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Abstract

The current standard model of structure formation, in which the universe is dominated by cold
dark matter (CDM) – the so-called ΛCDM model, has been remarkably successful in reproducing
various observations such as the cosmic microwave background anisotropies, galaxy clustering
and weak gravitational lensing. However, this model assumes that cold dark matter consists
about 85% of matter in the Universe, and the nature of dark matter is unknown. The property
we know or require is that dark matter interact with ordinary matter only via its gravitational
interaction, which plays a dominant role in the hierarchical structure formation. Although a
viable candidate of dark matter is unknown, hypothetical elementary particle, the so-called
weakly interacting massive particle (WIMP), which might exist beyond the standard model of
particle physics, but it hasn’t yet been found by any terrestrial experiments such as CDMS and
LHC. Hence, revealing the nature and properties of dark matter with astronomical dataset is
one of the most important problems in modern cosmology and particle physics.

This thesis shows two testes targeting on dark matter properties. The first part of this
thesis focuses on a dark matter property around “Mpc” scales, studying mass profiles of massive
galaxy clusters. The mass profile of galaxy clusters is a consequence of the hierarchical structure
formation, and has been well studied by N-body simulations baed on ΛCDM model. One of the
most important predictions of N-body simulations is that their mass profiles are well described
by the so-called Navarro-Frenk-White(NFW) model. The NFW profile predicts “universality” of
mass profiles for halos with different masses; the mass profiles of halos over a wide range of mass
scales can be well fitted by the same functional form. In this study we proposed a novel method
of testing the universality of cluster mass profiles based on the weak lensing measurements for
almost volume-limited sample of 50 massive clusters. We combined weak lensing measurements
from 50 massive clusters (z ∼ 0.23) with X-ray mass data, and “scaled” every profiles. We
succeeded to detect 4-6sigma detection of universality. In this thesis we summarize mass profile
properties of clusters and discuss the implications of our results.

The latter part of this thesis discusses test of nature of dark matter on much smaller, star
scales. By fully taking advantage of the wide field-of-view of Hyper Suprime-Cam, which allows
us to cover the entire bulge and disk regions of Andromeda Galaxy (M31) with one point, we use
the dense cadence data of M31 (about 190 images of 90sec exposure each over about 7 hours) in
order to search for microlensing events of stars in M31 due to foreground primordial black holes
(PBH). PBH is one of viable candidates of dark matter, and might dominate the dark matter in
both the halo regions of Milky Way and M31. We aim at constraining the abundance of PBHs of
mass scales, 10−9-10−7M⊙, with the dense-cadence HSC data. However, the PBH search requires
an exquisite data reduction technique, especially image difference technique in such a dense star
region needed to find transient objects (stars). We have extensively used the HSC pipeline to
make the data reduction and here report the current status of this project (the results of other
transients and the PBH microlensing search).
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2.12 Comparison of the measurements and the simulation results for the d2-values. (Eqs. 2.19and

2.20for their definitions). The bigger-size circle and square symbols are the measure-

ment results for the HSE and gas mass cases, respectively. The other symbols are the

simulation results for 40 realizations, combining the N-body halo profiles and the effect

of intrinsic ellipticities of background galaxies that are taken from actual Subaru data of

each cluster region. The tilted triangle and hexagon symbols are the simulation results;

triangles are cases with the best-fit NFW parameters of 3D mass profile for each halo,

and the NFW parameters of 2D projected lensing profile.The hexagon symbols are in-

tended to mimic what we did for the actual measurements, using the best-fit mass of 3D

profile, and the concentration inferred from the scaling relation c∆ = c∆(M∆; z) , respec-

tively. (see Figure 2.3for details). We show the simulation results for 40 realizations of

background galaxy ellipticities. Note that, for each realization, we computed the three

simulation results; each of the triangle and hexagon symbols with same d2 value in the

horizontal axis, but different d2w−scaling values in the vertical axis. For comparison, the

orange-color star symbol denotes one particular realization that has a similar d2 value

to the measurement for no NFW scaling case (the vertical axis). The two star symbols

in the left-lower corner are the results when using the same realization of background

galaxies as in the orange-color star symbol, but using the analytical NFW profiles for

the d2 calculations. Note that the arrow in the lower-left corner denotes the simulation

result that is below the plotted range. . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.13 d2 plot with the effects of mass scatter of each halo on the simulation results. The

hexagon symbols are the same as in Figure 2.12. For each realization of background

galaxies, we added a random mass scatter to each halo, simulated the lensing analysis

with NFW scaling by treating the shifted mass as the true mass, and then computed the

d2w−scaling value. Adding the halo mass scatters tends to degrade the NFW scaling results

or preferentially causes an up-scatter of each simulation result in this two-dimensional

space. Left panel: The simulation results when adding the Gaussian mass scatters by

the fractional errors of σlnM = 0.1, 0.2 or 0.3, respectively. The arrows in the upper

horizontal axis denote the case that the simulation results are outside the range shown

in this plot. Right panel: The results when adding a random mass scatter to each

simulated cluster assuming the fractional error proportional to the quoted error of the

gas mass proxy relation ; σlnM(a)
≡ σX

M(a)
/MX

(a) or a factor 2 or 3 bigger one. . . . . . . 39
2.14 Effects of variations in the halo mass proxy relation of X-ray gas mass on the NFW scal-

ing results. We model the variations asM500c/[10
14M⊙] = A×11.6×(Mgas/10

14h−3/2M⊙)
β,

where A = 1 and β = 1 are our fiducial model corresponding to the self-similar

scaling model. We estimated the best-fit parameters (the star symbol) by minimiz-

ing the d2 value with varying the normalization and mass slope parameters. The two

contours correspond to the regions satisfying the conditions ∆d2 = d2w−scaling(A, β) −
d2w−scaling(A

best−fit, βbest−fit) = 2.3 or 6.17, respectively. The triangle symbol with error-

bar denotes the result when varying the normalization parameter A alone, with fixing

β = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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2.15 Similar to the previous figure, but effects of variations in the halo mass and concentration

relation on the NFW scaling results, for the HSE and gas mass cases, respectively. Here

we parametrized the variations as c(M) ∝ Mα (Eq. 2.28), and then minimized the d2-

value with varying the normalization and mass slope parameters. The diamond symbol

in each panel shows the parameters for our fiducial model DK14 at the mean redshift

of clusters, z = 0.23, while the triangle symbol denotes the parameters of Duffy et al.

(2008). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 An illustration of gravitational lensing system. The light ray emitted from a source

is bent by the gravitational field of a lens, and the source can be observed by multiple

images due to the lensing. For a system where a star in M31 is a source object and a

PBH of 10−7M⊙ in either halo region of MW or M31 is a lensing object, the two images

due to lensing are not resolved even by the Subaru data, because the angular separation

between the two images is about 107 arcseconds compared to O(0.1”), a typical angular

resolution of the HSC/Subaru data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Simulated light curves for microlensing events, taken from Fig. 2 of Paczyński (1986).

