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Abstract

To explore the nature of dark energy, a new generation prime-focus camera on
the Subaru Telescope, Hyper Suprime-Cam, has been developed. It has a large
field of view (∼1.5 degrees in diameter,) and produces ∼1G pixels of image per
exposure. The field of view is 7 times, and the data size is 10 times, larger than
those of the current prime-focus camera of Suprime-Cam.

We have developed a new analysis framework for such large amounts of
data in collaboration with the Belle II group at KEK. The framework handles
multiple processes on multiple computers, and controls data flow among the
processes. We then ported an existing analysis pipeline used for Suprime-Cam
to the framework for Hyper Suprime-Cam, and tested its performance.

We report the newly developed framework, the pipeline running in parallel
on multiple machines, and its performance.
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Chapter 1

Introduction

Dark energy is a mysterious energy that accelerates the expansion of the uni-
verse, which has become one of the most puzzling issues in the last decade. In
1998, two groups reported the acceleration of the cosmic expansion by observing
Type Ia supernovae [16][14]. The precise map of the cosmic microwave back-
ground by the Wilkinson Microwave Anisotropy Probe (WMAP) brought out
the composition of the universe and revealed that dark energy accounts for as
much as 73% of the total cosmic energy density while dark matter for 23% and
atoms for 4.6% [10].

There are many candidates for the origin of dark energy. The cosmological
constant Λ is the foremost among them. It causes negative pressure p = −ρ
where ρ is its constant energy density, hence w ≡ p/ρ = −1. Λ is deduced from
vacuum energy, the energy of the zero-point quantum fluctuation of the space.
The value of Λ expected from the quantum field theory, however, far exceeds the
measured one by 121 orders of magnitude. Other possibilities are also suggested,
such as the existence of unknown scalar fields, some uncharted nongravitational
interactions, deviation from general relativity, and so on. Though it is still
unknown what the dark energy is, it must be a key to new physics.

Weak gravitational lensing is a useful tool to probe the nature of dark energy.
Dark energy has a peculiar feature that it is repulsive in contrast with matter
that is attractive with universal gravity. Its nature therefore influences the
time evolution of the universe and of the distribution of matter. The matter
bends light from galaxies on the way to the earth due to general relativity,
producing slightly distorted images of the galaxies on the celestial sphere. A
three-dimensional map of matter distribution can be reconstructed from this
“weak gravitational lensing effect,” and the map is used to probe the nature of
dark energy including its time variation. The weak gravitational lensing method
provides an unbiased way to map the matter distribution because it does not
rely on luminous–dark matter bias [15].

We need images of galaxies with high precision and in large numbers to ex-
tract the weak lensing effect due to its minuteness. It affects apparent ellipticity
of galaxies only by ∼1%. Suprime-Cam (SC), a camera mounted on the prime
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focus of the Subaru Telescope produces clear images with their point-spread
function of less than 0.7 arcsec in FWHM, but its field of view is not large
enough to obtain the many galaxy images required to constrain the nature of
dark energy. Hyper Suprime-Cam (HSC) was therefore proposed as the upgrade
of Suprime-Cam. Its field of view is 1.5 degrees in diameter, ∼7 times the size
of SC. It surveys ∼2000 square degrees of the sky in 150 nights.

HSC produces a large amount of image data. There are 116 CCDs laid out
on the focal plane, and the total number of pixels is ∼ 109. The data size
produced by a shot is 2GB, 10 times larger than that in SC. An automated
on-line data analysis system, which did not exist for SC, is necessary for HSC
to monitor so many images. Development of efficient on-line analysis pipelines
is thus important in the HSC project.

We have developed a new application framework to help the implementation
of analysis pipelines for HSC’s fast data processing, which are used for both on-
line and off-line analyses, in collaboration with the Belle II group at KEK.
The framework, PBASF, manages multiple processes on multiple computers,
connecting parallel analysis modules. PBASF also utilizes Python for users to
develop analysis modules efficiently.

In this thesis, we report the design and implementation of PBASF. We then
describe the porting of an existing analysis pipeline onto the framework. The
pipeline is for a prototype of the on-line user-assistance system for observation
with HSC being developed in the National Astronomical Observatory of Japan.
Finally we describe the results of the performance test of the developed pipeline,
and the future prospects for the HSC analysis framework.
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Chapter 2

Hyper Suprime-Cam

In order to Explore the nature of dark energy, Hyper Suprime-Cam (HSC),
a new prime-focus camera of the Subaru Telescope has been developed and a
wide field survey is planned in the National Astronomical Observatory of Japan
(NAOJ). HSC produces 10 times as large data as Suprime-Cam (SC), the current
prime-focus camera.

In this chapter we explain the physics motivation of this survey, and intro-
duce the HSC experiment and its analysis requirements.

2.1 Physics motivation

2.1.1 Dark energy

The homogeneous and isotropic universe is described by the two equations:(
ȧ

a

)2

=
8πGρ

3
− K

a2
+

Λ

3
, (2.1)

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
(2.2)

where a is the scale parameter, ρ and P are the energy density and the pressure
of the universe, K is the curvature of the space, and Λ is the cosmological
constant. The cosmological constant can be considered as ideal fluid with the
energy density and the pressure expressed as:

ρλ =
Λ

8πG
, Pλ = − Λ

8πG
. (2.3)

Including ρλ and Pλ in ρ and P respectively, (2.2) is simplified as

ä

a
= −4πG

3
(ρ+ 3P ). (2.4)
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Then ρ and P are the sum of components each with the equation of state Pi

= wiρi where wi is a coefficient intrinsic to the component. Matter has w = 0,
radiation has w = 1/3, and the cosmological term w = −1.

In late 1990’s the expansion of the universe is revealed to be accelerating
by the observation of Type Ia supernovae and the fluctuation of the cosmic
microwave background. We see in (2.4) that acceleration needs a component
with w < −1/3. We call such component “dark energy.” The cosmological
constant is a candidate of dark energy because it has w = −1 due to (2.3). One
model to explain the universe though the cosmological constant Λ (w = −1)
and cold dark matter (w = 0) is called the Λ-CDM model. Indeed, recent
observations support the Λ-CDM model [10]. Weak lensing is another way of
examining dark energy, and we introduce it in the next section.

2.1.2 Weak lensing

2009/12/24

1

Earthgalaxy imageθ βlight path celestial sphere(β1, β2) (θ1, θ2) θ1θ2 αtrue position
Figure 2.1: Gravitational lensing

A path of light is bent by the Newtonian potential on the way to the earth
according to the general theory of relativity. Because of this gravitational lensing
effect, the light source actually at angle β is apparently seen at angle θ on the
celestial sphere (Figure 2.1.)

β(θ) = θ −α(θ). (2.5)

When the center of a galaxy is actually at β and is seen at θ, its component at
β + δβ is seen at θ + δθ where

δβ =

(
1− ∂α

∂θ

)
δθ

≡ A(θ)δθ. (2.6)

Because of the Jacobian matrix A(θ), the image of the galaxy is seen distorted
around θ. We assume that the shape of the galaxy would be seen as an ellipse
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if no lensing effect existed. When A(θ) is represented as

A(θ) =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
= (1− κ)−

(
γ1 γ2
γ2 −γ1

)
(2.7)

then κ, convergence, becomes the factor that changes the size of the image, and
γ = γ1 + iγ2, shear, the factor that changes the shape (ellipticity) of the image.
We call e = e2iϕ(a2 − b2)/(a2 + b2) “ellipticity,” where a and b are the long and
the short axis of the ellipse, and ϕ is the inclination angle of the long axis. Then
the ellipticity we observe e(obs) and the ellipticity without gravitational lensing
e(s) have the following relation given κ ≪ 1 and |γ| ≪ 1:

e(obs) = e(s) + 2γ. (2.8)

e(s) is random, its average being zero, and we can reconstruct γ even if it is
small, averaging e(obs) in a region:

⟨e(obs)⟩ = 2 ⟨γ⟩+O

(
σe√
N

)
. (2.9)

σe ∼ 0.2 or 0.3 is the standard deviation of e(s). N , the number of galaxies
we average, therefore has to be at least of order O(10) if we want to measure
γ ∼ 1%.

Now the Fourier transformed γ and κ have the same 2-point correlations and
they are equivalent to the power spectrum of κ:

⟨γ̂(ℓ)γ̂∗(ℓ′)⟩ = ⟨κ̂(ℓ)κ̂∗(ℓ′)⟩ = (2π)2δ(ℓ− ℓ′)Pκ(ℓ). (2.10)

The power spectrum is then related to the cosmological parameters because it
is written as

Pκ(ℓ) =
9H4

0Ω
2
m

4

∫ ∞

0

dλ
g2(λ)

a2(λ)
Pδ

(
ℓ

r(λ)
, λ

)
, (2.11)

g(λ) =

∫ ∞

λ

dλ′p(λ′)
r(λ′ − λ)

r(λ′)
(2.12)

where λ is a comoving radial coordinate and r(λ) is a comoving coordinate. Pδ

is the power spectrum of density fluctuation δ(x, t) = (ρ(x, t)− ρ̄(t))/ρ̄(t). p(λ)
is the distribution of background galaxies and g(λ) strongly depends on dark
energy. This weak lensing and other methods like Type Ia supernovae technique,
galaxy cluster counting, and baryon acoustic oscillations, are complementary to
each others. We will obtain more precise cosmological parameters, by combining
these methods [9].

2.2 Hyper Suprime-Cam

2.2.1 The Subaru Telescope and Suprime-Cam

The Subaru Telescope (Figure 2.2) of the National Astronomical Observatory of
Japan (NAOJ) is located at the summit of Mauna Kea on the island of Hawaii.
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Figure 2.2: The Subaru Telescope
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It is a large optical infrared telescope with a big 8.2-meter primary mirror, and
with precise mechanics and optics as well.

The Subaru Telescope produces images of high resolution. For its sake, the
big primary mirror is polished very smoothly and controlled by many actuators
below. The shape of the dome reduces the turbulent air flow. The firm structure
of the telescope driven by linear motors enables the tracking of celestial objects
with high accuracy.

