaluate the distance as,

Zmid � (Z1 + Zn)� 2

F �
����Zmax(Zmin)� Zmid

Z1 � Zmid

���� :
If F is greater than 2.5, the hit with Zmax(Zmin) is removed.

A line is obtained in the arc-z plane by using the selected wires. At this

stage, hit wires, which are isolated in one layer, are considered. If the distance

between the hit wire and the line in the arc-z plane is less than 5cm, the (arc,

z) pair is appended to the line.

After all of the procedures described above are performed in each super layer,

the line is re�tted combining all remaining wires as shown in Figure 3.17.

Α
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A
S

A S
A

S
A

S
A

Arc

Z

Arc

Z

Arc

Z

Arc

Z

Merging...

Arc

Z

Figure 3.17: Merge Lines

The �2 per degree of freedom of the new line must be less than 25, and the

di�erence of the slope from the original slope in each super layer must be less

10% of the original slope. If both conditions are not satis�ed, combination of
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the super layers which satisfy both conditions are searched. When there are

more than one combinations, the combination which includes more inner super

layers is used since inner super layers are more important for low Pt tracks.

When no good combination is found, the super layer with better �2 per degree

of freedom is used within the �rst or the second super layer.

All of individual stereo wires are examined to �nd any wires removed by

mistake. If the distance between the hit wire and the line in the arc-z plane

is less than 1.5cm, the (arc, z) pair is appended to the new line. Finally, the

stereo hit wires found above are used to reconstruct a track trajectory in three

dimensional space. The reconstruction algorithm is described in Appendix B.
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3.4 Performance

Performance of the low Pt reconstruction program is examined using 104

Monte Carlo events. Single pion is generated and detector response is simulated

using GEANT3[12] simulation library developed at CERN1. In this study, some

e�ects such as energy loss, multiple scattering and decays in ight are not sim-

ulated. The conformal �nder is not used in order to check the performance of

the curl �nder. Figure 3.18 shows relations between reconstructed momentum

and generated momentum. Figure 3.19 shows transverse momentum. There is

not systematic deviation from the generated momentum.
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Figure 3.18: Generated Momentum .vs. Reconstructed Momentum
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Figure 3.20 shows the eÆciency as a function of the Pt for the same Monte

Carlo simulation conditions. The solid and dashed line indicates the eÆciencies

with and without the low Pt track reconstruction program. The great improve-

ment can be seen in the range, Pt = 50MeV/c � 120MeV/c. The eÆciencies

are not improved in the range, Pt > 200MeV/c. It is reasonable because the

radius of the outer of the CDC is 88cm(Chapter 2) and Pt � 300 � 1.5(Tesla)

� 0.88/2(m) � 200MeV/c.
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Figure 3.20: Track �nding eÆciency as a function of Pt for single pion events.

The solid and dashed line indicates the eÆciencies with and without the low Pt

track reconstruction program, respectively.
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Events with �(4S)! B
0
B0, B0 ! D

��
e
+
�e, B0 ! Generic Decay are also

generated to measure the performance in more realistic condition by the full

simulator(GSIM). In the simulation, the SVD information is used for calcula-

tion of the momentum. All charged particles are considered as pion and kaon.

D
�� reconstruction eÆciency is measured to be 22% without the low Pt recon-

struction program, and it is improved to be 30% with the low Pt reconstruction

program. Figure 3.21 shows the D��{D0 mass distributions with and without

the low Pt reconstruction program. It is clear that the number of reconstructed

D
�� increases by the low Pt reconstruction program. Tracking eÆciencies are

also measured as shown in Figure 3.22. The result is worse than that with single

pion events due overlaps of tracks. Further optimization of bad hit rejections

are required to improve the eÆciency.

Figure 3.23 shows a multiplicity of the relation between generated tracks and

reconstructed tracks. Track reconstruction programs make slightly more tracks

than number of generated tracks.
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Figure 3.21: Mass di�erence between D
�� - D0. The solid and dashed line

indicates the distributions with and without the low Pt track reconstruction

program, respectively.
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Figure 3.22: Track �nding eÆciency as a function of Pt. The solid and dashed

line indicates the eÆciencies with and without the low Pt track reconstruction

program, respectively.
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Figure 3.23: Multiplicity of Generated Tracks .vs. Reconstructed Tracks
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Chapter 4

Development of The

Kinematic Fitter

4.1 Introduction

Kinematic Fitter[6][7] is �tting programs with which values such as momen-

tum of the reconstructed particle are improved using physics constraints in the

process of reconstructing particle from its daughter particles.

Using these �tters in the physics analysis, vertices can be found and values

of 4-momentum etc. can be improved. If one particle is reconstructed from

wrong daughter particles using these �tters, �2 is large, that is, CL is near 0.

Therefore, S/N ratio can be improved by CL cut in the analysis.

I have developed three type �tters as follows.

1. Assumption that the daughter particles should pass through a common

decay vertex. (Figure 4.1)

=) Vertex Fitter

2. Assumption that reconstructed mass using the daughter particles is equal

to an invariant mass. (Figures 4.2 and 4.3)

=) Mass Constraint Fitter

3. 1 and 2 simultaneously.