Each light curve stands for different impact parameter umin at 0.1, 0.2, ..., 1.1, 1.2, and

light curve with larger magnification amplitude corresponds to smaller umin parameter. 48
3.3 The total transmission curve for each broad-band filter of the Subaru/Hyper Suprime-

Cam system. Each curve takes into accounts the transmission of each filter, quantum

efficiency of fully depleted CCDs, transmittance of the dewar window, transmittance of

the Primary Focus Unit of the HSC (POpt2), and reflectivity of the Primary Mirror. . 50
3.4 Characteristics of our HSC M31 observation. Left panel shows the time-variation of

altitude of target field (M31) during observation. Our observation started from 18:33:59

on November 24 2014, and ended at 1:35:34 when the altitude gets lower than 30 degrees.

Right panel shows the seeing of each exposure. We conducted the “focusing” (determined

the focus position of the camera) three times during the night, 19:50:33, 22:37:02, and

0:37:07. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 An example of our exposure image of the M31 region. Left panel displays one raw image

taken by Hyper Suprime-Cam. Each rectangle-shape sub region, enclosed by black-color

gap, corresponds to a single CCD chip. Right panel shows one example of reduced image,

the one later called as reference image in z-scale (The detail of this image is described in

§ 3.2.3). This figure is in a unit called “tract”, composed of sub-regions called “patches”

(displayed as different-color rectangular regions in this figure). . . . . . . . . . . . . . 53
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3.10 An schematic illustration of our photometry measurement of time-variable point-like
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the case that the candidate in the target image appears fainter than that in the reference

image, while the lower image shows the case that the candidate appears brighter than

that in the reference image. By adding the PSF magnitudes in the reference image

and the difference image of the target exposure, we estimate the PSF magnitude of the
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Chapter 1

Introduction

1.1 ΛCDM model

1.1.1 Basic description of the universe

Recent development of cosmological observation and numerical simulations supports the picture
that the universe is hierarchically formed. The matter distribution in the universe is homogeneous
and isotropic. This assumption is called as cosmological principal. In this section, we briefly
review basic equations of the expanding universe and structure formation.

(1) Friedmann equation

We start with the spacial properties of the universe assuming the cosmological principal.
Here the dynamics of the universe in space-time dimensions follows the Robertson-Walker
metric (Robertson 1935; Walker 1936):

ds2 = −c2dt2 + a2(t)

{
dr2

1−Kr2
+ r2(dθ2 + sin2θdϕ2)

}
, (1.1)

where K is spatial curvature, and a(t) is scale factor. Scale factor is an indicator of cos-
mological distance, and closely related to another conventional description of the distance;
the redshift. The redshift is a distance estimator described by the observed wavelength λ0

and the original wavelength λs as z = (λ0−λs)/λs. The connection in-between the redshift
and scale factor is a = 1/(1 + z), where the current scale factor is defined as a0 = 1.

Photons that are emitted from a source at redshift zs and are observed by an observer at
the coordinate origin propagate along the geodesic specified by ds2 = 0 with dθ = dϕ = 0.
Then we can introduce the distance to xc(z) as comoving distance:∫ xc(z)

0

dr√
1−Kr2

=

∫ t0

t(z)

cdt

a(t)
(1.2)

where t(z) denotes the time when the light is emitted, and t0 is the present time. Thus the
radial distance is given as:

r(χ) =


sinh(

√
Kχ)/

√
K K > 0

χ K = 0

sinh(
√
−Kχ)/

√
−K K < 0

(1.3)
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Therefore spatial curvature represents the shape of the universe; K > 0 is open, K = 0 is
flat, and K < 0 is closed universe respectively.

Another set of equations that are essential for the dynamics description is Einstein equation.
Einstein equations of the FRW metric describes how the universe expands as a function of
time and how the expansion rate is related to the matter-energy contents.

Gµν = Rµν −
(
1

2
R− Λ

)
gµν =

8πG

c4
Tµν (1.4)

In the case with prefect fluid under with the Robertson-Walker metric, the energy-momentum
tensor in the right hand side of Eq. (1.4) is given by:

Tµν = (ρ+ p)uµuν + pgµν (1.5)

where uµν = (1, 0, 0, 0) stands for the velocity components, ρ for the density, and p for
the pressure of the universe, respectively. With Eq. (1.1) and Eq. (1.5), we can derive the
time-time component and the space-space component as:(

ȧ

a

)2

+
c2K

a2
=

8πG

3c2
ρ+

c2Λ

3
(1.6)

ä

a
= −4πG

3c2
(ρ+ 3p) +

c2Λ

3
(1.7)

where the dot notation denotes the time derivative, and ρ and p denote the total energy
density and pressure, respectively. Combining these Friedmann equations with the follow-
ing equation of state:

p = wp (1.8)

characterizes the time evolution of the energy density. The w parameter takes specific
values for different components; 1/3 for relativistic component, whereas w = 0 for non-
relativistic particles such as dark matter. Therefore Eq. (1.6), Eq. (1.7), and Eq. (1.8)
describe:

ρ ∝ exp

(
−3

∫
da′

a′
(1 + w)

)
(1.9)

Note that Eq. (1.9) gives the time evolution of density components; ρm ∝ a−3 and ργ ∝ a−4,
for example.

In modern cosmology the density evolution of the universe is often characterized by cos-
mological parameters as follows:

H ≡ ȧ/a : Hubble parameter, (1.10)

Ω ≡ ρ/ρcrit ≡ 8πGρ/3H2 : density parameter, (1.11)

ΩK ≡ c2K/a2H2 : curvature parameter, (1.12)

ΩΛ ≡ c2Λ/3H2 : dimensionless cosmological constant, (1.13)

With these quantities the density evolution in Eq. (1.6) can be characterized as:

H2(a) = H2
0

[
Ωm0

a3
+

Ωγ0

a4
− ΩK0

a2
+ ΩΛ0exp

{
−3

∫
da′

a′
(1 + wDE(a

′))

}]
(1.14)

where wDE = pΛ/ρΛ, and parameters with index 0 in the right hand side of Eq. (1.14)
represent current density contents.
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(2) The observational review of cosmological component
As mentioned in previous section, the density evolution in the Robertson-Walker metric
universe can be characterized by the density component of the universe. Thus observational
constraint on the density component plays a key role to probe the evolution of the universe.
In this subsection we briefly summarize some properties that support ΛCDM model.