The telescope is unique among 8-meter types in that it has a prime focus
camera, Suprime-Cam, and is capable of making observations at the prime focus
with a wide field of view (FOV). There are 10 CCDs laid out on the camera,
covering 34 arcmin × 27 arcmin FOV, almost the same size as the full moon.
Each of the CCDs has 2k × 4k pixels.

2.2.2 Hyper Suprime-Cam

For the weak lensing survey, the FOV of Suprime-Cam is not wide enough. The
surveyed area should be 2000 square degrees with four passbands (g,r,i,z.) The
survey depth should be & 26th AB magnitude in g-, r -, and i -band and ∼ 25th
AB magnitude in z -band. Then required exposure time for each pointing is
about an hour in total. In order to carry out such a survey in a reasonable time,
we need the survey speed to be 10 times faster. The FOV of the new camera
should hence be this many times larger than that of Suprime-Cam.

Hyper Suprime-Cam (HSC) is the camera being developed to meet the above
requirements (Figure 2.3.) Its FOV is 1.5 degrees in diameter and 116 CCDs
are laid out in a circle (Figure 2.4.) We use CCDs of the same size as of SC,
but the number of CCDs is decupled.

The CCDs for HSC is newly developed by Hamamatsu Photonics K.K. They
are fully-depleted CCDs. Their thick depletion layers of 200 µm doubled the
sensitivity of the CCDs at long wavelengths around 1 µm. In addition, the
CCDs are four-side buttable, i.e. they have no cables protruding from their
sides and can be placed closely at any sides of each others. The CCDs have
been mounted on SC since July 2008 (Figure 2.5.)

In HSC with 116 CCDs, the total number of pixels amounts to ∼ 1G pixels
per exposure. The tenfold increase of CCDs requires a new analysis system
during observations, as described in the next section.

2.3 Analysis system

2.3.1 Current Suprime-Cam data analysis

HSC is the upgrade of SC in its field of view, and analyses in SC are also relevant
to the case of HSC. There are 10 CCDs laid out on the focal plane of SC as is
shown in Figure 2.6, and we introduce some terms used in describing the data
analyses:

12



Figure 2.3: Hyper Suprime-Cam
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Figure 2.4: The layout of CCDs in HSC

Figure 2.5: New CCDs on Suprime-Cam
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2009/12/22

1

exposure (or shot)CCD image CCD image CCD image CCD image CCD imageCCD image CCD image CCD image CCD image CCD image
Figure 2.6: Exposures and CCD images

• A “CCD image” or a “chip” stands for an image or image file taken with
one 2k × 4k CCD.

• An “exposure” or a “shot” represents a set of 10 CCD images taken si-
multaneously with the 10 CCDs.

Typical series of common analysis pipelines for SC are shown in Figure 2.7.
These are applied to images off line, usually. The pipeline 1a is a series of
primary treatments applied to each CCD images. The images came from the
celestial sphere, passing through several distortive factors: the air, filters, CCD
sensors, and electric read-out circuits. The pipeline 1a inversely transforms the
effects of these factors.

The pipeline 1b is a mosaicking procedure. SC and HSC use many CCD
sensors to cover their field of view. We have to collect many exposures of CCD
images at slightly stirred positions in the celestial sphere, and to perform pattern
matching of celestial objects in the images so as to superpose and co-add the
images into a large mosaic. This procedure takes a long time. In HSC analyses,
it will be a problem.

The pipeline 2 measures and catalogs parameters of celestial objects and
perform photometric and astrometric calibrations so as for further analysis steps.

2.3.2 Data analysis for Hyper Suprime-Cam

The pipelines above have been used successfully in many off-line analyses with
the Suprime-Cam data. In Hyper Suprime-Cam, however, the data rate is
tenfold. We cannot compete with that amount of data using the pipelines only.

First, we have difficulty in searching for appropriate images from a huge sea
for off-line analyses. We need a “tag,” or an informative header attached to

15



1a. For each chip� �
1. Pedestal subtraction

2. Uniforming gains of pixels

3. Masking or removing Cosmic rays
and bad pixels

4. Distortion correction based on a for-
mula

5. Equalization of point-spread func-
tions among frames

6. Sky background subtraction� �

1b. Mosaicking� �
1. Star selection

2. Pattern Matching

3. Determination of
Offsets
Flux gain ratios

4. Stacking� �
2. Catalog Making� �

1. Object Detection

2. Parameter Extrac-
tion

3. Astrometry

4. Photometry� �
Figure 2.7: Typical data analysis procedures for Suprime-Cam

every images. We perform pre-analyses on line to write their results on the tag:
blur, sky background fluctuation, the number of celestial objects in the image,
etc. With the tags, we can pick out images that meet some specific criteria. We
thus need a system that analyzes images coming from the camera in real-time
to make such tags.

Second, the on-line analyses need a workflow controlling system. We do not
have an automated workflow controller in Suprime-Cam. We instead manually
checked the qualities of images coming from the camera. Suprime-Cam has only
10 CCDs, and we have only 10 images to check per exposure. HSC on the other
hand produces ∼100 CCD images per exposure. They are more than humans
can handle.

2.3.3 Prototype of on-line analysis system for HSC

NAOJ has developed a prototype of such system and tests the prototype with
Suprime-Cam. The system assists users in observation and controls on-line
analysis pipelines. It is controlled by the RCM (R&D Chain Management) Sys-
tem Software developed by QUATRE-i SCIENCE [1]. RCM consists of RCM-
Web (Web user interface), RCM-Controller (Analysis controller), and RCM-DB
(XML database). The prototype of the user-assistance system thereby has a
web-based user interface (Figure 2.8.)

The system is installed on 8 computers. Three of them are for RCM (Web,

16



Figure 2.8: Web-based user interface for the user-assistance prototype
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Controller, and DB) and the rest 5 are for analyses (Table 2.1.) The web server
receives users’ requests. The control server then controls the analysis servers
and accesses the database server.

Table 2.1: Computers used for the user-assistance system prototype

Web server Intel Xeon quad core 2.6GHz×2 / Mem 4GB
Control server Intel Xeon quad core 2.6GHz / Mem 4GB
DB server AMD dual core Opteron 2.8GHz ×2 / Mem 16GB

Analysis

Intel Xeon quad core 2.6GHz / Mem 4GB

servers

× 2

Intel Xeon quad core 2.6GHz ×2 / Mem 4GB
× 3

There are several analysis pipelines in the prototype according to Figure 2.7.
We describe them below.

Real-time pipeline

When this pipeline is selected in the web screen of RCM, the RCM system
launches two processes of the following RCM sub-workflow on each of the 5
analysis servers. Ten processes are invoked as a result. Suprime-Cam has 10
CCDs, and each of the 10 processes analyzes one CCD image per exposure. The
launched sub-workflow is:

1. Wait for a CCD image to arrive from the camera.

2. Invoke a real-time analysis corresponding to the pipeline ‘1a’ in Figure 2.7.
The pipeline uses a framework called ROOBASF (Section 3.1). The frame-
work enables analysis modules to transfer intermediate products on mem-
ory (Figure 2.9.) It omits disk I/O for intermediate products, making
analyses faster. The analysis details are given in Section 4.2.

3. Go to 1.

The analysed data and tags are displayed on the screen, as shown in Fig-
ure 2.8, and stored in the database at the same time. The analysis runs in
semi-real-time with exposures. Information tags produced here are useful in
off-line analyses.

Each analysis for an exposure has to be done in ∼25 sec to catch up with
the quickest observation speed among those supposed. To achieve this speed,
we need to use many CPUs. Currently, in the prototype, we simply launch 10
independent ROOBASF processes on 5 computers to let them analyze data in
parallel.

However, the ROOBASF system has difficulty in our making analysis mod-
ules run in parallel and communicate among them. We have therefore developed
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intermediateproducts

Figure 2.9: ROOBASF passing data on memory
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a new framework natively supporting parallel computing that controls analysis
workflow, as is described in the next chapter.

Flat-making pipeline

This pipeline is started on demand. It makes “flat” images, images of a pseudo-
flat light source, indicating pixel sensitivity patterns of CCD sensors. The “flat”
images are created by combining night/twilight sky images or dedicated dome
flat images (images of the dome of the telescope uniformly lit.) The images are
then used by the real-time analysis (Section 4.2, FLAT).

This pipeline is implemented by a C-shell script, which is invoked by the
RCM controller.

Mosaicking pipeline

This pipeline is started on demand, and is implemented by a C-shell script. It
superposes many CCD images from multiple exposures, searching for the best-
fit positioning and determining flux scaling factors of respective images, and
co-adds them into one mosaic image.

The job takes a large amount of calculations because it has to solve an
optimization problem, to transform coordinates of the image (because the sky
is curved,) to oversample the many pixels, and to co-add them all. Currently,
the mosaicking process is run on one machine only because the mosaicking
programs (SCAMP [2] and SWARP [3]) used in the C-shell script do not support
distributed memory parallel computing.

The prototype pipeline manages to handle Suprime-Cam’s data, but it can-
not deal with Hyper Suprime-Cam’s tenfold amount of images. We have to
develop a program which mosaics images in parallel on distributed-memory ma-
chines for efficient mosaicking, by using all computers. Here, the new framework
described in the next chapter is helpful in modularizing the program to make
an on-memory mosaicking pipeline.
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Chapter 3

Parallel Framework

In the previous chapter, we explained the necessity of a framework which con-
trols analysis workflows and which supports parallel computing for fast data
processing. The fast computing is what high energy physics is good at. We
are therefore collaborating with the Belle II experiment group at KEK, the
High Energy Accelerator Research Organization. The Belle II group has been
developing a parallel framework, ROOBASF, for the next generation B-factory
experiment. Based on the Belle II analysis framework, we have developed a new
one for HSC. In this chapter, we describe the new framework named PBASF.

3.1 ROOBASF

BASF, the Belle AnalysiS Framework, is the current analysis framework used
in the Belle experiment in KEK. A new framework has been developed for
the future Belle II experiment. One of its features is that it innovates the
ROOT[4] library by CERN, and the framework is named ROOBASF. We choose
ROOBASF as the framework used in the prototype of the HSC real-time analysis
pipeline (Section 2.3.3).