=) Vertex and Mass Constraint Fitter

The vertex �tter and mass constraint �tter are described in Reference [6].

I implemented them[7] in BELLE softwares. All programs are developed using

C++ programming language 1.

1Sample programs[6] are written in Fortran.
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Figure 4.3: Mass Constraint Fit. A mass distribution becomes like a delta

function using the mass constraint �t.
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4.2 Algorithm

4.2.1 Overview

The method of the �t is the least square method of �2[6]. Terms for giving

constraints are added to the �2 by the Lagrange multipliers. Generally, it is

necessary to iterate by the Newton method to obtain the least �2. However,

the least �2 can be obtained analytically by the linearlization of the constraint

equations. It can save CPU time.

4.2.2 Fitting with Constraints

� which has n components is a vector as follows.

� =

0
BBB@

�1

�2

...

�n

1
CCCA

Initially the track parameters have the unconstrained values �0(for example,

measurement values). The r functions describing the constraints can be written

generally as H(�) = 0 as follows.

H =

0
BBB@

H1

H2

...

Hr

1
CCCA

Expanding around a convenient point �A yields the linearized equations,

0 = H(�A) +
@H(�A)

@�
(���A) � d+DÆ�

where Dij = @Hi=@�j , Æ� = ���A.

The constraints are incorporated using the method of Lagrange multipliers

in which the �2 is written as a sum of two terms,

�
2 = (Æ�� Æ�0)

T
V
�1
�0
(Æ�� Æ�0) + 2�T (DÆ�+ d)

= (���0)
T
V
�1
�0
(���0) + 2�T fD(���A) + dg

V Æ�0 = V �0

where � is a vector of r unknown parameters.

Minimizing the �
2 with respect to Æ� and � yields two vector equations

which can be solved for � and their covariance matrix. The solution is shown

as follows,

� = �0 � V �0D
T
�
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(Æ� = Æ�0 � V �0D
T
�)

� = V D(DÆ�0 + d)

V D = (DV �0D
T )�1

V � = V �0 � V �0D
T
V DDV �0

�
2 = �

T
V
�1
D � = �

T (DÆ�0 + d) (4.1)

where Æ� = ���A; Æ�0 = �0��A. To obtain the solution, the property of the
symmetric matrix is used. V �0 is a symmetric matrix, and V D is a symmetric

matrix because the inversion of the symmetric matrix is symmetric. � satis�es

the constraints and it can be shown the diagonal elements of the covariance

matrix are smaller than before.

When constraints are applied, the e�ective number of unknowns, that is,

the degree of freedom in the �t is reduced by the number of constraints. The

�
2 equation is written with n parameters with the r constraint equations. By

substituting the r constraints in the �2 equation, one is left with an expression

having n� r unknowns.

4.2.3 Fitting with Constraints for Unknown Parameters

� = (�1; �2; :::; �n) represents a set of tracks and v = (v1; v2; :::; vq) rep-

resents unknown parameters. The r constraint equations H(�;v) = 0 can be

expanding around �A;vA to give the linearized equations as follows.

H(�A;vA) +
@H(�A;v)

@�
(���A) +

@H(�;vA)

@v
(v � vA)

� d+DÆ�+EÆv

=

nX
j=1

DijÆ�j +

qX
j=1

EijÆvj + di (i = 1:::r)

= 0

where Æ� = � � �A; Æv = v � vA; Eij =
@H(�;vA)i

@vj
; Dij =

@H(�A;v)i
@�j

. E is a

r � q matrix, and D is a r � n matrix.

Large errors are assigned to the v(covariance matrix L). The linearized �
2

is

�
2 = (Æ�� Æ�0)

T
V
�1
Æ�0

(Æ�� Æ�0) + (Æv � Æv0)
T
L
�1(Æv � Æv0)

+ 2�T (DÆ�+EÆv + d)

� (Æ ~�� Æ ~�0)
T
V
�1
Æ ~�0

(Æ ~�� Æ ~�0) + 2�T ( ~DÆ ~�+ d)

where the quantities with~over them have the v information appended to them.

Thus

Æ ~� =

�
Æ�

Æv

�
; ~D =

�
D E

�
;V Æ ~�0 =

�
V Æ�0 0

0 L

�
:
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The solution which minimizes the �
2 can be taken straightly from Equation

(4.1).

Æ ~� = Æ ~�0 � VÆ~�0
~
D

T
�

� = V ~D(
~
DÆ ~�0 + d) = V ~D(DÆ�0 +EÆv0 + d)

V ~D � ( ~DV Æ ~�0
~
D

T
)�1 = (DV Æ�0D

T +ELET )�1

V Æ~� = V Æ ~�0 � V ~�0
~
D

T
V ~D

~
DV Æ ~�0

�
2 = �

T
V
�1
~D
� = �

T ( ~DÆ ~�0 + d)

= �
T (DÆ�0 +EÆv0 + d)

The expressions for �;v;V �; cov(v;�) and V v can be extracted from the full

solution using

Æ ~� =

�
���A

v � vA

�
;V Æ~� = V ~� =

�
V � cov(v;�)

cov(�;v) V v

�
;V Æ ~�0 = V ~�0 ;

which gives

� = �0 � V �0D
T
�

v = v0 �LET
�

V � = V �0 � V �0D
T
V ~DDV �0

V v = L�LET
V ~DEL = (V �1

E +L�1)�1

cov(v;�) = �LET
V ~DDV �0 :

The auxiliary matrixV ~D can be calculated using the Woodbury formula 2

V ~D = V D � V DE(V
�1
E +L�1)�1ET

V D

V D � (DV �0D
T )�1

V E � (ET
V DE)

�1
:

And then in the second equation of V v, the Woodbury formula is used.