a) Baryonic component
Baryonic component has began to be formed a few minutes after Big Bang. At the
beginning particles stay in very hot period and stay in equilibrium. When the expan-
sion timescale become shorter than the nuclear interaction timescale, the abundance
experiences “freeze out”, and elements are begun to from. By comparing the pri-
mordial abundance for the light element from simulation and observation, we can
know about the baryonic component. Especially the measurement of primordial deu-
terium abundance pins down extremely accurately. For O’Meara et al. (2001) provides
D/H= 3.0± 0.4× 10−5, corresponding to Ωbh

2 = 0.0205± 0.0018.

b) Flatness
The cosmic microwave blackbody (CMB) radiation offers the universe when photons
last scattered off electrons at z ∼ 1100. The temperature spectrum is isotropic,
corresponding to blackbody spectrum around T = 2.728K (Penzias & Wilson 1965).
Despite the isotropy there exits small anisotropy which represents tiny density of
order 10−5 (Smoot et al. 1992). This temperature fluctuation pattern of CMB is
characterized by the angular power spectrum Cl defined as:

∆T

T
=
∑
lm

almY
m
l , (1.15)

Cl ≡ ⟨|a2lm|⟩ (1.16)

where Cl is the ensemble average of the coefficient of the multipole expansion of the
temperature fluctuations. CMB observation such as Planck collaboration strongly
constrains the spatial curvature of the universe, indicating that the universe is almost
flat, ΩM + ΩΛ ∼ 1.

c) Acceleration
The cosmic expansion history can be investigated from distance indicators. One pop-
ular indicator is Type-Ia supernova, which has constant peak luminosity in absolute
magnitude. Thus we can derive the relation between the luminosity distance to test
whether the universe is decelerating or accelerating. Observation of type-Ia supernova,
combined with CMB observations, strongly indicate the universe with ΩM ∼ 0.3 and
ΩΛ ∼ 0.7. This result supports that the universe is accelerating (Riess et al. 1998;
Perlmutter et al. 1999).

Another popular distance indicator is baryonic acoustic oscillation (BAO), which is
acoustic peak probed in the galaxy correlation function on redshift dependence. BAO
is precisely measured in several redshifts such as in the galaxy survey of Sloan Digital
Sky Survey (SDSS)1. Combined results from Type-Ia supernovae and BAO strongly
limit the abundance of cosmic density components.

1http://www.sdss.org
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1.1.2 Structure formation

The universe with Robertson-Walker metric describes the properties of isotropic and homoge-
neous expansion. On the other hand, current universe contains various structures such as galaxies,
clusters of galaxies, super clusters, filaments and voids, whose formation need other scenario of
structure evolution. These structures are now believed to arise from gravitational amplification
of tiny seed density fluctuations as observed in the CMB anisotropies. In this section we describe
the fluctuation evolution in the ΛCDM universe.

(1) Density evolution in Linear perturbation theory
Here we consider the mass fluctuations at scale larger than a few Mpc, where the amplitude
can be approximated as δ ≪ 1. This approximation is called as “linear” fluctuations,
where the Newtonian approximation plays a roll. Then matter density of fluid ρ meets the
following fluid equations and the Poisson equation:

∂ρ

∂t
+ ∇⃗ · (ρu⃗) = 0 , : Continuity equation, (1.17)

∆ϕ = 4πGρ , : Poisson equation, (1.18)

∂ρ

∂t
+ (u⃗ · ∇⃗)u⃗ = −1

ρ
∇⃗p− ∇⃗ϕ , : Euler equation (1.19)

where ϕ is gravitational potential. We can rewrite these quantities using the Robertson-
Walker metric: x⃗ = r⃗/a(t), v⃗ = a(t)̇⃗x, Φ = ϕ(x⃗, t) + 1

2
a(t)ä(t)x2. Also we can characterize

fluctuation by taking ρ as homogeneous part

δ(x⃗, t) =
ρ(x⃗, t)− ρ

ρ
(1.20)

then Eq. (1.17) to Eq. (1.19) can be converted to:

∂δ

∂t
+

1

a
∇⃗ · v⃗ = 0 , (1.21)

∆Φ = 4πGρδa2 , (1.22)

∂v⃗

∂t
+

ȧ

a
v⃗ = −c2s

a
∇⃗δ − 1

a
∇⃗Φ , (1.23)

where c2s is the sound velocity defined as c2s =
√
∂p/∂ρ. Note that we apply linear ap-

proximation and neglect terms larger than second order. Thus for matter component with
p = 0, the evolution equation of the density fluctuation in linear approximation can be
described as:

δ̈ + 2
ȧ

a
δ̇ − 4πGρδ = 0 (1.24)

The solution is composed by growing mode D1(t) and decaying mode D2(t), and described
as:

δ(t) = C1D1(t) + C2D2(t) (1.25)

Here we look into the properties for the ΛCDM universe. In this model, Hubble parameter
H is given by:

H(a) = H0

√
Ωm0a−3 + ΩΛ0 (1.26)
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here we neglect the radiation density Ωγ0 and curvature K, and wDE = −1. As H(a) is
a specific solution of Eq. (1.24), the linear growth of matter density is derived by D(a) =
H(a)f(a) as:

D1(a) = H(a)

∫ a

0

da′

(a′H(a′))3
, (1.27)

D2(a) = H(a), (1.28)

(2) Density evolution for cosmic structures : non-linear regime
Next we focus on the density evolution for δ ≫ 1 case, where the effect of the non-linear
terms overcome the Hubble expansion in the evolution of over density. Even though the
evolution of non-linear growth is difficult to describe analytically, the simplified model, the
top-hat spherical collapse model, allows us to analytically solve the evolution of nonlinear
density perturbations.

Here we summarize the characteristic dynamics for the spherical collapse model. For sim-
plicity, we consider a positively curved matter-dominated universe, where the Friedmann
equations have the parametric form

r = A(1− cos θ), (1.29)

t = B(θ − sin θ), (1.30)

where the parameter A,B for the matter dominated universe: A = Ωm0/[2(Ωm0 − 1)],
B = Ωm0/[2H0(Ωm0 − 1)3/2]. This solution gives the same evolutional picture for the shell
at radius r with the inner mass M , with the equation of motion : d2r/dt2 = −GM/r2.
These models characterize the shell behavior: the shell first expands from θ = 0 to θ = π,
then contract from θ = π to form singularity at θ = 2π. These two phases corresponds to
turn around phase and virialization in structure formation.

– turn around
The solution of Eq. (1.29) and Eq. (1.30) shows that the spherical region reaches the
maximum radius at θ = π, where the radius rmax = 2A, and tmax = πB. Then the
density of spherical region at the turn around phase is characterized as:

ρ

ρ0
=

Ωm0ρc0/r
3
max

ρc0/a3
=

9π2

16
∼ 5.55, (1.31)

δ =
3(6π)2/3

20
∼ 1.06 (1.32)

where a = (3
2
H0t)

2/3. Therefore the characteristic overdensity does not depend on the
shell mass M .