ROOBASF controls “modules” and “paths” in analyses (Figure 3.1.) Mod-
ules are plugins each corresponding to a stage of analyses. Users create their
own modules, or use existing ones in libraries. ROOBASF arranges the modules
in a line, and makes the modules process incoming “events,” or units of data
to analyze, in order. The line is called a “path.” At the end of the path in
which modules are arranged, ROOBASF can pass the events to another path in
accordance with conditions.

Figure 3.1 also illustrates the parallelization supported by ROOBASF.
ROOBASF creates processes (“event processes”) and pools them so as to as-
sign the pooled processes with events randomly. Each “event process” analyzes
the assigned event according to the “path” and sends the result to the “output
server.” The “event processes” are independent of each others and we cannot
make them communicate. In high energy physics, each event is analyzed inde-
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EventServer Event Processes OutputServerModulePath
Figure 3.1: ROOBASF

pendently, and it is indeed unnecessary for the “event processes” to communicate
with each others.

3.2 Parallel processing for HSC

In HSC, on the other hand, the requirement is somewhat different. In the HSC
real-time analysis system, we are planning to assign processes with CCD images
one by one. The process pooling method of ROOBASF does not fit here because
CCD images in a shot or shots sometimes need analyzing together. A process
has to communicate with others in such situations. We have to synchronize the
parallel processes in order to have them communicate. Pooled processes are
asynchronously and randomly assigned with events, and there is no way of its
control.

We have developed another framework that synchronizes processes and al-
lows them to communicate with each others. The basic concept of modules
and paths are based on ROOBASF, and synchronization is actualized by the
standard Message Passing Interface (MPI.)

3.3 Analysis framework with MPI

3.3.1 The Message Passing Interface

The Message Passing Interface (MPI) is a de-facto standard for parallel com-
puting with distributed memory. It is an API library of multiprocessing —
sending data, receiving data, and synchronizing, for example — standardized
by the MPI Forum [5]. We can write portable parallelized programs using MPI
because its definition is strict and sufficiently virtualized. There exist math
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libraries of third parties, and we can utilize them. There are many implemen-
tations of MPI such as Open MPI (LAM/MPI, previously) and MS MPI by
Microsoft, and we employed MPICH2 [6].

An ordinary program with MPI is launched with multiple processes from
the start. The program utilizes these parallel processes to accomplish its task.
One of its features to note is that processes can be grouped. Groups are created
dynamically and processes can belong to multiple groups. Each group has its
“communicator.” Using a communicator, processes in a group can together do
group operations: broadcasting — making a datum in a process shared by all,
gathering — having data in all processes gathered to one, reducing — calculating∑

processes,
∏

processes, etc, etc. We utilize the communicators in our framework
as is described in Section 3.3.5.

3.3.2 PBASF overview

2009/11/21
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A a b cA a b cA a b c B d e f
Figure 3.2: An example of par-paths in the framework

We have developed a framework that utilizes MPI. We named the framework
“PBASF” standing for Parallel BASF. The name of ROOT is dropped because
usage of the ROOT library is optional in this framework. It is written in C++,
and has a Python interface. Users can write their own modules in C++ or
Python. Python is a powerful and simple scripting language. Users can write
Python scripts very easily and quickly. They do not have to use C++ as long
as the modules written in Python are not too slow. With these two languages,
users can efficiently develop analysis pipelines.

In PBASF, the concept of paths in ROOBASF is extended to be “parallel
paths” or par-paths. An example of par-paths is shown in Figure 3.2. The
squares ‘a’, ‘b’,..., ‘f’ denote analysis modules. They are prepared by users and
each of them carries out one analysis step. Each of the sequences of ‘a’ to ‘c’
and ‘d’ to ‘f’ in rounded rectangles is executed in a process, and is called a
traditional “path.” The three rounded rectangles ‘A’ are executed in parallel,
and the ‘B’ is executed asynchronously of ‘A’. Analyzed data, called “events”,
are first processed by the three processes of ‘A’, then gathered, and finally
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processed by the single ‘B’. This path consisting of four processes is named a
“par-path.”

PBASF builds up par-paths and controls flow of events in the par-paths. We
describe paths and par-paths in detail below.

3.3.3 Paths

2009/11/22

1

module conditionconditionconditionModule Sequence Branch
Figure 3.3: Three basic elements of paths

“Paths” define analysis flows within processes. They have nested structures
and consist of the following three basic elements.

• Modules
An analysis module written by users constitutes a path by itself.

• Sequences
A sequence of multiple paths also becomes a path. An event, coming in
the sequence, is passed to each path in the sequence in order.

• Branches
A set of condition-path pairs becomes a path. An event, coming in the
branch, is passed to one of the paths in the branch in accordance with
condition.

We show an example of the nested structure of paths in Figure 3.4. The
path in the example is equivalent to the procedure:

call mod.a
if cond.1
then

call mod.b
else

call mod.c
end
call mod.d
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Sequence Branchmod. a mod. bcond. 1 mod. cdefault mod. d
Figure 3.4: An example of nested path structures 2009/11/22
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path pathpath pathpath pathduplicated conditionconditionconditionPar-element Par-sequence Par-branch
Figure 3.5: The basic components of par-paths
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3.3.4 Par-paths

“Par-paths” being short for “parallel paths” define inter-process flows of anal-
yses. They have nested structures similar to paths. Their components are as
follow:

• Par-elements
These are in the lowest layer of par-paths. A par-element is a sequence of
paths. Each of the paths is assigned with one process. A par-element can
be multiply duplicated. All the duplicated par-elements run in parallel. If
a par-element contains two paths and is triply duplicated, then the total
number of used processes is 2× 3 = 6.

• Par-sequences
A sequence of par-paths becomes a par-path (cf. Par-elements.)

• Par-branches
A set of multiple “[condition, par-path]” pairs becomes a par-path. An
event, coming in the par-branch, is passed to one of the par-paths in the
par-branch according to condition.

The difference between a par-element and a par-sequence is that a par-
element is a sequence of paths while a par-sequence is a sequence of par-paths.
It also has to be noted that in a par-sequence events simultaneously analyzed by
multiple processes are gathered to one at the end of each par-path before they
are sent to the next. This is not the case with a par-element. In a par-element,
events are not gathered until its end as seen in Figure 3.5.

3.3.5 MPI communicators

2009/11/23
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Par-sequencePar-element Par-elementProcess Groups
Figure 3.6: Process grouping

Processes are grouped, and the groups are assigned with communicators, as
shown in Figure 3.6. That is to say, processes executing same paths are grouped.
Processes in a group are re-numbered from 0 to one less than the number of

26



processes. As a result, modules in a path (or, in a group) can do SPMD (Single
Program Multiple Data) computing with the communicator just as if each of
the modules were executing a usual MPI program.

3.4 Inside PBASF

3.4.1 Execution of paths

Paths have nested structures, and execution of them is done by just travers-
ing the structures. There are several execution types in accordance with the
data type read by an input module (cf. Section 3.6.2 and Section 3.6.3.) The
behaviors of PBASF in response to the read types are divided into two types.

If it reads PBASF INST EVENT, the execution goes as the following:

• PBASF calls the top-level path’s event member.

• Modules’ event defined by users does their own task.

• Sequences’ event member calls the event members of their elements in
order.

• Branches’ event member searches their contents for a path the condition
associated with which returns true. Then call the path’s event member.

Then the analysis modules contained in the whole path are executed prop-
erly.

When it reads an instruction other than PBASF INST EVENT, the execution
goes as the following. We take PBASF INST BEGIN RUN for instance.

• PBASF calls the top-level path’s begin run member.

• Modules’ begin run defined by users does their own task.

• Sequences’ begin run member calls the begin run members of their ele-
ments in order.

• Branches’ begin run member calls the begin run members of their con-
tents. Conditions are not cared.

3.4.2 Assigning par-paths to processes

Par-paths have nested structures, and the assigning of it to processes is done
just traversing the tree structure.

• PBASF passes P , the set of n processes, to the top-level par-path.

• Par-elements assign their paths with a×b processes from P where a is the
number of the paths and b is the parallelization. Then the par-elements
subtract the processes from P .
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• Par-sequences pass P to par-paths in them in order.

• Par-branches do the same as Par-sequences.

That is all the job of par-paths. After the assignment, each process au-
tonomously does the given task.

3.4.3 Tasks of processes

Each process, after the allocation of tasks, does its own task autonomously. The
processing of events is simplified to the loop of the three procedures:

1. Receive an event to analyze.

2. Pass the event to the top-level path assigned to the process.

3. Send the event.

4. Go to 1.

Receiving and sending events are, however, a complicated procedure. If there
exists no process from which to receive events, the receive procedure calls data-
input module instead. If the process is at the end of a par-element, the send
procedure has to gather results from all other parallel processes before sending
them to the next processes (Figure 3.7.)

2009/12/8
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Par-element flow of eventsA BCAA AAABBB BCCC A ReceiveSendGather
Figure 3.7: The flow of events

Events are thus relayed, but other instructions need extra cares. Instructions
other than events are sent to all par-branches regardless of conditions. Naively,
the instructions may take over a precedent event (Figure 3.8). In the figure, the
“end run” instruction is a marker dividing a set of events from another. It is
not good the “end run” taking over the preceding event.

The receiver in the rightmost process in Figure 3.8 therefore has to wait
for all “end run” to arrive before returning the instruction. The receiver then
becomes like this:
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conditionalbranch 12 eventend_run
Figure 3.8: An end run taking over an event

Procedure receive is:
begin
Receive an instruction
if the instruction is not an event
then
if all the branched instructions arrived
then

Send back acknowledges.
else

Call receive recursively.
end

end
Return the instruction.

end

3.5 Building PBASF

PBASF is developed and tested on Cent OS 5, x86 64. We use only POSIX
functions, and we expect it compiles in many other environments. We have
made sure that it also works on Fedora Core 6, x86 64.

Other libraries required are:

• Python 2.4 or later
PBASF has a Python user interface. Configurations are written in Python
scripts. We describe the user interface in Section 3.7.

• MPICH2 [6]
PBASF needs some MPI library. We have developed PBASF on MPICH2,
but we have also made sure that PBASF compiles with Open MPI.

• BOOST C++ Library
The BOOST library is required by PBASF. We are not sure of the lower
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limit of its versions, but probably the version 1.38 or later works. The
framework needs boost.mpi in particular, which is not built by default.