In the limit L ! 1, it is found that V v ' V E . Using this, V ~D can be

solved as follows.

V ~D ' V D � V DEV vE
T
V D:

Next concerning �, it is necessary to calculate the �rst term of L�1 because

a sensible value can not be obtained. Using the Woodbury formula, the result

becomes as follows.

� ' �0 � V DEV vE
T
�0

�0 � V D(DÆ�0 + d):

2This is (A+UV T )�1 = A�1
�A

�1
U(1 + V T

A
�1
U)�1V

T
A
�1. This formula can be

proved intuitively, that is, (A + ÆA)�1 = A�1
�A

�1ÆAA�1 +AÆAA�1ÆAA�1 + :::
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And then, concerning v,

v ' vA � V EE
T
�0:

At last �2 can be calculated as follows.

�
2 = �

T
0 (DÆ�0 +EÆv0 + d):

The result is in the limit L!1 as follows.

� = �0 � V �0D
T
�

v = vA � V EE
T
�0

V � = V �0 � V �0D
T
V ~DDV �0

V v = V E

V ~D = V D � V DEV EE
T
V D

V D � (DV �0D
T )�1

V E � (ET
V DE)

�1

� = �0 � V DEV EE
T
�0

�0 � V D(DÆ�0 + d)

�
2 = �

T
0 (DÆ�0 +EÆv0 + d)

cov(v; �) = �V EE
T
V DDV �0

Æ�0 = �0 ��A

Æv0 = v0 � vA

4.3 Application

I describe physics constraints and their representations, that is, their matri-

ces for applying to the kinematic �tter.

In the representations below, p? is the momentum transverse to the magnetic

�eld direction. B is the magnetic �eld strength whose unit is tesla. a is de�ned

as a = �cBQ� 10�3 3 where Q is the charge of the particle whose unit is the

absolute value of the electron charge.

4.3.1 Vertex Fitter

The particle whose charge is Q is moving in a magnetic �eld of strength B.

The trajectory of the particle is given by

px = p0x cos
s?

�
+ p0y sin

s?

�

py = p0y cos
s?

�
� p0x sin

s?

�

3c is de�ned from the velocity of photon. c = 2:99792458
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pz = p0z

E = E0

x = x0 �
p0x

a
sin

s?

�
� p0y

a
(1� cos

s?

�
)

y = y0 �
p0y

a
sin

s?

�
+
p0x

a
(1� cos

s?

�
)

z = z0 + s? tan�

where (x0; y0; z0) is one known position on the helix. (p0x; p0y; p0z; E0) is its

4-momentum in the position, and � = �pt=a = pt=(cBQ � 10�3). They are

functions of s?. s? is the arc length in xy plane from (x0; y0; z0) to (x; y; z).

The constraint equations are obtained by eliminating s? from these equa-

tions of motion. For each track i,

H1i � pix�yi � piy�xi �
ai

2
(�x2i +�y2i ) = 0 (4.2)

H2i � �zi �
piz

ai
sin

�1[ai(pix�xi + piy�yi)=p
2
?i] = 0 (4.3)

where �xi = vx � xi etc. v = (vx; vy; vz) is a vertex point.

In case that the charge is zero,

H1i � pix�yi � piy�xi = 0

H2i � �zi �
piz

p
2
i?

(pix�xi + piy�yi) = 0:

From Equations (4.2), (4.3), Di, Ei, and di can be calculated as follows.

D =

0
BBB@
D1 E1

D2 E2

. . .
...

Dn En

1
CCCA (4.4)

d =

0
BBB@
d1

d2

...

dn

1
CCCA (4.5)

Di =

 
@H1i

@pix

@H1i

@piy

@H1i

@piz

@H1i

@xi

@H1i

@yi

@H1i

@zi
@H2i

@pix

@H2i

@piy

@H2i

@piz

@H2i

@xi

@H2i

@yi

@H2i

@zi

!

=

 
�yi ��xi 0 piy + ai�xi �pix + ai�yi 0

�pizSiRix �pizSiRiy � sin�1Bi

ai
pixpizSi piypizSi �1

!

Ei =

 
@H1i

@vx

@H1i

@vy

@H1i

@vz
@H2i

@vx

@H2i

@vy

@H2i

@vz

!
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=

�
�piy � ai�xi pix � ai�yi 0

�pixpizSi �piypizSi 1

�

di =

�
H1i

H2i

�

=

�
A1i � 1

2
ai(�x

2
i +�y2i )

�zi � piz
ai
sin

�1
Bi

�

Since an energy term generally is not independent, �i = (pix; piy; piz; xi; yi; zi).