– virialization
Eq. (1.29) and Eq. (1.30) indicate that the mass density collapse to singularity at
θ = 2π. In reality, however, the mass distribution reach virtualized first and the
singularity is never formed. The potential energy satisfies Ek = −Ep(rmax/2)/2, where
Ep(rmax) = −3GM2/5rmax at rmax and Ep(rmax/2) = −6GM2/5rmax at r = rmax/2.
Thus the contractions of each shell forms objects with a finite size of rvir = rmax/2, and
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tvir can be characterized as tvir = 2rmax (or the case of θ = 3π/2 as tvir = (3
2
+ 1

π
)tmax ∼

1.81tmax). Hence the typical overdensity follows;

ρ

ρ0
= ∇vir =

9π2

16
× 8×

(
tvir
tmax

)2

∼ 178 (1.33)

δ =
3

20

(
6π

tvir
tmax

)2/3

∼ 1.69, (1.34)

1.1.3 Candidates for dark matter

Several observations, such as mass-luminosity relation of clusters and the rotation curve of spiral
galaxies shows discrepancy between the observed matter abundance and that of known compo-
nents (Zwicky 1937). For example, the observation of Type-Ia supernovae and cosmic microwave
background suggests that the mass density of matter ΩM ∼ 0.3 (see the detail in § 1.1.1). On
the other hand, Big Bang Nucleosynthesis (BBN) theory implies that the baryonic component
in the universe is constrained to 0.01 ≤ Ωb ≤ 0.06. Thus we cannot explain the full quantity of
matter component with known matter, which strongly supports the existence of dark matter.

In galactic scale, there is a possibility of existing certain amount of baryonic dark matter
in the galactic halo. Neutral hydrogen gas is one candidate, for they are too hot to collapse
gravitationally. Also there exists dark candidates so-called massive compact halo object (MA-
CHO), such as stellar remnant, neutron star, stellar black hole (BH), and brown dwarf. Previous
microlensing surveys towards Large Magellanic Cloud conclude that MACHOs can contribute
up to 20% of the mass of Galactic halo (Alcock et al. 2000).

Not only baryonic components, but non-baryonic candidates beyond the standard model is
suggested as feasible dark matter candidate. They are called as the hot dark matter (HDM)
and the cold dark matter (CDM). Neutrino is feasible candidate for HDM. HDM has so large
energy that they can stay relativistic for long, fluctuations whose scale is smaller than the horizon
disappear, thus can hardly form clumpy structure. Therefore HDM is ruled out by the current
cosmology model.

On the other hand, cold dark matter (CDM) is a type of dark matter which is free from
collisionless damping. In the picture of ΛCDM model, small structures are created first from
gravitational instability of initial perturbations. As CDM does not reduce perturbation during
structure formation compared with HDM, these small structures gather gravitationally, and
merged many times to form larger structures. This kind of structure formation mechanism is
called ”bottom-up” structure formation. The ΛCDM model, assuming the existence of CDM
and dark energy, succeeds to describe the current structures in the universe, and now becomes
the cosmological standard model. As for CDM, possible cold dark matter candidates are weakly
interacting massive particles (WIMPs) or super-symmetry particles such as axion. However,
none of CDM candidates have been detected by the current experiments.

One alternative candidate for non-baryonic candidate is MACHO consisted of primordial
black hole (PBH). PBHs are proposed to be generated by primordial perturbation at inflation
epoch (Hawking 1974). As they were built before BBN, they are not count for the baryon budget
afterwards. Therefore there is no limit on the amount of PBHs from BBN, and can construct
whole dark matter in the universe.
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1.2 Gravitational lensing

As mentioned in previous chapter, the evolution of overdensity in cosmic density field creates
cosmic structures such as galaxy clusters. Around these massive structures one can observe
some unique characteristics; distortion and magnification of background objects. These features
are caused by distorted light path in the foreground gravitational field, originally predicted by
general relativity, and called as gravitational lensing effect. In the following we describe basic
property and the summary of observational characteristics.

1.2.1 Basic properties

General relativity describes the distortion of light path in the gravitational field. In the following
we briefly mention the behavior of light path in perturbed metric (The simple case in unperturbed
metric is described in appendix A).

(1) Lens equation

Here we consider a case where gravitational potential Φ is small. In this case, the metric
of inhomogeneously expanding universe can be described as:

ds2 = −
(
1 +

2Φ

c2

)
c2dt2 + a2(t)

(
1− 2Φ

c2

)[
dχ2 + r2(χ)dθ2

]
, (1.35)

where dχ = dr2/1−Kr2, and dθ2 ≃ (dθ2)2 + (dθ2)2 for distant galaxies. Considering a
light path at xi = (θ1, θ2, χ), then the derivative of affine parameter can be described as:

d

dλ
=

dχ

dx0

dx0

dλ

d

dχ
= −P 0

a

d

dχ
(1.36)

where P 0 = dx0/dλ. Thus perturbed part of geodetic equation dkµ/dλ+ Γµ
αβk

αkβ = 0 for
kµ = kµ

(b) + δkµ can be reduced to the first order of θ1, θ2 and Φ/c2 in Taylor expansion

(e.g. Schneider et al. 1992):

d2(rθi)

dχ2
+Krθi = − 2

c2
∂Φ

∂(rθi)
(1.37)

Therefore the solution is described as:

θiS = θi − α̂i, (1.38)

α̂i =
2

c2

∫ χ

0

dχ′∂iΦ(χ
′)
r(χ− χ′)

r(χ)
, (1.39)

where θiS represents the position of the source image without lensing effect as in Fig. 1.1,
and χ is the position of the source. This is a general expression of the lens equation, and
α̂ is the deflection angle. In the following we adopt some approximation to describe the
basic properties.