• boostmpi [7]
boostmpi is a great Python wrapper around MPI developed by Doug Gre-
gor. It is maintained and distributed by Andreas Klöckner.

3.6 Plugins

In this section, we describe what plugins are necessary for PBASF. All kinds of
plugins can be written in C++ and Python. Writing modules in Python script
is efficient in developing software, though these modules run more slowly than
those in native code.

If users write a module in C++, they derive a new subclass from a base
provided by PBASF. They then build a shared object (a dynamically linked
library file on Linux systems) which exports a function like

using namespace pbasf;
extern ”C”
Ptr<CPlugin<CModule> >
Foo NewModule()
{
return Gc(new CPlugin<CFoo>(
Gc(new CFoo())

));
}

where CFoo is the class users want to export. Ptr is a smart pointer template,
and Gc, standing for “garbage collection,” is a template function that converts
a raw pointer to a smart ptr. As seen in the code, the instance of CFoo is
wrapped in a CPlugin, which is returned by the exported function. The name
of the exported function is in the format: “the name of shared object file,” an
underscore, and “New***”, where *** varies in accordance with the type of the
plugin.

If users want to write a plugin in a Python script, they derive a class from
an appropriate base class, and just instantiate it in configuration scripts for
PBASF.

3.6.1 Events

Users define their own event class. The class can be defined either in C++ or
in Python. In C++, users must derive it from pbasf::CEvent. In Python,
users must derive it from boostpbasf.CEvent. If users define the event class
in Python, they can access from C++ to its members via the boost::python
library.
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The abstract base class pbasf::CEvent or boostpbasf.CEvent does not
have any member fields nor member functions. It is users’ responsibility to
design what to pack into an event.

An event class, written in C++, is not a plugin dynamically loaded by
PBASF. Instead, it should be a shared object linked from all other plugins.

3.6.2 Analysis modules

Users prepare analysis modules in C++ or in Python. In C++, users derive it
from pbasf::CModule. In Python, users derive it from boostpbasf.CModule.
Users can override the following member functions.

• init

The init member is called first of all. Modules initialize their states.

• term

The term member is called at the end of all. Modules free the memories
they have allocated, and close the files they have opened.

• begin run

The begin run member is called if data-input modules (Section 3.6.3)
return PBASF INST BEGIN RUN. It is a mark indicating the start of a set of
events with a certain apparatus configuration.

• end run

The end run member is called if data-input modules (Section 3.6.3) return
PBASF INST END RUN. It is a mark indicating the end of a set of events with
a certain apparatus configuration.

• event

The event member is called if data-input modules (Section 3.6.3) return
PBASF INST EVENT. The event to analyze is passed to this member as an
argument.

3.6.3 Data inputs

Processes are assigned data-input objects if they do not have predecessors (i.e.
other processes from which events are sent.) Data-input objects are instances
of a user-defined class. The class must derive from pbasf::CDataInput or
boostpbasf::CDataIn, and users should override its function-call operator.

The overridden function-call must return the two: an instruction code to the
analysis modules, and an event object. The instruction is one in the following
list. When the instruction is not PBASF INST EVENT, the returned event object
should be NULL or None.

• PBASF INST INIT

This instructs all modules to initialize themselves.
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• PBASF INST TERM

This instructs the whole par-paths to terminate analysis after all mod-
ules clean up their messes. A data-input module typically returns the
instruction at the end of the whole data.

• PBASF INST BEGIN RUN

This tells all modules the start of a set of events with a certain apparatus
configuration.

• PBASF INST END RUN

This tells all modules the end of a set of events with a certain apparatus
configuration.

• PBASF INST EVENT

This instructs all modules that an event is read, and that they analyze
the event.

3.6.4 Conditions

Conditions are user-defined modules that are derived from pbasf::CCondition

or pbasf.CCondit. They override function-call members, which return true or
false according to arguments. Condition modules are used in path branches and
par-path branches.

3.6.5 Forkers and joiners

2009/11/23
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Par-element (duplicated)path pathpath pathpath pathForker Joiner
Figure 3.9: A forker and a joiner at the both ends of a par-element

Forkers divide an event to pieces at the beginning of duplicated par-elements,
while joiners bond multiple events to one at the end of duplicated par-elements
(Figure 3.9.) Users derive them from pbasf::CForker / pbasf::CJoiner in
C++ or pbasf::CForker / pbasf.CJoiner in Python. They override their
function-call operators that divide or bond events.
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3.6.6 Serializers and deserializers

PBASF uses a user-defined serializer and a deserializer to de/serialize events
in order to transmit them from process to process. Users derive them from
pbasf::CSerializer / pbasf::CDeserializer in C++ or pbasf::CSerial /
pbasf.CDeserial in Python to override their function-call operators. A typical
implementation is to use boost.serialization or Python’s pickle.

3.7 User interface

3.7.1 PBASF in Python scripts

PBASF provides a Python interface via boost.python, which is named “boost-
pbasf.” Its entity is a shared object “boostpbasf.so” which can be imported
into Python. It works as a usual python module. boostpbasf has the following
member classes.

• CEvent

CEvent is the base class of events. Users can derive a subclass from it.
Note that Python analysis modules are given run time type information
of the event object being analyzed.

• CModule, CDataIn, CCondit, CForker, CJoiner, CSerial, CDeserial
These are the base classes of PBASF modules. Users can derive subclasses
from them. Details are described it in Section 3.6.

• CFrame

CFrame is the main console of the framework, PBASF. Users command
PBASF via the instance of CFrame to load plugins, to build path and par-
path graphs, and to assign processes to all asynchronous or parallel tasks
in the graphs. We describe how to use it below. We use fr as an instance
of boostpbasf.CFrame in the rest of sections in the chapter.

3.7.2 Loading plugins

In order to load an analysis module plugin, users call

fr.Module(’ID’, ’FileName’)

where ‘ID’ is an identifier used in PBASF and ‘FileName’ is the name of the
plugin without its extension. If they are to load a data-input module, they
call fr.DataIn(’ID’, ’FileName’). They also call Condit, Forker, Joiner,
Serial and Deserial accordingly.

Multiple instances of a plugin can be loaded, given their identifiers are dif-
ferent. If only one instance is necessary, they can call these functions with one
argument like fr.Module(’ID’). In this case, the file name is assumed to be
the same as ‘ID’.
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3.7.3 Creating paths

To explain how to create paths, we first present, in Figure 3.10, the Python
code to create the one in Figure 3.4.

fr = boostpbasf.CFrame() # create a PBASF console

fr.Module(’mod.a’, ’a’) # load module ‘a.so’ as ‘mod.a’

fr.Module(’mod.b’, ’b’) # load module ‘b.so’ as ‘mod.b’

fr.Module(’mod.c’, ’c’) # load module ‘c.so’ as ‘mod.c’

fr.Module(’mod.d’, ’d’) # load module ‘d.so’ as ‘mod.d’

fr.Condit(’cond.1’, ’1’) # load module ‘1.so’ as ‘cond.1’

#

fr.Branch Add(’bra’, ’mod.b’, ’cond.1’) # create a branch named ’bra’

fr.Branch Add(’bra’, ’mod.c’) # to which add ‘mod.b’ and ‘mod.c’

#

fr.Seq Add(’seq’, ’mod.a’) # create a sequence named ‘seq’

fr.Seq Add(’seq’, ’bra’) # to which add ‘mod.a’, ‘bra’

fr.Seq Add(’seq’, ’mod.d’) # and ‘mod.d’

Figure 3.10: A Python code to build the path in Figure 3.4

Users call fr.Seq Add(’ID’,...) and fr.Branch Add(’ID’,...) to create
path graphs. The first argument ‘ID’ is the identifier of the “sequence” or
“branch” accordingly.

If fr.Seq Add(’ID’, ’ModID’) is called, the module ‘ModID’ is appended
at the back of the sequence ‘ID’. A sequence or branch with a certain identifier
is created with no contents on the first use of the identifier.

fr.Branch Add(’ID’, ’SeqID’, ’ConID’) adds the sequence ‘SeqID’ with
condition ‘ConID’ to the branch ‘ID’. If the condition is omitted, it treats the
sequence as the default sequence. Paths have nested structures. Any of modules,
sequences, and branches can be added to any sequences and branches.

We described above how to use shared object plugins written in C++. The
usage of Python module is simpler. For example:

foo = CFoo() # instanciate class CFoo(boostpbasf.CModule)

fr.Seq Add(’seq’, foo) # add it to ‘seq’

3.7.4 Creating par-paths

Creating par-paths is similar to the case of paths. We present in Figure 3.11 an
example Python code to create par-paths shown in Figure 3.12.

Users call fr.Par Add(’ID’, ’path’) to construct par-elements. The par-
element with the ‘ID’ is created on the first call to fr.Par Add with the ID.
And paths are appended in order. The par-element can be duplicated to run
in parallel with a call to fr.Par Parallel. The call takes as its arguments the
number of parallelism, a forker, and a joiner so as to split and gather events at
the edges of the par-element.
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(...) # (Paths are already created.)

nulfork = boostpbasf.CForker() # Default forker

nuljoin = boostpbasf.CJoiner() # and joiner do nothing.

fr.Forker(’fork’, ’myfork’) # Load ‘myfork.so’

fr.Joiner(’join’, ’myjoin’) # and ‘myjoin.so’.