Si etc. are de�ned as follows4.

A1 = �ypx ��xpy

A2 = �xpx +�ypy

B = aA2=p
2
?

Rx(y) = �x(y) � 2px(y)A2=p
2
?

S =
1

p2
?

p
1�B2

In case that the charge is zero, Si etc. are rede�ned as follows.

a = 0

B = 0

Rx(y) = �x(y)� 2p2x(y)�x(y)=p
2
?

4.3.2 Mass Constraint Fitter

The constraint equation is given by

H � (
X

Ei)
2 � (

X
p
0

ix)
2 � (

X
p
0

iy)
2 � (

X
p
0

iz)
2 �m

2
c = 0 (4.6)

where p0ix etc. are given as follows.

p
0

x = px � a�y

p
0

y = py + a�x

p
0

z = pz

�x = xc � x

�y = yc � y

The prime means that the momentum for the tracks is evaluated at the vertex

point. (xc; yc; zc) is a vertex point. And mc is an invariant mass.

From Equation (4.6), D and d can be calculated as follows.

D = (
@H

@p1x
;
@H

@p1y
;
@H

@p1z
;

4A suÆx i is omitted
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@H

@x1
;
@H

@y1
;
@H

@z1
; � � �)

= (�2p0x + 2E
p
0
1x

E1

; �2p0y + 2E
p
0
1y

E1

; �2p0z + 2E
p
0
1z

E1

;

2a1(p
0

y � E
p
0
1y

E1

); �2a1(p0x �E
p
0
1x

E1

); 0; � � �) (4.7)

d = H = E
2 � p

02
x � p

02
y � p

02
z �m

2
c (4.8)

where E =
P

Ei; p
0
x =

P
p
0
ix. As I mentioned above, an energy term generally

is not independent in the calculation.

4.3.3 Vertex and Mass Constraint Fitter

The constraint equations are already given by Equations (4.2), (4.3), and

(4.6). It is only to combine them for applying invariant mass �t and vertex �t

simultaneously. To obtainD, a matrix (4.7) and a new term Emass for a vertex

point are added in the last line of the matrix (4.4). And to obtain d, a matrix

(4.8) is added in the last line of the matrix (4.5). They are written as follows.

D =

0
BBBBB@

D1 E1

D2 E2

. . .
...

Dn En

Dmass Emass

1
CCCCCA ;d =

0
BBBBB@

d1

d2

...

dn

dmass

1
CCCCCA

Di =

 
�yi ��xi 0 piy + ai�xi �pix + ai�yi 0

�pizSiRix �pizSiRiy � sin�1Bi

ai
pixpizSi piypizSi �1

!

Ei =

�
�piy � ai�xi pix � ai�yi 0

�pixpizSi �piypizSi 1

�

di =

�
A1i � 1

2
ai(�x

2
i +�y2i )

�zi � piz
ai
sin

�1
Bi

�

Dmass = (�2p0x + 2E
p
0
1x

E1

; �2p0y + 2E
p
0
1y

E1

; �2p0z + 2E
p
0
1z

E1

;

2a1(p
0

y �E
p
0
1y

E1

); �2a1(p0x �E
p
0
1x

E1

); 0; � � �)

Emass =

 
2E
X
i

p
0
iyai

Ei

� 2p0y

X
i

ai;�2E
X
i

p
0
ixai

Ei

+ 2p0x

X
i

ai; 0

!

dmass = E
2 � p

02
x � p

02
y � p

02
z �m

2
c

where E =
P

Ei; p
0
x =

P
p
0
ix and S, etc. are de�ned as the previous.
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4.4 Performance

Bene�ts of the kinematic �tter are as follows.

� Improvement of the momentum.

� Calculation of the vertex position.

� Background rejection using con�dence level cuts.

Following decay chain has been studied to demonstrate these abilities using

107 Monte Carlo events by the fast simulator(FSIM)5.

B
0 ! D

�
�
+
�
+
�
� (4.9)

D
� ! K

+
�
�
�
� (4.10)

It is analyzed by two methods as follows.

1. mass cut, and beam energy constraint of B0.

2. mass cut, beam energy constraint of B0, and CL(con�dence level) cut

using the kinematic �tter. Mass Vertex Fitter for (4.10) and Vertex Fitter

for (4.9) are used.

Analysis conditions are as follows.

� In the particle identi�cation of kaon and pion 6, if a probability of kaon is

greater than 1.5 � probability of pion, a particle is considered as kaon. If

not, it is as pion.

� If CL is greater than 2% and reconstructed mass is within 3� mass cuts(=

4:2MeV� 3) from nominal mass, it is used in reconstructions.

Figure 4.4 compares momentum resolutions without and with the kinematic

�tter. Plots in the left and right sides correspond to �P resolution without

and with the kinematic �tter for x-component(upper), y-component(middle),

z-component(bottom), respectively.

5Appendix C
6The way to determine probabilities is described in [11]
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Figure 4.4: �Momentum of Vertex and Mass Constraint Fit to D
�: The left

side is without kinematic �tters and the right side is with kinematic �tters.