– Thin lens approximation
Here we adopt so-called thin-lens approximation; the case where the light deflects

7



DOL	
DLS	
 DOS	


source	


image	


lens	


Figure 1.1: Gravitational lensing scheme. Orange line describes the light path from the source object
(left) to the observer (right), bent around the gravitational field of the lens (middle).

within a sufficient small region compared to the distance between the source and the
observer. In this approximation the deflection angle α̂ can be described as:

α̂i ≃ 2

c2
r(χ− χ′)

r(χ)

∫ χ

0

dχ′∂iΦ(χ
′)

≃ −2G

c2
r(χ− χ′)

r(χ)

∫ ∞

−∞
dz∂i

∫
dξ′dz′

ρ(x⃗)√
|ξ⃗ − ξ⃗′|2 + |z − z′|2

≃ 4G

c2
r(χ− χ′)

r(χ)

∫
d2ξ′

ξ⃗ − ξ⃗′

|ξ⃗ − ξ⃗′|2
Σ(ξ⃗′), (1.40)

where we rewrite the gravitational potential as:

Φ(x⃗) = −Gρ

∫
d3x′ x⃗− x⃗′

|x⃗− x⃗′|2
δ(x⃗). (1.41)

and the surface mass density as Σ(ξ⃗) =
∫∞
−∞ dzρ(x⃗). In this description we assume

ρ(x⃗) ≫ ρ, and χ and χ′ are the position of the source and lens respectively. Then
according to Fig. 1.1, we can substitute the angular diameter distance DA for r(χ)

and ξ⃗ = DOLθ⃗. Hence,⃗̂α can be described as:

⃗̂α =
4G

c2
DOLDLS

DOS

∫
d2θ′

θ⃗ − θ⃗′

|θ⃗ − θ⃗′|2
Σ(DOLθ⃗)

=
1

π

∫
d2θ′

θ⃗ − θ⃗′

|θ⃗ − θ⃗′|2
κ̂(DOLθ⃗)Σ(DOLθ⃗) (1.42)

In the second equality we conventionally adopt the following description of the critical
surface mass density Σcr and the dimensionless surface mass density κ̂(DOLθ⃗):

Σcr =
c2

4πG

DOS

DOLDLS

, (1.43)

κ̂(DOLθ⃗) =
Σ(DOLθ⃗)

Σcr

. (1.44)
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Furthermore we transfer the lens equation into dimensionless form. The lens equation
can be described with quantities featured in Fig. 1.1:

DOL

DOS

η⃗ = ξ⃗ −DOL⃗̂α(ξ⃗/DOL) (1.45)

Also we define the characteristic length ξ0, η0 = ξ0DOS/DOL in the source plane. In
this case the dimensionless lens equation can be converted with the dimensionless
vector x⃗ = ξ⃗/ξ⃗0, y⃗ = η⃗/η⃗0 as:

y⃗ = x⃗− α⃗(x⃗), (1.46)

α⃗(x⃗) =
1

π

∫
d2x′κ(x⃗′)

x⃗− x⃗′

|x⃗− x⃗′|2
, (1.47)

κ(x⃗) ≡ κ̂(ξ⃗) =
Σ(ξ0x⃗)

Σcr

=
1

Σcr

∫ ∞

−∞
ρ(r⃗)dz. (1.48)

– Axially symmetric lens
Here we focus on the case where lens are axially symmetric, and derive the expressions
of basic lensing formulae. As for the axially symmetric mass distribution, we can
rewrite κ(x⃗) = κ(x), where |x⃗| = x. In this situation, the lens potential of the general
form is described as:

Φ(x⃗) ≡ 1

π

∫
d2x′κ(x⃗′)ln|x⃗− x⃗′| (1.49)

where the scaled deflection angle α(x) is calculated using Eq. (1.20) as: :

α⃗(x⃗) = ∇⃗Φ(x) = 2
x⃗

x

∫ x

0

dx′x′κ(x′) ≡ α(x)
x⃗

x
(1.50)

Then the integral form of Eq. (1.49) is described using (4.22) and (4.14) of Gradshteyn
& Ryzhik (1994):

Φ(x⃗) =
1

π

∫
dx′
∫

dϕx′κ(x′)ln

√
x2 + x′2 − 2xx′cosϕ

= 2lnx

∫ x

0

dx′x′κ(x′) + 2

∫ inf

x

dx′x′κ(x′)lnx′

= 2

∫ x

0

dx′x′κ(x′)ln
( x
x′

)
+ const. (1.51)

Therefore the lens equation is reduced to a scalar equation under the condition of
α⃗ ∝ x⃗:

y = x− α(x) = x− d

dx
Φ(x) (1.52)

and also the Laplacian of Ψ in Eq. (1.49) can be reduced as:

∆Φ(x⃗) = 2κ(x⃗) (1.53)

(2) Magnification, convergence and shear
In the following we discuss the basic properties of gravitational lensing: magnification and

9



distortion. Using Eq. (1.53), the distortion of source image can be represented by the
following Jacobian matrix:

Aij =
∂θiS
∂θj

≡
(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
=

(
1− κ 0
0 1− κ

)
+

(
−γ1 −γ2
−γ2 +γ1

)
(1.54)

where κ is convergence and γ is shear; γ1 = 1
2
(Φ,11 − Φ,22), and γ2 = Φ,12. The former

component in the right hand side of Eq. (1.54) contributes to magnification effect of the
size of a source image, and the latter one is for anisotropic-stretching effect of the image.
The distortion can also be reduced with Eq. (1.40) as following:

Aij = δij − Φij, (1.55)

Φ =
2

c2

∫ χ

0

dχ′g(χ, χ′)∂i∂jΦ(χ
′) (1.56)

where g(χ, χ′) = r(χ − χ′)r(χ′)/r(χ), and we consider up to the second order. Note that
the magnification of the image brightness can be described as:

µ = |µ(x⃗)| =
∣∣∣∣ 1

detA(x⃗)

∣∣∣∣ . (1.57)

As Eq. (1.55) indicates that 2κ = Φ,11 + Φ,22 holds, κ can be described as the integral of
matter density perturbation along the line of sight, combined with Eqs. (1.54) and (1.55)
as:

κ =
1

c2

∫ χ

0

dχ′g(χ, χ′)[∆− ∂2
χ]Φ (1.58)

=
3

2

(
H0

c

)2

Ωm0

∫ χ

0

dχ′g(χ, χ′)
δ

a
− 1

c2

∫ χ

0

dχ′g(χ, χ′)∂2
χΦ

≃ 3

2

(
H0

c

)2

Ωm0

∫ χ

0

dχ′g(χ, χ′)
δ

a
(1.59)

where we neglect the second derivative of gravitational potential, and combined the follow-
ing Poisson equation: ∆Φ = 3

2
H2

0Ωm0δ/a.