#

fr.Par Add(’par.P’, ’path.a’) # Create a par-element ‘par.P’

fr.Par Add(’par.P’, ’path.b’) # and add paths to it.

fr.Par Parallel(’par.P’, 3, nulfork, ’join’) # Make ‘par.P’ parallel

# with a forker and a joiner.

fr.Par Add(’par.Q’, ’path.c’) # Create a par-element ‘par.Q’

fr.Par Add(’par.Q’, ’path.d’) # and add paths to it.

fr.Par Parallel(’par.Q’, 2, ’fork’, nuljoin) # Make ‘par.Q’ parallel

# with a forker and a joiner.

fr.PSeq Add(’pseq’, ’par.P’) # Create a par-sequence and to

fr.PSeq Add(’pseq’, ’par.Q’) # which add ‘par.P’ and ‘par.Q’

Figure 3.11: A Python code to build the par-path in Figure 3.12 2009/11/26
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Par-sequence Par-element QForker Join.nullPar-element Ppath.a Joinerpath.apath.a path.bpath.bpath.b path.cpath.c path.dpath.d
Figure 3.12: An example of a par-sequence

35



fr.PSeq Add(’ID’, ’par’) adds a par-path ‘par’ to the par-sequence ‘ID’.
The par-sequence with the ID is created on its first use. Par-sequences bond
par-paths together.

fr.PBranch Add(’ID’, ’par’, ’cond’) adds a par-path ‘par’ to the par-
branch named ‘ID’. Events are sent to ‘par’ on condition that the condition
module ‘cond’ returns true. PBASF INST BEGIN RUN, PBASF INST END RUN, and
other instructions except for PBASF INST EVENT are sent to all branches irre-
spective of the condition. It is guaranteed that these instructions, including
PBASF INST EVENT, never get out of order on the way through branching and
confluence.

3.7.5 Assigning and running tasks

After the creation of the top par-path, we split it by the following Python code.

(...) # (Par-paths ‘pseq’ is already created.)

task = fr.PSeq(’pseq’).GetTask() # Get the task of this process.

All MPI processes run the same Python script at the same time until this
line. The ‘GetTask()’ then splits the total task and returns the assignment for
each process.

(...) # ‘task’ is assigned already.

boostpbasf.RunRelay( #

task, #

fr.DataIn (’MyDataIn’), # Load ’MyDataIn.so’ and use it.

fr.Serial (’MySerial’), # Load ’MySerial.so’ and use it.

fr.Deserial(’MyDeserial’), # Load ’MyDeserial.so’ and use it.

0 # initial status code

) #

Figure 3.13: A python code to start event relays

The preparation work has been done, and we are ready to have events pro-
cessed in relay by the MPI processes. We call ‘RunRelay()’ and event relays
start immediately (Figure 3.13.) The data-input module is attached to all those
processes with no process from which to receive events. The relays continue
until the data-input module returns PBASF INST TERM.

3.7.6 Launching scripts

We have described above how to write configuration scripts for PBASF. Now,
the command line to launch the scripts is slightly different from that of ordinary
Python scripts:
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bash$ mpiexec -n 10 python config.py

�

We have to prepend “mpiexec -n [the number of processes]” to the command line
(in the case of MPICH2.) In the command line above, 10 processes are launched
and they execute config.py where a configuration of PBASF is described.
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Chapter 4

Pipeline Implementation

There exists a prototype of a real-time analysis system for Hyper Suprime-Cam
(Section 2.3.3.) The prototype has been developed by NAOJ and is tested
with data from Suprime-Cam. The prototype is currently based on a primary
development version of ROOBASF. We ported the pipeline to PBASF.

In this chapter, we describe the implementation of the pipeline in PBASF.
Its performance test is described in the next chapter.

4.1 Pipeline overview

2009/12/1

1

OSS FLAT AGP STATSEXT ASTR10 images OSS FLAT AGP STATSEXT ASTROSS FLAT AGP STATSEXT ASTR10 ROOBASFs
Figure 4.1: The original pipeline in the analysis system prototype

Figure 4.1 shows the current ROOBASF pipeline corresponding to ‘1a’ in
Figure 2.7. Suprime-Cam has 10 CCDs on the focal plane, and a shot pro-
duces 10 images at the same time. ROOBASF, however, did not have any
parallelization capability (process pooling) when we started to develop the pro-
totype. Therefore, 10 ROOBASF processes are launched in parallel to process
10 images coming from Suprime-Cam at a time. Because the 10 ROOBASFs
are independent processes, there is no way for analysis modules in the pipeline
to communicate with each others.
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OSS FLAT AGP STAT SEXT ASTR10 images OSS FLAT AGP STAT ASTROSS FLAT AGP STAT SEXT ASTR10 MPI processes SEXT
Figure 4.2: The new pipeline on PBASF

We show in Figure 4.2 the newly ported pipeline on PBASF. The total 10
processes are now wrapped in PBASF. The framework enables the processes to
communicate with MPI, and the last module ‘ASTR’ now communicates with
each others.

4.2 Modules

It is easy to make existing stand-alone C/C++ programs to be PBASF analysis
modules, if they are small. We have only to change the name of the main
function to some different one, and to call it from the event member function
of the module class. We describe below each modules in the pipeline. All of
those are ported from existing programs.

• OSS: Over-scanned region subtraction
Charge in a pixel in an image can be considered to be proportional to the
number of photons that enter into the pixel. However, the read-out signal
height of the pixel is not linear to the change because of a zero-point value.
To estimate the zero-point value, we apply “over-scanning”. In Figure 4.3,
we show how to read out a CCD sensor. The three continuous boxes in the
figure represent pixels. The charges in the pixels are shifted and shifted so
that the one amplifier reads them out one by one. If we shift the charges
excessively (“over-scan,”) we can get estimate the value corresponding to
zero photons (Figure 4.3.) The over-scanned values are stored in an image
together with ordinary pixel values, forming “over-scanned regions.” This
module subtracts the over-scanned values from the ordinary pixel values
to adjust zero points.

• FLAT: Flat-fielding
Non-uniformity of the pixel gains is corrected in this module. The non-
uniformity is due to the non-uniform pixel sensitivities of CCD sensors and
to intervening optical systems. This module divides each pixel values of
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4 3 5pixels chargeamplifiershift0 4 3 shift0 0 4 over-scan0 0 0
Figure 4.3: CCD over-scanning

the analyzed image by that of a prepared image of a “flat” light source to
adjust the sensitivities of pixels. The “flat light” source is acquired from
the twilight sky, the dome ceiling lit by artificial light, or the background
of the night sky with stars and galaxies eliminated. The source would,
ideally, produce uniform pixel values. The actual fluctuation of the pixel
values is thus considered to be that of pixel sensitivities.

• AGP: Auto-guide probe masking
Suprime-Cam has an auto-guide probe so that the telescope can track
an object in accordance with the rotation of the celestial sphere. But this
probe makes a shadow on the CCD. This module masks the shadow region
on the image.

• SEXT: SExtractor
SExtractor is a famous program by Emmanuel Bertin that builds a catalog
of objects from an astronomical image [8]. It is originally a stand-alone
executable, but we patched it to be a dynamic linked library. The patched
sextractor can deal with memory files for its inputs and outputs, omitting
disk I/O.

• ASTR: Astrometry
This module calls SCAMP, a program written by Emmanuel Bertin, that
reads SExtractor’s catalogs and computes astrometric and photometric
solutions [2]. SCAMP is also patched just like SExtractor. The ASTR
module has a change from the one in the original pipeline. As expressed
by red arrows in Figure 4.2, the instances of this module communicate
with each others. With the communication, catalogs from SExtractor are
gathered to one process, and the one process calls SCAMP. SCAMP ac-
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cesses a server in the Internet to get a reference catalog. If many SCAMPs
access to the server at a time, like the original pipeline, the server may
not be able to handle all the requests. In addition, multiple catalogs input
into SCAMP, better astrometric / photometric solutions can be expected.
The catalogs are small in size unlike raster images, and the transmission
time does not matter.

• STAT: Statistics
This module extracts parameters indicating the quality of the analyzed
image. This module calls SExtractor again with another set of input
parameters than SEXT.

It requires special cares to make a PBASF module from a large program.
The program being an independent executable, static or global variables are
initialized automatically at the start, and allocated memories and opened file
handles are freed and closed at the end. In contrast, PBASF does not prepare
a process per call to the analysis module. we therefore have to take care so
that the global or static variables initialized properly, that the module does not
have a memory leak, and that all the handles are closed before the execution is
returned to the caller.

41



Chapter 5

Performance Test

We described a pipeline implementation in PBASF in the previous chapter. In
this chapter, we describe the performance tests of the pipeline. We installed
PBASF on three Dell PowerEdges (OS: Cent OS 5 x86 64 / CPU: 1.86GHz
4cores) connected to each others with Gigabit-Ethernet. We measured execution
time of the pipeline with several numbers of parallel processes to demonstrate
the effect of the parallelization.

First, we describe a performance test in a configuration where all storage
was shared with NFS. We found problems on the NFS use in large data anal-
yses. Second, we describe a setup with the use of NFS minimalized and its
performance. Then we scale the obtained result for SC and HSC cases.

5.1 Problems on the use of NFS

We first had the three machine share a hard disk with NFS, the Network File
System.

5.1.1 Experiment setting

We connected the three computers with Gigabit-Ethernet as shown in Fig-
ure 5.1. One hard disk was shared by the three computers with NFS.

We prepared 130 images produced by Suprime-Cam. There are 10 CCDs on
SC, and 130 images correspond to 13 exposures. The size of each image was 2k
× 4k pixels. With the pixel depth being 16 bits, the image size corresponds to
16 MBytes. We then put these images into the pipeline shown in Figure 4.2.
We prepared the following options in the pipeline configuration.

• The number of parallel processes
We tested the pipeline with the number of parallel processes 1, 3, 6, and
9. In the case of one process, the pipeline was executed on one machine
only, and images were analyzed one by one. If the number of processes was
n× 3 each of the three machines was assigned with n processes, and n× 3
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1

HDD switch EthernetNFS
Figure 5.1: Experiment setting with NFS

images were analyzed in parallel. The total numbers of images analyzed
varied slightly in accordance with the number of processes. They were 130
(= 130× 1), 129 (= 43× 3), 126 (21× 6), and 126 (14× 9), corresponding
to 1, 3, 6, and 9 processes.

• Option to save intermediate products
The size of each intermediate image was 32 MBytes. It was twice that of
the initial image, because pixels of intermediate and output images were
of 32-bit floating-point number type so that we could reduce computing
errors. Four intermediate images were created per input image, and re-
sulting 4×32 = 128-MByte intermediate images to be written on the hard
disk. We therefore made an option whether or not to save the intermediate
products.

5.1.2 Requirement

The requirement for the execution time of the pipeline was 20-25 seconds per
exposure to catch up with the quickest observation supposed for Hyper Suprime-
Cam. One exposure of Hyper Suprime-Cam will produce ∼ 100 images, hence
100 images should be digested in 20–25 seconds.