�Pi is de�ned as �Pi = reconstructed Pi � Pi of MC: Pi is a component

i(= x; y; z) of momentum.

Z component of momentum shows signi�cant improvement (from � = 6.8

MeV to 4.9 MeV).

Figure 4.5 shows �z distribution of the vertex position obtained by the

kinematic �tter. z is a component of vertex and is parallel with the beam pipe.
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�z is de�ned as,

�z = z value from kinematic �tter� z value from MC:

The resolution is estimated to be 27�m which is reasonably good.
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Figure 4.5: �z of B0 Vertex

Figure 4.6 compares con�dence level(CL) distribution between signal and

background. Solid histogram indicates a sum of signal and background and

hatched histogram indicates signal. The signal distribution is at while the

background distribution peaks at CL=0 as expected.

When the candidates with CL>2% are selected, 35% of background are

rejected while 98% of signal are retained.
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Figure 4.6: CL of Vertex and Mass Constraint Fit to D�

Figures 4.7 and 4.8 show B
0 mass distributions without and with CL cuts,

respectively. The solid histogram indicates a sum of signal and background and

the hatched indicates background. Clearly, S/N ratio is improved after CL cuts

and is calculated in 107 events as shown in Table 4.1 7.

Method Number Signal Background b�b Background Continuum Background S/N

1 737 10846 4773 6073 0.068

2 710 4813 2285 2528 0.148

Table 4.1: S/N Ratio etc. of B0 ! D
�
�
+
�
+
�
�

7Background = b�b Background + Continuum Background (s�s, c�c, d �d, u�u)
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Figure 4.7: B0 Mass Distribution without Kinematic Fitter
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Figure 4.8: B0 Mass Distribution with Kinematic Fitter
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Chapter 5

Summary

Algorithm and procedure for a low momentum track reconstruction program

and a kinematic �tter for the BELLE are described in detail.

Concerning the low momentum track reconstruction program, wire hit as-

sociation and bad hit rejection procedures are described. In the performance

check, track �nding eÆciencies are greatly improved in the region, 50 < Pt < 90

MeV/c. D
�� reconstruction eÆciency is found to improve by �36%. This is

very important for the measurement of the CP violation using B0 ! D
�+
D
�
�

decay since the eÆciency improvement is squared. However further optimiza-

tion of bad hit rejection is necessary to improve the eÆciency. The SVD hit

information may be used to improve the eÆciency further when we do not have

enough stereo hit wires.

Kinematic �tters can be used in the physics analysis. A �tter for �nding

vertices is crucial to measure CP violations because a determination of �z is

required. And a �tter for constraining an invariant mass is useful to improve

reconstructed momentum as the resolution of z component of momentum is

signi�cantly improved from � = 6.8MeV/c to 4.9 MeV/c. The con�dence level

of the kinematic �tter is useful to reject background events as S/N ratio is

improved by a factor of 2.2 without loosing signal events.
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Appendix A

Quantum mechanics of the

neutral meson system

The avor eigenstates, X0 and �X0, mix through the weak interactions as

Figure A.1(B0 � B0) and form mass and life time eigenstates, X+ and X�. I

describe how this mix is occurred by quantum mechanics.

W W

b d
u,c,t

bd

W

W

b d

u,c,t

bd

Figure A.1: Box Diagram of B0 �B0 Mixing

Pseudo scalar neutral meson such as B0, K0 is written by X
0, and its CP

transformation is de�ned as follows.

CP jX0i = �jX0i (A.1)

A state of the neutral meson at the time t is written by jX(t)i, and it is expanded
with jX0i and jX0i as follows.

jX(t)i = �(t)jX0i+ �(t)jX0i

And its time evolution is described by the Schr�odinger equation:

i
d

dt
jX(t)i = H jX(t)i;
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that is,

i
d

dt

�
�

�

�
=

�
hX0jH jX0i hX0jH jX0i
hX0jH jX0i hX0jH jX0i

��
�

�

�
: (A.2)

Because the neutral meson is not stable and decays to other particles and its

wave function can be written as e�i(E�i=2)t, Hamiltonian H can be de�ned

using two hermite matrices, M and � :

hX0jH jX0i � M11 � (i=2)�11; hX0jH jX0i �M12 � (i=2)�12

hX0jH jX0i � M
�

12 � (i=2)��12; hX0jH jX0i �M22 � (i=2)�22:

Assuming that mass and life time of particle are the same with these of its

anti-particle using CPT invariance, the following equation is satis�ed :

hX0jH jX0i = hX0jH jX0i �M0 � (i=2)�0:

Eigenvalues � and eigenvectors jX�i of Equation (A.2) are,

�� = M0 � (i=2)�0 �
q
(M12 � (i=2)�12)(M

�
12 � (i=2)��12) (A.3)

jX�i =
pjX0i � qjX0ip

jpj2 + jqj2
; (A.4)

where1

q

p
=

p
(M12 � (i=2)�12)(M

�
12 � (i=2)��12)

M12 � (i=2)�12
: (A.5)

Let us de�ne M� and �� as,

�� � M� � (i=2)��:

From them, the di�erences of the eigenstate mass and life time, respectively,

�M and �� can be written :