On the other hand, convergence and shear in Fourier space are given by:

γ̃(k⃗) = γ̃1(k⃗) + iγ̃2(k⃗) (1.60)

κ̃(k⃗) = γ̃1(k⃗) cos 2ϕk⃗ + γ̃2(k⃗) sin 2ϕk⃗ (1.61)

∴ γ̃(k⃗) =
k2
1 + k2

2 + ik1k2
k2

κ̃(k⃗) (1.62)

where k⃗ = (k1, k2) = k(cosϕk⃗, sinϕk⃗). Therefore the inverse transform of Eq. (1.60) is given
as (Seitz & Schneider 1996):

κ(k⃗) = − 1

π

∫
d2θ′Re[D∗(θ⃗ − θ⃗′)γ(k⃗)], (1.63)

where D(z) = (z21 − z22 + 2iz1z2)/z
4.
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Also Eq. 1.55 in polar coordinate provides the following relations:

κ =
1

2

(
Φθθ +

1

θ
Φθ +

1

θ2
Φϕϕ

)
(1.64)

γ+ = γ̃1(k⃗) cos 2ϕk⃗ + γ̃2(k⃗) sin 2ϕk⃗ (1.65)

γ× =
k2
1 + k2

2 + ik1k2
k2

κ̃(k⃗) (1.66)

where (θ1, θ2) = (θ cosϕ, θ sinϕ), taking origin at the center of gravitational source. Fur-
thermore γ+ and γ× are tangential shear and cross component of shear defined as:

γ+ = −γ1 cos 2ϕ− γ2 sin 2ϕ (1.67)

γ× = γ1 sin 2ϕ− γ2 cos 2ϕ (1.68)

The averaged description of these quantities in the range of [θ,θ + dθ] is:

⟨κ⟩(θ) =
1

2

(
⟨Φθθ⟩+

1

θ
⟨Φθ⟩

)
, (1.69)

⟨γ+⟩(θ) = −1

2

(
⟨Φθθ⟩ −

1

θ
⟨Φθ⟩

)
, (1.70)

⟨γ×⟩(θ) = 0. (1.71)

The property of Eq. (1.71), ⟨γ×⟩ is often adopted as the indicator of systematic uncertainty
in the observation. Therefore the averaged tangential component is given by:

⟨γ+⟩(θ) = −⟨κ⟩(θ) + κ(θ) (1.72)

where κ(θ) is the circle average of convergence given by:

κ(θ) =
1

πθ2

∫ θ

0

2πdθ′θ′⟨κ⟩(θ) = 1

θ2

∫ θ

0

2πdθ′∂θ′(θ
′Φθ′) =

1

θ
⟨Φθ⟩. (1.73)

(3) Lensing distortion effect
In the following we describe the relation between the shear quantity and observables. As
discussed in previous section, the distortion of source image is given by Eq. (1.54). However,
κ cannot be measured directly without the knowledge about the original size of the image.
What we can only measure is the reduced shear, which is given by taking a factor of (1−κ)
out front of Eq. (1.54):

g(θ⃗) =
γ(θ⃗)

1− κ(θ⃗)
(1.74)

Fig. 1.2 summarizes the the shape distortion of image due to gravitational light deflection.
The elipticity of galaxies affected by gravitational lensing effect has major axis a = 1/(1−
κ− |γ|), and minor axis b = 1/(1− κ+ |γ|). Thus by utilizing ellipticity of galaxies we can
reconstruct the shear information.

In order to characterize the system in detail, here we define ellipticity as:

ϵ =
a− b

a+ b
(1.75)

11



b	


a	
 convergence	


Convergence	


shear	

+	


Figure 1.2: Right figure describes ellipticity of a galaxy with gravitational lensing effect. The innermost
circle is the original elipticity of galaxy, the elongated one is affected by right shear and convergence, and
the dashed circle represents the case only with convergence signal. Left figures describes the elongated
patterns for different shear properties.

The definition of ellipticity can be related to the shear quantity by considering the second
order surface brightness moments of a galaxies image (see Bartelmann & Schneider 2001).
Suppose that the observed surface brightness of galaxies I(θ), the center of the image θ is
given for all angular separations as:

θ ≡
∫
d2θw[I(θ)]θ⃗∫
d2θw[I(θ)]

(1.76)

where w[I(θ)] is weight function. Then the tensor component of the second moment of
surface brightness can be described as:

Qij =

∫
d2θw[I(θ)](θi − θi)(θj − θj)∫

d2θw[I(θ)]
(1.77)

where Q11 = Q22 and Q12 = Q21 = 0 for a circular image. Also by the definition of Qij, we
can describe the original elipticity of galaxy as (Schneider 1996):

ϵ = ϵ1 + iϵ2 =
Q11 −Q22 + 2iQ12

Q11 +Q22 + 2(1(Q11)Q22 −Q2
12)

1/2
(1.78)

where ϵ1 = ϵ2 = 0 for a circular image. Under these condisions we can calculate the original
elipticity of galaxy as:

ϵint =


ϵ− g

1− g∗ϵ
, (for |g| ≤ 1)

1− gϵ∗

ϵ∗ − g∗
, (for |g| > 1)

(1.79)

where ϵ ∼ ϵint + g. Note that the signal from shear is usually overwhelmed by large
uncertainty from the measurement of elipticity of galaxy. Therefore the statistical analysis
of ellipticity plays a key role. As there is no reason for preferred orientation of galactic
shear, the average intrinsic ellipticity would be canceled if we stack the elipticities from
multiple galaxies. Also from Fig. 1.2, the average additional ellipticity is represented by
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the reduced shear in the weak lensing regime. Hence ⟨g⟩ + 0 = ⟨ϵ⟩, and we can construct
the estimator for the shear as:

γ ∼ g ∼ ⟨g⟩ = ⟨ϵ⟩ (1.80)

This stacking method is valid for the small sky survey where the gravitational field can be
taken as uniform.

1.2.2 Observational characteristics

The main characteristics of gravitational lensing is distortion and magnification. These prop-
erties provide useful information to probe cosmic properties. Here we briefly summarize the
characteristics following a conventional classification.

• Strong lensing
When foreground object is massive enough like in the galaxy of clusters, multiple images
of background object can show up. This phenomenon is first observed for quasar system
(Walsh et al. 1979). One unique point is that different image has different timing of
maximum magnification. Thus one can know about Hubble constant by tracing the time
delay of QSO between different images and compare with theory. Also sometimes structure
called arcs or Einstein ring can show up.

• Weak lensing
In the system of strong gravitational field like in clusters, the image of background galaxies
are distorted in the gravitational field. This shear property can be extracted even for
weak gravitational field by statistical analysis of multiple signals. If enough statics can be
achieved, we can reconstruct the mass distribution in a wide range up to a few Mpc.

• Microlensing
Another important feature of gravitational lensing is magnification the surface brightness
of background objects. This magnification can be detected even when two images are
too close to be separated. Magnification effect plays a important role in searching dark
undetected object such as exoplanets.

1.3 Objective of this thesis

The existence of dark matter is strongly supported by several observations by the discrepancy
in the amount of baryon (4%) and total matter component (24%). Previous studies suggest that
dark matter with “cold” property is consistent with bottom-up structure formation scenario,
which can produce structures like galaxies and clusters of galaxies currently observed in the
universe. However, feasible candidate such as weakly interacting massive particles (WIMPs) and
massive compact halo objects (MACHOs) is not detected, and properties such as particle mass
is also unknown.