We tested the pipeline with image sets from SC, which produces 10 images
per exposure. Ten images should ideally have been analyzed with 10 processes
in parallel. We however measured the execution time for 3×n processes, because
we had only three machines for the test, as described in the previous section.

5.1.3 Result

Figure 5.2 shows the measured execution time to analyze images one by one, i.e.
using one process only. We repeated the same analyses 8 times, and calculated
their medians. In the upper one, we stored all intermediate products in the
hard disk, while in the lower one we did not. The two plots were similar. The
analyses with one process did not use data transfer on the Ethernet because
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Figure 5.2: Execution time to analyze each image with NFS, one by one. The
upper one shows the result with all intermediate products saved. The lower one
shows the result with only the last product saved. Bars represent quartiles.
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the process ran only locally on the computer with the actual storage, We thus
conclude that data transfer time did not matter when data were not transferred
via Ethernet.

The execution time was distributed between ∼ 15 seconds and ∼ 30 seconds.
We have to note that there were a few cases (∼ 0.3%) where analyses failed
midway (probably on SExtractor or SCAMP) and the analysis time was > 50
seconds. Some of the cases took more than 200 seconds.
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Figure 5.3: Execution time – number of processes relation with NFS. ‘full’ are
the data with all intermediate products saved, while ‘selective’ are the data with
only the last product saved. Bars represent quartiles.

We next show the relation between the execution time and the number of
processes in Figure 5.3. In the figure, we see that, in the case of fully saving
the intermediate products, the execution time was proportional to the number
of processes. If the number of processes was three, the three processes were
distributed to the three computers, and each machine executed only one process.
The execution time should not have increased from the case of one process. As
it happened, the execution time was increased as the process number, and we
guessed that NFS transfer time had been dominant to mess up the advantage
of parallelization.

In fact, the execution time significantly decreased when we did not save
intermediate products of 128 MBytes per input image, as shown in the figure.
We show the data traffic breakout in Table 5.1. In the table, the “input” images
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Table 5.1: Data traffic on the Ethernet
full saving selective saving

input 16 MBytes 16 MBytes
flat reference 32 MBytes 32 MBytes
intermediate products 128 MBytes —
last product 32 MBytes 32 MBytes
total 208 MBytes 80 MBytes

are those to be analyzed and the “flat reference” images are those of pseudo-flat
light source used by the ‘FLAT’ module in Figure 4.2. These two were prepared
on the NFS storage. The “Intermediate products” and the “last product” images
were output into the hard disk via NFS. In the selective saving case, the data
traffic on the Ethernet was 80MBytes/208MBytes ∼ 40% reduced.

Nevertheless, the intermediate products should be saved on the disk so that
we can check them if the last products seem wrong, or the analyses seem to have
failed on their way. The intermediate products saved on local hard disks, as we
concluded comparing the two plots in Figure 5.2, had only a small effect on
the execution time. We therefore changed the system configuration to use local
disks proactively, and examined the analysis performance again, as described in
the next section.

5.2 The effect of parallelization

This time, we prepared input data set on all local disks and saved all products
onto respective local disks (Figure 5.4.) Flat reference images were also prepared
on every local disk. Executables and libraries were still shared with NFS. Then
we performed the same tests as in the previous section.

5.2.1 Analysis time of each image

We show in Figure 5.5 the measured execution time to analyze images one by
one with only one process (black points.) We repeated the same analyses 9
times, and calculated their medians. The analyses with one process did not
make any data transfer on the Ethernet just as in the case of Figure 5.2. The
analysis time depends on respective input images, and we used the same data
set as in Figure 5.2. The analysis time in Figure 5.5 was thus expected to be the
same as in Figure 5.2. For comparison, we overlay onto Figure 5.5 the measured
execution time shown in Figure 5.2 (red points.) We obtain good agreements
between them, as shown in the figure.
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1

HDD
HDD

•input data set
•flat references

•intermediate products
•last products•programs (NFS)HDD

•input data set
•flat references

•intermediate products
•last products•programs HDD

•input data set
•flat references

•intermediate products
•last products

computers
Figure 5.4: The change of the testing configuration. The upper-left picture
illustrates the previous setup, while the bottom-right the new configuration.
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Figure 5.5: Execution time to analyze each image without NFS, one by one. The
upper one shows the result with all intermediate products saved. The lower one
shows the result with only the last product saved. Bars represent quartiles. The
red points are copied from Figure 5.2 for comparison.
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Figure 5.6: Execution time – number of processes relation without NFS. ‘full’
are the data with all intermediate products saved, while ‘selective’ are the data
with only the last product saved. Bars represent quartiles.
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Table 5.2: Comparison between the expected and the measured time. “(ti)” in
the table corresponds to the case of one process in Figure 5.6. “measured” is
from the case of three process in Figure 5.6. The format of values is q2

q3−q2
q1−q2

where qi represents i-th quartile.

(ti) (mi) measured

full saving 20+3
−2 sec 24+2

−2 sec 26+4
−2 sec

selective saving 19+3
−2 sec 22+2

−2 sec 24+4
−2 sec

5.2.2 Parallelization

Figure 5.6 shows the relation between the measured analysis execution time and
the number of processes. Here, the execution time gradually increased as the
number of processes increased. But the increase was much more moderate than
in Figure 5.3.

We see that the execution time increased again from the case of one process
to the case of three processes. As we mentioned before, the two values should
be the same because each of the processes monopolized one of the machines
when the number of processes was 3. This time, unlike Figure 5.3, the effect
of NFS was minimized. Then one of the causes of the increase was expected
to be the synchronization at ‘ASTR’ module for inter-process communication.
The fastest process had to wait for the slowest one to come up. As a result, the
execution time in the case of three processes was actually the maximum one of
the three parallel processes. We describe its demonstration below.

We randomly generated ti, analysis time of images, that follows the distri-
bution shown in Figure 5.5. Then we made an array (mi) from (ti) using the
following relation:

mi = max (t3i, t3i+1, t3i+2) (i ≥ 0.)

The median of (mi) was expected to be some larger than that of (ti) because
taking the maximum value in a 3-tuple picks up the fluctuation of its elements.
We show the result in Table 5.2. We see in the table that the median of (mi) was
actually larger than (ti) and it accounts for 2/3 of the increase of the analysis
time from the case of one process to the case of three.

Figure 5.6 also shows that the increase of analysis time from 3 processes to
9 processes was linear with an offset. When the number of total processes was
n×3, each machine was assigned with n processes. Each machine having 4 CPU
cores the n (∈ {1, 2, 3}) processes run almost in parallel. However, some of the
analysis modules (SExtractor and SCAMP) in the pipeline were multi-threaded.
They exhausted all the four cores and they could not run in parallel, causing
the increase in the execution time. The last module ‘ASTR’ in the pipeline used
group operations. The hard disk I/O operations were only serial. These also
affected to the increase.
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Table 5.3: Extrapolated analysis time, or median values of maxima of N -tuples
of execution time. The format of values is q2

q3−q2
q1−q2 where qi represents i-th

quartile.

(ti) (m
(10)
i ) (m

(100)
i )

20+3
−2 sec 27+4

−2 sec 41+26
−8 sec

5.2.3 Extrapolation of the measured time

We extrapolate the measured execution time in Figure 5.6 to estimate the ex-
ecution time for 10 and 100 images analyzed in parallel, corresponding to SC
and HSC respectively.

The requirement on the analysis execution time says that the analysis should
be done in 20-25 sec per exposure. We assume the same machine performance as
we used in this thesis. Then we should analyze CCD images in an exposure all
in parallel, and should not assign more than one process to a machine, judging
from Figure 5.6. We thus assumed that the number of the machines to be the
same numbers of images in an exposure (10 in SC and 100 in HSC,) and that
each of the machines is assigned with a process.

We then estimated the effect of synchronization of processes analyzing 10
or 100 images in an exposure, just as described in the previous section. We
generated an array of analysis time of images, (ti), that follows the distribution

in Figure 5.5. We then made arrays (m
(N)
i ):

m
(N)
i = max

Ni≤j<N(i+1)
tj .

We assumed all images would be saved. We then obtained the median values

of (m
(N)
i ) as shown in Table 5.3.

Table 5.3 says that even if other effects are ignored, the synchronization
of the processes alone will ruin the performance. The cause is the error rate
not being small enough. As we noted above, there were a few cases where the
analyses failed and the execution time became ∼200 seconds. The probability
of either of the parallel processes bumping into errors becomes larger with the
number of processes. The probability was not prominent with 10 images in

an exposure (SC), (m
(10)
i ) being 27+4

−2 sec. However in the case of HSC, 100
processes running in parallel, the effect became nonnegligible. Hence, one of
the issues to be improved is the reduction the error rate of analysis modules.
Redesigning of the analysis and parameter tuning is currently underway.
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Chapter 6

Conclusion

We have developed a parallel analysis framework, PBASF. The framework is
derived from ROOBASF, which is being developed for the Belle II experiment.
We introduced enhanced parallelism for HSC analyses in PBASF. PBASF uti-
lizes MPI to manage many processes on many computers. It also uses Python
in configuration and in writing modules, for efficient software development.

We ported into PBASF the pipeline used in the prototype of the on-line
analysis system for HSC. While ten independent processes of the pipeline were
originally run in parallel, the processes are controlled by PBASF in the ported
pipeline.

The pipeline is required to run in less than 25 sec per exposure. Based on
the performance test we did in a small prototype system, we scaled the results of
the test and estimated the execution time to be at least a median of ∼40 sec per
HSC exposure, even if 100 computers were used. We need more robust analysis
modules to reduce the error rate responsible for the decrease in the performance
of the parallel analysis pipeline. We expect that the problem resides in our
usage of the analysis modules of SExtractor and SCAMP, and we are currently
tuning their parameters. Though we expect that analysis failure occurred in
these analysis modules, we have difficulty in pinpointing which module in what
reason fails, since PBASF currently lacks a logger. Hence we need a logger in
PBASF. We will implement the logger in PBASF, investigate the analysis error
in detail, and improve the configuration of the real-time pipeline in order to
achieve the requirement of 25 sec per exposure for the HSC analysis time.