�M = M+ �M�

= 2Re

�q
(M12 � (i=2)�12)(M

�
12 � (i=2)��12)

�
; (A.6)

�� = �+ � ��

= �4Im
�q

(M12 � (i=2)�12)(M
�
12 � (i=2)��12)

�

=
4

�M
Re(M12�

�

12): (A.7)

From Equation (A.1), CP eigenstate can be written as,

jXeveni = (jX0i � jX0i)=
p
2; jXoddi = (jX0i+ jX0i)=

p
2:

1Equation (A.3) is de�ned satisfying Re(
p

(M12 � (i=2)�12)(M
�

12
� (i=2)��

12
)) > 0.
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From them, states jX�i are written as,

jX�i =
1p

2(jpj2 + jqj2)
f(p� q)jXeveni+ (p� q)jXoddig:

Let us consider the time evolution of the system which is jX0i at t = 0.

From Equation (A.4), jX0i can be written as,

jX0i =

p
jpj2 + jqj2
2p

(jX+i+ jX�i):

Similarly jX0i is written as,

jX0i =

p
jpj2 + jqj2
2q

(jX+i � jX�i):

Since jX�i evolutes following e�i��t,

jX0(t)i =

p
jpj2 + jqj2
2p

(e�i�+tjX+i+ e
�i��tjX�i)

=
e
�i�+t

2
fg+(t)jX0i+ q

p
g�(t)jX0ig; (A.8)

g�(t) = 1� e
if�M�(i=2)��gt

: (A.9)

Similarly, the time evolution of the system which is jX0i at t = 0 is,

jX0(t)i =
e
�i�+t

2
fp
q
g�(t)jX0i+ g+(t)jX0ig (A.10)

From Equations (A.8) and (A.10), the probability that the meson which is born

at t = 0 as X0(X0) is observed at t = t as X0(X0) is,

P (X0 ! X0; t) = jhX0jX0(t)ij2 = e
�(�0+��=2)t

4

����qp
����
2

jg�(t)j2

=
e
��0t

2

����qp
����
2

fcosh(��t=2)� cos(�Mt)g; (A.11)

P (X0 ! X
0; t) = jhX0jX0(t)ij2 (A.12)

=
e
��0t

2

����pq
����
2

fcosh(��t=2)� cos(�Mt)g (A.13)

And then, the decay rate of the meson which is X0(X0) at t = 0 to a common

CP eigenstate fCP is,

�(X0(t)! fCP ) =
e
�(�0+��=2)t

4

����g+(t)hfCP jX0i

69



+
q

p
g�(t)hfCP jX0i

����
2

; (A.14)

�(X0(t)! fCP ) =
e
�(�0+��=2)t

4

����pq g�(t)hfCP jX0i

+ g+(t)hfCP jX0i
����
2

: (A.15)

A.1 B meson : B0

The assumption that ��=� � 1; jM12j � j�12j is reasonable. From this

assumption and Equations (A.6), (A.7), (A.5),

�M ' 2jM12j; �� ' 2jM12jRe (�12=M12) ; (A.16)

jq=pj2 ' 1� Im (�12=M12) : (A.17)

B
0 �B0 mixing

Equations (A.11) and (A.13) represent B0 � B0 mixing. However, it is

diÆcult to observe it because of Equation (A.17) and jM12j � j�12j.

Time dependent CP asymmetry

From Equations (A.14) and (A.15), the time dependent CP asymmetry is,

Asy[fCP ; t] � �(B0(t)! fCP )� �(B0(t)! fCP )

�(B0(t)! fCP ) + �(B0(t)! fCP )

=
1

1 + j�j2 f2Im
�
q

p
�

�
sin(�Mt)

� (j�j2 � 1) cos(�Mt)g; (A.18)

where � � hfCP jX0i=hfCP jX0i.
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Appendix B

Helix Fit

A helix parameter a[5], that is, a representation of the spiral track, is calcu-

lated from axial and stereo hit wires, and a circle parameter is calculated from

axial wires. For it, the least square method is used 1.

�
2 is de�ned as

�
2 =

nhitsX
i=1

(
�i

�i
)2

where

�i = d(xi(�i))� di

=
p
(x(�i)� xwi)2 + (y(�i)� ywi)2 + (z(�i)� zwi)2 � di (for stereo wires)

=
p
(x(�i)� xwi)2 + (y(�i)� ywi)2 � di (for axial wires)

di is a drift distance whose error is �i. The point (x(�i); y(�i); z(�i)) on a helix

or (xwi; ywi; zwi) on a wire is the closest point between the helix and the wire.

This �2 is minimized using the Newton method. d(xi) is a function of �i.

Therefore �i is a function of the helix parameter a and �i. The �tted helix

parameter a can be numerically found by iteratively as following.

a(D+1) = a(D) � (
@
2
�
2

@aT@a
)�1
(D)

(
@�

2

@a
)(D)

where

a = (d�; �0; �; dz; tan�)
T

@�
2

@a
= 2

nhitsX
i=1

1

�2i

�i(
@�i

@a
)

@
2
�
2

@aT@a
= 2

nhitsX
i=1

1

�
2
i

f( @�i

@aT
)(
@�i

@a
) + �i

@
2�i

@aT@a
g

1The procedure is written in Reference [8] and I modi�ed some parts.
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' 2

nhitsX
i=1

1

�2i

f( @�i

@aT
)(
@�i

@a
)g (B.1)

Ea = (
1

2

@
2
�
2

@aT@a
)�1

The second term in the �rst line of Equation (B.1) should be omitted to make

the second derivative matrix of �2 positive de�nite2. Ea is an error of the helix

parameter a.