This thesis presents two kinds of testes for dark matter study, aiming to develop methods
to investigate new property at ongoing and future wide field survey including Subaru Hyper
Suprime-Cam (HSC) 2. Part I proposes a new method to investigate mass distribution of galaxy
clusters. Currently weak lensing effect combined with popular method called stacked analysis

2http://www.naoj.org/Projects/HSC/j_index.html
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is powerful method to probe the mass distribution in the universe. However, stacking analysis
cannot trace the individual property of clusters. Therefore we construct a new method to extract
small features hidden in dark matter profiles. The structure of Part I is as follows. In § 1 we briefly
review the property of dark halo profile. In § 2.2, after briefly reviewing the lensing observables
of NFW halo, we will derive an estimator of the lensing distortion profile measurement with
NFW scaling. Then we study the feasibility of this method using analytical NFW models and
N -body simulations. In § 2.3.1 we briefly describe the Subaru weak lensing catalog and the
X-ray observables for the sample of massive clusters we use in this paper. We will show the main
results of Part I in § 2.3, and § 2.4 is devoted to summary and discussion.

Part II of this thesis presents another approach to investigate dark matter; microlensing study
to search for dark matter candidate called primordial black hole (PBH). Dark matter search by
microlensing effect is performed on several projects. Owing to the survey for years they succeed
to detect Sun-scale dark stars such as brown dwarfs. However no plausible candidate of PBH is
ever discovered so far, and current constraint still remains the possibility of PBH abundance as
much as baryonic component for Moon-scale objects. In this study we propose a transient search
at M31 dense-star region, using Hyper Suprime-Cam at Subaru telescope. Our survey expects
higher event rate of PBH microlensing than previous search, owing to highly-resolved imaging
data. One difficult is that software reductions also need some careful treatments, because no
previous transient search exists for such a dense field with highly resolved wide field camera.
Thus we develop the method to optimize the transient analysis. The structure of Part II is as
follows. In § 3.1 we briefly review the property of microlesing study. In § 3.2 we describe our
observational method and the data process in detail. Observational implication we acquired from
our dataset in § 3.3. In § 3.4 we describe the method to constrain the event rate of primordial
black hole. We also report the current status about the PBH microlensing search.
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Chapter 2

Universal test of cluster dark matter
halos with weak lensing

2.1 Introduction

This work has been published in Niikura et al.(2015)

2.1.1 Density profile of dark halos

As mentioned in the introduction part of § 1.1.2, cosmic structure formation theory suggests
that massive structures such as halos are formed by non-linear density evolution. In fact, there
exist some properties of halo structure beyond prediction of spherical collapse model, such as
concentrated mass distribution in the central region and the slope of mass density profile. In
order to probe such complicated properties, halo-profile model is expected to be a good indicator;
especially the following two models of inner halo profile play key roles:

• Singular Isothermal Sphere(SIS) model
SIS model is a simple model; one assumes thermal equilibrium state in isothermal sphere,
where the distribution function in the sphere follows the Maxwell-Boltzmann model:

f(E) = ρ1
(2πσ2)3/2

exp

(
Φ− v2/2

σ2

)
(2.1)

Therefore the density field can be described as ρ = ρ1 exp(Φ/σ
2). By inserting this result

Poisson equation gives:

1

r2
d

dr

(
r2
d log ρ

dr

)
= −4πGσ2ρ (2.2)

This equation has special solution: ρ = σ2/2πGr2, which gives flat rotation curves, a
common characteristic often observed for spiral galaxies.

• Navarro-Frenck-White(NFW) model
One of the most important predictions in N -body simulations of Λ-dominated, cold dark
matter structure formation model (ΛCDM) is the emergence of universal mass density pro-
file in dark matter halos. These mass density profile can be well fitted by a “universal”
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two-parameter family of the model profile over a wide range of halo masses, first proposed
in Navarro et al. (1996, 1997, hereafter NFW). The NFW profile predicts a monotonically
steepened profile with increasing radius, with logarithmic slopes shallower than an isother-
mal sphere interior to the characteristic “scale” radius r < rs, but steeper at larger radius,
approaching to r−3 at the virial radius, r → rvir.

Note that one sometimes adopts corrections in addition to the simple inner density profile of
halos (Miyatake et al. 2015). For example, one need to take into account the surrounding mass
distribution, especially at larger radius around R ≃ 10Mpc/h where the the mass distribution
can be suffered from that of neighboring galaxies. One can include this effect as two-halo term, by
taking advantage of the two-point correlation function between the clusters and the surrounding
mass distribution. For more precise modeling, one can also consider the effect from stellar mass
contribution and miss-centering effect (Takada & Jain 2002; Oguri & Hamana 2011).

2.1.2 Observational implication of clusters

As mentioned in previous section, halo profiles are well described by N-body simulations and
several models such as NFW profile are proposed. These models can be good indicators to test
the observational property with predictions from ΛCDM model. In the following we describe
several ways to construct cluster mass distribution from observational data.

a) Mass distribution from Gravitational lensing effect
Gravitational lensing is a powerful tool to construct the mass distribution. We can probe
the mass distribution using the information of convergence and shear as mentioned in § 1.2.
As for cluster mass distribution, one can probe up to a few Mpc from the center by stacking
the signals of weak lensing measurements. On the other hand, strong lens can probe inner
profile, which can probe mass distribution up to a few kpc from the center.

b) Mass indication from Richness
Richness is a simple concept; the number of member galaxies in a cluster. Owing to the
empirical correlation relation with weak lensing analysis one can provide the information
of cluster mass from richness data.

c) Mass indication from X-ray surface brightness
X-ray observation can probe photons emitted due to thermal Bremsstrahlung. Owing
to high signal-to-noise ratio of surface brightness compared to optical observation, X-ray
observation can be a clue to detect clusters. By assuming hydrostatic equilibrium state
or isothermal-β model, the surface brightness data can probe inner mass profile up to the
region within ∆ = 2500 or 500 of overdensity.

d) Mass distribution from Sunyaev-Zel’dovich effect
One can also make use of the inverse-Compton scattering, caused when photons from CMB
radiation interact with a few-keV electrons in clusters. Furthermore, the movement of elec-
trons in the line of sight can produce another deviation from the background temperature
map, which features the mass distribution of clusters.
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2.1.3 Preview of our study

Clusters of galaxies are the largest, gravitationally bound objects in the universe, and the forma-
tion and evolution processes are dominated by gravitational effects mainly due to dark matter.
Hence clusters provide us with a useful laboratory of studying the nature of dark matter (Clowe
et al. 2006) . Especially the NFW model, one of the most important prediction from the hier-
archical ΛCDM model, is powerful property to test. the physical origin is Dalal et al. (2010),
for example. Further, the ratio of the characteristic scale radius to the virial radius, which
characterizes the degrees of central concentration of the mass distribution – the so-called halo
concentration c, tends to be lower for more massive halos. In addition the halo concentration of
a fixed halo mass displays intrinsic scatters typically given by σln c ∼ 0.2, originating from details
of the mass accretion or assembly history of each halo in the hierarchical structure formation
(Bullock et al. 2001; Wechsler et al. 2002; Zhao et al. 2003; Duffy et al. 2008; Zhao et al. 2009;
Bhattacharya et al. 2013; Diemer & Kravtsov 2014). Thus these properties of dark matter halos
are important predictions of ΛCDM model, and need to be carefully tested by comparing with
measurements.