In addition, PBASF offers feedback through the Python usage to ROOBASF
for the Belle II experiment. The powerful scripting language allows for efficient
software development in ROOBASF, while it does not interfere with existing
native codes, or reduce their execution efficiency.
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Appendix A

CCD Readout Clock
Generator

In this chapter, we describe a signal generator developed for the readout hard-
ware of CCDs on Hyper Suprime-Cam. [12] also refers to the signal generator,
and we explain its details here.

A.1 Overview of the CCD readout

Figure A.1: GESiCA

Back-end digital circuits are being developed to control front-end analog
circuits that read the CCDs on HSC. Among the back-end modules is a small
board called “GESiCA” (Figure A.1) [13]. This board includes main functions
necessary for the readout. The functions are as following.

GESiCA is connected to a computer with Gigabit-Ethernet. GESiCA gener-
ates readout signals (or, clocks) for the CCDs when it receives a command from
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the computer to read out CCDs. At the same time, it generates control signals
for the analog readout circuits, and signals conversion timings for the ADCs.
When the digitized image data come out from the ADCs, they are first stored
in a buffer of DDR2-SDRAM and sent back to the computer via TCP. These
functions are all implemented on the Xilinx Virtex-5, a Field Programmable
Gate Array (FPGA). The circuits are written in HDL (Hardware Description
Language.)

Among the functions of GESiCA, signal generation must be devised. CCD
readout clocks are complicated parallel signals. In addition, the signals need
altering according to observations. In fast observations the clocks should be
fast. In slow observations the clocks should be slow so that the readout noise
will be reduced. The change of CCD clocks is not independent of other signals.
The front-end analog readout circuits require synchronization with the CCDs’
output rate, and their controlling signals have to be changed accordingly. These
things taken into consideration, GESiCA’s output signals should not be hard-
coded. The circuit in the FPGA of GESiCA therefore contains a module to
generate these signals dynamically defined by users.

We call the module a “CCD readout clock generator.” The module’s output
is nonetheless not confined to CCD clocks but the module generates the whole
signals as well, controlling the front-end analog circuits.

A.2 Architecture

The CCD readout clock generator is written in Verilog HDL, and works on
Xilinx Virtex-5 FPGA. The clock generator is designed to be driven by a 100
MHz system clock. The clock should be as accurate as possible in order for a
low jitter output signal.

The clock generator generates arbitrary 36-bit parallel signals, in which 32
bits are for essential use and the rest 4 are for future use. What users prepare
are the following two: waveform fragments and sequencer programs. Then, a
sequencer arranges the waveform fragments in accordance with the programs.
Waveforms and programs are separately stored in block memories (RAM) inside
the FPGA. The clock generator does not need external memory modules.

A.2.1 Waveform data

A pattern memory in the clock generator stores waveform data. Figure A.2 is
an example of the waveform data. The 36-bit parallel signal in the left side is
represented by a sequence of tuples of a bit pattern and a run-length shown
in the right side. Each bit pattern is elongated for the accompanying run-
length. The unit of the run-length is the clock given to the clock generator,
which is expected to be 100 MHz. Each bit pattern in the table persists for
120/100MHz = 1200 ns. The shortest duration time of a bit pattern is 10 ns
when its run-length is 1. The clock generator can thus output up to 50 MHz
signals.
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1

36-bit signaltime bit pattern (36 bit) run-length (18 bit)
001 · · · 0(2) 120
101 · · · 0(2) 120
110 · · · 0(2) 120
111 · · · 0(2) 120
011 · · · 1(2) 120
010 · · · 1(2) 120
100 · · · 1(2) 120
110 · · · 1(2) 120
110 · · · 0(2) 120

Figure A.2: Waveform data

Table A.1: Sequencer’s operation codes

field (bits) 8 8 8 8 8 8 8 8 8
mnemonic verb argument 1 argument 2

end 0 0
nop 0 # of clocks 0
lstart 1 ID 0 # of loops
lcont 2 ID ID ID 0 0
ccdope 3 address length # of iteration

With run-lengths, waveform data are compressed fairly efficiently because
necessary signals seldom contain waveforms as high as 50 MHz. Hence, the clock
generator can deal with waveforms long but finely tuned in tens of nanoseconds.

Multiple waveform fragments are stored in the pattern memory just contin-
uously. No boundary information is stored along with the fragments.

A.2.2 Program data

Program data are stored in a program memory in the clock generator. The
programs describe how to sequence waveform fragments stored in the pattern
memory.

All operation codes are listed in Table A.1.

• end

The opcode 0x00 00000000 00000000 stands for the end of a procedure.
The sequencer stops when it comes into this opcode.

• nop (no operation)
The opcode 0x00 XXXXXXXX 00000000 instructs the sequencer to stall for
XXXXXXXX clocks (or, XXXXXXXX × 10 ns.) The value must not be 0 because
it would be the end instruction.
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• lstart (loop start)
The opcode 0x01 NN000000 XXXXXXXX instructs the sequencer to store the
loop count XXXXXXXX in the NN-th count register together with the instruc-
tion pointer. NN can be 1, 2, or 3.

• lcont (loop continue)
The opcode 0x02 NN000000 00000000 instructs the sequencer to
decrement the NN-th count register, and to jump to the stored
instruction address if the count is non-zero. Continuous op-
codes 0x02 LL000000 00000000, 0x02 MM000000 00000000, and
0x02 NN000000 00000000 can be united to be 0x02 LLMMNN00 00000000

where LL, MM, and NN are either of 1, 2, or 3.

• ccdope (ccd operation)
The opcode 0x03 AAAALLLL IIIIIIII represents IIIIIIII iterations of a
waveform fragment that begins from address AAAA in the pattern memory,
and that is LLLL long.

line
field (bits)

comment
(8) (16) (16) (32)

1 3 10 20 100 Iterate 100 times the wf. from 10 to 10+20.

2 3 30 12 130 Iterate 130 times the wf. from 30 to 30+12.

3 0 0 0 0 End.

Figure A.3: An example of sequencer programs

A sample program is shown in Figure A.3. The program first iterates the
waveform stored from address 10 to 10 + 20 (excluding the right edge) in the
pattern memory, 100 times. Then the program continues to the waveform stored
from address 30 to 30 + 12 in the pattern memory. After iterating the 2nd
waveform 130 times, the program ends.

On the changing of waveform fragments, the sequencer does not make a gap.
The output waveform is always a continuous sequence of fragments, except
for loops. Here, we distinguish the term “loop” and “iteration.” Loops are
represented by the operation code lstart and lcont. Iterations are represented
by the argument of ccdope opcode.

The clock generator tries its best not to make a gap even in the case of loops,
but gaps may occur if:

• ccdope before lstart is only 10 ns long. The reason is that it takes 10
ns for the sequencer to interpret lstart. Iterating a 10-ns fragment two
or more times avoids a gap.

• ccdope before lcont is 60 ns long or less. This is from the fact that it
takes 60 ns for the sequencer to make a jump.
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The opcode for loops are given a twist. The sequencer allows up to triple
loops, and the three loops have IDs 1, 2, and 3 respectively. If we naively require
3 lines at the end of a triple loop:

...
loop3 continue

loop2 continue
loop1 continue

then each line will consume 10 ns if a jump is not taken. It will take 60+ 20 ns
for the outmost loop to make a jump, undesirably.

Therefore, we made the loop continues combinable. The three loop con-
tinues above can be expressed in just one opcode, 0x02 03020100 00000000.
This opcode is executed all at once, and the sequencer can jump to any of the
corresponding lstart in only 60 ns.

A.3 Inside the clock generator

The clock generator has two major sub-modules, the “pattern generator” and
the “pattern sequencer.” The pattern generator generates the waveform pat-
terns (or, fragments) in the pattern memory, obeying the pattern sequencer.
The pattern sequencer interprets instructions in the program memory and give
commands to “pattern generator.” In this section, we describe the two sub-
modules.

A.3.1 Pattern generator

The pattern generator has the pattern memory containing (36 + 18)-bit wide
waveform data as illustrated in Figure A.2. The pattern generator is given an
address, a length, and an iteration value as its arguments. Then, the pattern
generator generates a waveform fragment in the length stored from the address
in the pattern memory. The generation is iterated as many times as the given
iteration value. Any waveform in any length can be iterated any number of
times with no stalling.

The inner structure is shown in Figure A.4. The address generator generates
a read-address when the “renew address” signal comes. The read-addresses
change as in the following pseudo-program:

for(i = 0; i < iteration; ++i){
for(a = address; a < address + length; ++a){

yield a;
}

}

At the beginning of the address generation, it stores given arguments to its regis-
ters and sets the “renew input” signal to instruct an external module (probably
the pattern sequencer) to renew the arguments.
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Figure A.4: The pattern generator
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The address generation continues until the queue’s “a.mt” (almost empty)
flag goes reset. The almost empty flag is set when the number of contents in
the queue is less than 8.

The value read out from the RAM is stored in the queue. Among the top
value of the queue, 36 bits represent the waveform’s bit pattern, while the rest
18 bits expresses the run-length. The run-length is passed to the run-length
counter. The counter counts down the run-length, and when the count reaches
0, it generates a pop signal to the queue.

The queue, when a pop signal comes, discards the oldest value and change
the output value to the next. The pop signal is given to the pattern memory
(RAM) and the address generator, too.

After the address generator has all iterated the read-addresses, it immedi-
ately renews the input registers with the values on the input wires, which have
been already renewed by the external module in response to the “renew input”
signal at the beginning. At the same time it sets “renew input” again, and
restarts yielding read-addresses. Thus the output signal is generated continu-
ously.

The output stalls, however, only when the external module cannot respond
to the “renew input” signal in time and the queue unexpectedly goes empty.
Given the waveform fragment contains enough bit-patterns with long run-length,
the queue will contain at least 8 values left when the address generator yields
“renew input.” The external module will then have a window time that long.

A.3.2 Pattern sequencer

The pattern sequencer has the program memory in which opcodes (Table A.1)
are stored. The pattern sequencer reads the program memory and controls the
pattern sequencer according to the program. The inner diagram is shown in
Figure A.5.