It is necessary to calculate @�i

@a
. xw is Equation (B.3) and this is a function

of �i.

@�i

@a
=

X
@x(�i)

@a
+ Y

@y(�i)

@a
+ Z

@z(�i)

@ap
(x(�i)� xwi)2 + (y(�i)� ywi)2 + (z(�i)� zwi)2

X � (x(�i)� xwi)(1� v
2
x)� (y(�i)� ywi)vxvy � (z(�i)� zwi)vxvz

Y � (y(�i)� ywi)(1� v
2
y)� (z(�i)� zwi)vyvz � (x(�i)� xwi)vyvx

Z � (z(�i)� zwi)(1� v
2
z)� (x(�i)� xwi)vzvx � (y(�i)� ywi)vzvy

@x

@d�
= cos�0 +

�

�
sin(�0 + �i)

@�i

@d�

@x

@�0
= �

�
d� +

�

�

�
sin�0 +

�

�
sin(�0 + �i)

�
1 +

@�i

@�0

�
@x

@�
= � �

�2
fcos�0 � cos(�0 + �i)g+

�

�
sin(�0 + �i)

@�i

@�

@x

@dz
=

�

�
sin(�0 + �i)

@�i

@dz

@x

@ tan�
=

�

�
sin(�0 + �i)

@�i

@ tan�
@y

@d�
= sin�0 �

�

�
cos(�0 + �i)

@�i

@d�

@y

@�0
=

�
d� +

�

�

�
cos�0 �

�

�
cos(�0 + �i)

�
1 +

@�i

@�0

�
@y

@�
= � �

�2
fsin�0 � sin(�0 + �i)g �

�

�
cos(�0 + �i)

@�i

@�

@y

@dz
= ��

�
cos(�0 + �i)

@�i

@dz

@y

@ tan�
= ��

�
cos(�0 + �i)

@�i

@ tan�
@z

@d�
= ��

�
tan�

@�i

@d�

2This term would be ignored at the �2 minimum since the residual �i could be small if the

spatial resolution of the detector is good enough. And more exact calculation of the charged

tracks is done by Kalman Filtering Technique, because multiple scattering , energy loss, and

so on are considered in the local position of the helix.
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@z

@�0
= ��

�
tan�

@�i

@�0

@z

@�
=

�

�
tan�(

�i

�
� @�i

@�
)

@z

@dz
= 1� �

�
tan�

@�i

@dz

@z

@ tan�
= ��

�

�
�i + tan�

@�i

@ tan�

�

In the case of axial wires, the components associated with z must be ignored.

Next, for these equations, it is necessary to calculate the closest point be-

tween the helix and each wire, and @�i
@a

.

B.1 Calculation of The Closest Point from Helix

to Each Wire and @�i=@a

The closest point from helix to each axial wire can be calculated easily, but

in case of stereo wires, it is necessary to use the Newton Method.

To obtain the closest point is the same with obtaining �i. Using them, @�i
@a

can be calculated.

The closest point in case of axial wires is obtained by 3

tan(�0 + �i) =
�
�
(yc � ywi)

�
�
(xc � xwi)

(B.2)

where

xc = x0 + (d� +
�

�
) cos�0

yc = y0 + (d� +
�

�
) sin�0:

From Equation (B.2), @�i
@a

is derived as

@�i

@d�
=

sin�0(xc � xwi)� cos�0(yc � ywi)

(xc � xwi)2 + (yc � ywi)2

@�i

@�0
=

�
d� +

�

�

��cos�0(xc � xwi) + sin�0(yc � ywi)

(xc � xwi)2 + (yc � ywi)2

�
� 1

@�i

@�
=

�
� �

�2

�� sin�0(xc � xwi)� cos�0(yc � ywi)

(xc � xwi)2 + (yc � ywi)2

�

Next, the Newton Method is necessary for determination of the closest point

from helix to each stereo wire. D that is the square of the distance between

helix track and wire, is de�ned as

D � jx(�) � xwj2
3 �
�
is needed to write the program, because atan2 of the math library is used.
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where,

F � �D=2
xw = xb + f(x(�) � xb) � vT gv (B.3)

= c+ (x(�) � vT )v
c � xb � (xb � vT )v

x(�) represents a helix track. xw represents position of the wire. xb represents

the backward wire position of the CDC endplate. v represents the directional

unit vector of the wire.

f � @F
@�

and df � @f
@�

= @2F
@�2

are calculated. And if f � 10�5, �new is

calculated by �new = �old � f
df

and calculates again.

Some equations are written in detail as follows.

f � @F

@�

= �(x(�)� xw) �
@x(�)T

@�
+ (x(�) � xw) �

@x
T
w

@�

= �(x(�)� xw + (c � vT )v) � @x(�)
T

@�

= �(x(�)� xw) �
@x(�)T

@�

= �(x(�)� c� (x(�) � vT )v) � @x(�)
T

@�
(B.4)

v � vT = 1; c � vT = 0 are used here.

@f

@�
� @

2
F

@�2

= �@x(�)

@�
� @x(�)

T

@�
+ (

@x(�)

@�
� vT )2

� (x(�)� c� (x(�) � vT )v)@
2
x(�)T

@�2
(B.5)

x is necessary for the calculation of these equations.

x = x0 + d� cos�0 +
�

�
(cos�0 � cos(�0 + �))

y = y0 + d� sin�0 +
�

�
(sin�0 � sin(�0 + �))

z = z0 + dz �
�

�
tan� � �

@x

@�
=

�

�
sin(�0 + �);

@y

@�
= ��

�
cos(�0 + �);

@z

@�
= ��

�
tan�

@
2
x

@�2
=

�

�
cos(�0 + �);

@
2
y

@�2
=

�

�
sin(�0 + �);

@
2
z

@�2
= 0 (B.6)
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From these equations, �i is obtained by the Newton Method. Next, @�i
@a

is

calculated as follows.

@f

@a
=

�
@f

@�i

��
@�i

@a

�
+
@f

@a

��
�iis �xed

= 0

@�i

@a
= �

@f
@a

��
�iis �xed
@f
@�i

@f
@�i

is Equation (B.5). To obtain it, let us calculate following equations.

@x

@�i
=

�

�
sin(�0 + �i);

@y

@�i
= ��

�
cos(�0 + �i);

@z

@�i
= ��

�
tan�

@
2
x

@�
2
i

=
�

�
cos(�0 + �i);

@
2
y

@�
2
i

=
�

�
sin(�0 + �i);

@
2
z

@�
2
i

= 0

To obtain @f
@a

, let us calculate Equation (B.4) as follows. In this calculation, �i
is �xed.

@f

@a

��
�iis �xed = �(@x

@a
� (

@x

@a
� vT )v)@x

T

@�
� (x� c� (x � vT )v)@

2
x
T

@a@�

@
2
x

@d�@�i
= 0;

@
2
x

@�0@�i
=

�

�
cos(�0 + �i)

@
2
x

@�@�i
= � �

�2
sin(�0 + �i);

@
2
x

@dz@�i
= 0;

@
2
x

@ tan�@�i
= 0

@
2
y

@d�@�i
= 0;

@
2
y

@�0@�i
=

�

�
sin(�0 + �i)

@
2
y

@�@�i
=

�

�2
cos(�0 + �i);

@
2
y

@dz@�i
= 0;

@
2
y

@ tan�@�i
= 0

@
2
z

@d�@�i
= 0;

@
2
z

@�0@�i
= 0;

@
2
z

@�@�i
=

�

�2
tan�

@
2
z

@dz@�i
= 0;

@
2
z

@ tan�@�i
= ��

�

@x

@d�
= cos�0;

@x

@�0
= �(d� +

�

�
) sin�0 +

�

�
sin(�0 + �i)

@x

@�
= � �

�2
(cos�0 � cos(�0 + �i));

@x

@dz
= 0;

@x

@ tan�
= 0

@y

@d�
= sin�0;

@y

@�0
= (d� +

�

�
) cos�0 �

�

�
cos(�0 + �i)

@y

@�
= � �

�2
(sin�0 � sin(�0 + �i));

@y

@dz
= 0;

@y

@ tan�
= 0
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@z

@d�
= 0;

@z

@�0
= 0;

@z

@�
=

�

�2
tan� � �i

@z

@dz
= 1;

@z

@ tan�
= ��

�
�i

76



Appendix C

The Simulation and The

Reconstruction Programs in

BELLE

The ow of the physics analysis is as follows.

Event Generation ! Detector Simulation ! Reconstruction ! Analysis

There exist two ways for our physics analysis in BELLE. One is event

generator(QQ[10]) + fast simulator(FSIM[11]) + analysis softwares and the

other is QQ + full detector simulator(GSIM) + reconstruction softwares +

analysis softwares.

FSIM is a fast simulator. It plays the role of the detector simulation and

reconstruction softwares. In FSIM, all e�ects of detectors are parameterized as

track reconstruction eÆciencies and probabilities of particle identi�cations etc,

so that, we can analyze many events(107�8) easily. FSIM is necessary for large

background studies.

GSIM is a full simulator and its base is GEANT3[12]. In GSIM, all e�ects

of detectors are calculated step by step obeying information of their geometries

and materials, so that, we need much time to analyze many events. And a track

reconstruction and particle identi�cations etc. are not done in GSIM. Therefore

reconstruction softwares are necessary for the track reconstruction and particle

identi�cations. They are made by detector-groups. The low momentum track

reconstruction program is one of them. GSIM is necessary to obtain eÆciencies

of signals and for 104�5 background studies.

Finally, we need our physics analysis softwares after FSIM or GSIM. Com-

bination of particles and mass reconstructions etc. are performed in them. The

kinematic �tter is necessary in this stage.
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