In the pattern sequencer, there is also a RAM reader similar as the pattern
generator. It is different from that of the pattern generator, however, in that it
accepts jump addresses from the “loop” block. When a jump address is input,
the RAM reader resets the queue and the shift registers for delay. The whole
pattern sequencer stalls until the value at the jump address in the program
memory comes out.

The operation code read out is provided to the three downstream blocks,
“loop”, “nop”, and “CCD operation.” Each of the three looks at the opcode,
and executes the opcode if the opcode is targeted to it. It then sets its state as
busy when the instruction takes two or more clocks.

The three states from the three blocks are multiplexed to be input to the
“state” block. The “state” block yields veto, according to the input state, to
prohibit execution of the next opcode.

The “loop” block has three tuples of a return address pointer and a loop
counter. If lstart opcode comes, the “loop” block stores one plus the current
instruction address to the return address pointer, and the loop count specified
by the opcode to the specified loop counter. Every time lcont opcode comes,
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Figure A.5: The pattern sequencer

the “loop” block decrements the loop counter and outputs the return address
as the jump address.

The “CCD operation” block communicates with the pattern generator lo-
cated downstream. Its state is “busy” until the pattern generator accepts inputs
and the renew input signal is set by the pattern generator.

A.4 Compiler

In the configuration of the clock generator, users are requested to prepare wave-
form data and program data. We made a compiler that translates source files
into a binary file containing waveforms and programs. The syntax of the source
files is designed to be compatible with Modularized Extensible System for Im-
age Acquisition (MESSIA) series [11]. They are employed in the Suprime-Cam’s
readout system, and many other instruments in the Japanese astronomical com-
munity.

A.4.1 Source files

We show an example of the source codes in Figure A.6. The source codes are
in the ASCII character coding.

60



# sample clock pattern definition

begin proc1 # procedure definition: "proc1"

ccd_operation 0 1 100 # iterate ope "1" 100 times.

ccd_operation 0 2 10 # iterate ope "2" 10 times.

end

begin proc2

loop3_start 42_0000_0000

ccd_operation 0 1 5

ccd_operation 0 2 3

loop3_continue

end

set_default_bit 1 # omitted bits are set 1

set_tick_prec 10 # tick precision is 10ns

set_clock_tick 3 # clock tick is 3 * 10ns

operation_type 1 # signal definition: ope "1"

start 35 32 0 5 4 10

t 4 | | ] ] | |

t 1 | ] | ] ] |

t 1 | ] ] ] ] |

t 1 | ] | ] | |

end

set_clock_tick 1

operation_type 2

start 35 32 0 5 4 10

t 2 ] | ] ] ] |

end

#eof

Figure A.6: An example of clock pattern definition
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Tokenization

The tokenization of the source codes goes as the following.

1. Spaces and line breaks
Spaces and line breaks have different roles. Spaces are used to separate
tokens and have no syntactic meanings, which line breaks have.

• A sequence of carriage returns (0x0d) and line feeds (0x0a) are
treated as a line break.

• Any characters between a ‘#’ and a line break are treated as a line
break.

• A sequence of whitespaces including at least one line break are treated
as a line break.

• A sequence of whitespaces without line breaks are treated as a space.

2. identifiers and keywords
Identifiers and keywords are quarried with the same regular expression:

[A-Za-z ][A-Za-z0-9 ]*

They are case sensitive.

3. Numbers
Numbers are quarried with the regular expression:

[0-9][A-Za-z 0-9]*

Underscores can be arbitrarily inserted, which are just ignored in inter-
pretation. Numbers are case insensitive. If the quarried token does not fit
any of the following three, the compilation will fail.

• Binary numbers: [01][01 ]*[Bb]

0101 1100 b, for example.

• Decimal numbers: [0-9][0-9 ]*

123 and 043 for example. The latter one is not an octal number.

• Hexadecimal numbers: [0-9][A-Fa-f0-9 ]*[Hh]

‘ff’ (255) is expressed as ‘0ffH’. The leading zero must exist because
‘ffH’ would be treated as an identifier.

In addition, numbers must be expressed within 32-bit unsigned integer.
Otherwise, the compilation will fail.

4. ‘]’ and ‘|’
‘]’ is interpreted as 1 and ‘|’ is as 0 in waveform definitions.

Procedure definitions

Procedures are compiled to be program data. Their definitions have the follow-
ing syntax:
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begin identifier linebreak
commands
end linebreak

This sentence defines a procedure with the name identifier. identifier that begins
with double underscores may be reserved for the compiler and should not be
used.

commands is a sequence of the following commands:

• ccd operation 0 id count linebreak
id := number
count := number
Iterate count times a waveform fraction whose ID is id. The leading ‘0’ is
left for backward compatibility and has no meanings.

• loop1 begin count linebreak

• loop2 begin count linebreak

• loop3 begin count linebreak
Loop count times. There are three counters, and up to triple loops can be
expressed.

• loop1 continue linebreak

• loop2 continue linebreak

• loop3 continue linebreak
Decrement the loop counter, and jump to the corresponding loop* begin
if it is still non-zero.

• nop countopt linebreak
Stall for count clocks (or, count × 10 ns.) If count is omitted, it is assumed
to be 1.

Waveform definitions

Before the waveform definitions, users should specify the length of a “tick,” the
unit of time used in waveform definitions. We prepared two keywords to specify
the tick.

• set tick prec number linebreak
Set the step size of the tick to be number nsec. This keyword is newly
created for the clock generator. The default value is 80 because the corre-
sponding value of MESSIA-V is fixed to 80. The minimal value of number
is 10, and number must be a multiple of 10 because of the clock generator’s
hardware restriction.

• set clock tick number linebreak
Set the tick to be number × the step size which is defined by
set tick prec.
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It is recommended that set tick prec is put at the beginning of a source
file, and that set clock tick is put before every waveform definition. There is
another option:

• set default bit number linebreak
Set signals omitted in waveform definitions to be number/ number must
be 0 or 1. The default value is 1.

It is recommended that set default bit is put at the beginning of a source file.
Then, a waveform fragment is expressed in the following syntax:

operation type id linebreak
start signals linebreak
bitpatterns
end linebreak

The waveform is registered with ID id, and summoned by ccd operation in
procedures. id larger than 0 ffff 0000 H may be reserved for the compiler and
should not be used.

signals are a sequence of number representing bit IDs of signals in the range
of 0–35. They can be arranged in any order, and unnecessary bits can be
omitted. The omitted bits are set to be the value defined by set default bit.

bitpatterns are a sequence of bitpattern:

bitpattern := t number levels linebreak

where levels is a sequence of ‘]’ and ‘|’ representing signal level 1 and 0 re-
spectively. If you print out the waveform definition and turn the sheet 90◦

counterclockwise, you see a parallel signal waveform.
Each bit pattern holds for number ticks, which was defined by

set clock tick. The hold time becomes number × clock tick × tick prec
nanoseconds. The hold time is internally represented by an unsigned 32-bit
integer in tens of nanoseconds. Therefore the hold time divided by 10 ns must
be < 232. If not, a compilation error occurs.

In addition, the hold time (divided by 10 ns) field, or the run-length field in
the hardware has 18 bits only. The compiler automatically separates a longer
bitpattern into many continuous ones with their run-length < 218.

Dividing source files

Source files can be divided on condition that neither procedure definitions nor
waveform definitions are divided on their way. Procedure names and waveform
IDs are global, while set default bit, set tick prec, and set clock tick are
local.

A.4.2 Binary file format

An output binary file has a structure shown in Figure A.7. All fields are in
network byte order. Applications that use the binary files should not assume
that “Programs”, “Clock patterns” and “Symbol tables” are stored in this order.
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CPD BINARY HEADER
Programs

Clock patterns
Symbol table

Figure A.7: Binary file structure

CPD BINARY HEADER

CPD BINARY HEADER has the following fields.

offset size description
0 6 ”CPD” 0D 0A 00
6 1 01 (Major version)
7 1 01 (Minor version)
8 4 File offset to the program data
12 4 Size of the program data
16 4 CRC32 (IEEE 802.3) of the program data
20 4 File offset to the clock pattern data
24 4 Size of the clock pattern data
28 4 CRC32 (IEEE 802.3) of the clock pattern data
32 4 File offset to the symbol table
36 4 Size of the symbol table
40 4 CRC32 (IEEE 802.3) of the symbol table

Programs

Programs are data to be stored in the program memory of the clock generator.
This is a simple array of CPD BINARY PROGRAM:

offset size description
0 1 verb
1 4×1 arg1[4]
5 4×1 arg2[4]

where “verb” corresponds to that in Table A.1; “arg1” [0],[1],[2], and [3] corre-
sponds to “argument 1” [31:24], [23:16], [15:8], and [7:0]; and “arg2” to “argu-
ment 2” in the same way.

Clock patterns

Clock patterns (waveforms) are data to be stored in the pattern memory of the
clock generator. This is a simple array of CPD BINARY CLOCK:

offset size description
0 3×1 runlength[3]
3 5×1 pattern[5]
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where “runlength” [0], [1] and [2] corresponds to “run-length” [17:16], [15:8],
[7:0] in Figure A.2; and “pattern” [0], [1],..., [4] corresponds to “bit pattern”
[35:32], [31:24],..., [7:0].

Symbol table

The symbol table is used by applications controlling the clock generator to look
up procedure names. This is a simple array of CPD BINARY SYMBOL:

offset size description
0 62×1 name[62]
62 2 address

which indicates that the “name” procedure begins from the address in the pro-
gram memory. The field “name” must be null-terminated, and thus its length
≤ 61.

A.4.3 Special procedure

In a binary output file, there is a special procedure generated automatically
by the compiler. The symbol table contains a SET BITS procedure which
is associated with address 0 in the program data. The procedure generates
the waveform data of length 1 at address 0 in the pattern memory only once,
and soon exits. Note that addresses in the pattern memory have no relation
to waveform IDs in source files and that it is not the waveform of ID 0 that is
generated.

User-defined waveforms are written from address 1 in the pattern memory
(the compiler generates binary a file whose the clock pattern region is already
arranged so.) Rewriting address 0 of the pattern memory therefore affects no
user-defined waveforms. Applications that control the clock generator can thus
arbitrarily fix the bits of the signal output, rewriting address 0 of the pattern
memory and invoking procedure at address 0 of the program memory.
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