Gravitational lensing is a unique, powerful method enabling one to probe the matter distri-
bution in galaxy clusters irrespective of their physical and dynamical states (Schneider 2006).
Among the methods to investigate the mass density profile, the stacked weak lensing analysis
combining multiple clusters has been proven to be a robust, powerful method of probing the
average mass distribution of the sampled clusters (Johnstone et al. 2007; Okabe et al. 2010a;
Oguri et al. 2012; Okabe et al. 2013; Umetsu et al. 2014). These works have shown that the
average mass profile measured from the stacked lensing is in remarkably nice agreement with a
prediction from N-body simulation, so-called “the NFW prediction”. Another advantage of the
stacked lensing is it allows one to probe the mass distribution even for less massive halos, such
as galaxy-scale halos, as long as a sufficient number of sampled halos are used in the analysis
(Mandelbaum et al. 2005; Leauthaud et al. 2010; Miyatake et al. 2013). However, a downside
of the stacked lensing method is a loss of the lensing information of individual clusters. Hence
a knowledge of the distribution of the underlying halo parameters in the sampled clusters such
as their halo masses is of critical importance in order not to have any bias in the NFW pa-
rameters inferred from the stacked lensing signals (Oguri & Takada 2011). This is equivalent
to the importance of exploring a well-calibrated proxy relation of halo parameters with cluster
observables(Rozo et al. 2009; Zhang et al. 2010; Okabe et al. 2010b; Zhang et al. 2011; Mahdavi
et al. 2013; von der Linden et al. 2014; Martino et al. 2014; Okabe et al. 2014).

We develop a method of measuring the lensing distortion profiles of clusters, motivated by
the NFW prediction. We propose the “NFW scaling” analysis for the lensing measurements,
which is done by averaging the “scaled” amplitudes of background galaxy ellipticities in each
bin of the “scaled” radii according to the NFW prediction of individual cluster. With this NFW
scaling method, we can address whether clusters in the universe display the universality of their
lensing profiles as seen in simulations. First, to demonstrate the feasibility of the NFW scaling
analysis, we will use simulations of cluster lensing observables based on a suite of high-resolution
N -body simulations. Then, as a proof of concept of this method, we we will apply this method to
the Subaru weak lensing data1 for a volume-limited sample of 50 massive clusters that are taken
from the published results (Okabe et al. 2010a, 2013; Martino et al. 2014), which comprises all
clusters from the ROSAT All Sky Survey catalogs (Ebeling et al. 1998, 2000; Bohringer et al.

1Based in part on data collected at Subaru Telescope and obtained from the SMOKA, which is operated by
the Astronomy Data Center, National Astronomical Observatory of Japan.
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2004) in the redshift range 0.15 ≤ z ≤ 0.3. To estimate the NFW scaling of each cluster, we will
use the halo mass estimate in Martino et al. (2014) based on the XMM and/or Chandra X-ray
observables, and use the halo concentration inferred from the model scaling relation between halo
mass and concentration in Diemer & Kravtsov (2014). Then by comparing the scatters of 50
cluster lensing profiles relative to the NFW predictions for two cases with and without the NFW
scaling, we test the performance of this method as well as the universality of the cluster mass
distribution. Unless stated otherwise, we will adopt a flat ΛCDM cosmology with Ωm = 0.27,
ΩΛ = 0.73, and the Hubble parameter h = H0/(100 km s−1 Mpc−1) = 0.70.

2.2 Methodology : stacked weak lensing with NFW scal-

ing

2.2.1 Lensing of Navarro-Frenk-White halo

The Navarro-Frenk-White (1997; hereafter NFW) mass density profile for a halo is parametrized
by two parameters as

ρNFW(r) =
ρc

(r/rs)(1 + r/rs)2
, (2.3)

where rs is the scale radius and ρc is the central density parameter. The parameter ρc is specified
by imposing that the mass enclosed within a sphere of a given overdensity ∆ is equal to the halo
mass M∆,

ρc =
∆ρcr(z)c

3
∆

3mNFW(c∆)
=

M∆

4πr3smNFW(c∆)
, (2.4)

where mNFW(c∆) ≡
∫ c∆
0

dx x/(1 + x)2 = ln(1 + c∆)− c∆/(1 + c∆), c∆ ≡ r∆/rs, a concentration
parameter, and ∆(z) is a nonlinear overdensity introduced to define the interior mass for each
halo. Note that throughout this paper we employ halo mass definition with respect to the critical
density, not the mean mass density: M∆ ≡ (4π/3)r3∆ρcr(z)∆.

Several works have shown a scaling relation of the halo concentration with halo mass, using
numerical simulations or based on analytical arguments (Bullock et al. 2001; Wechsler et al. 2002;
Zhao et al. 2003; Duffy et al. 2008) As for our fiducial model, we adopt the publicly-available
code provided by B. Diemer to compute the halo mass and concentration relation in Diemer &
Kravtsov (2014, hereafter DK14 and see references therein). Note that we used the “median”
relation, rather than the mean, for our default choice as recommended in DK14. The mass
estimates from the X-ray observables are not M200c, and rather the interior mass of a greater
overdensity such as M500c. Assuming that a halo exactly follows the NFW profile, we can convert
the scaling relation calibrated for M200c to the c500c-M500c relation, based on the method in Hu
& Kravtsov (2003). The public code of DK14 allows us to compute the halo concentration for
an input overdensity based on this method.

For an NFW profile, we can derive an analytical expression for the lensing convergence and
shear profiles (Bartelmann 1996; Golse & Kneib 2002):

κNFW(R) ≡ ΣNFW(R)

Σcr(zl, zs)
= 2ρcrs

gNFW(R/rs)

Σcrit(zl, zs)
,

γNFW
+ (R) ≡ ∆ΣNFW(R)

Σcr(zl, zs)
= 2ρcrs

fNFW(R/rs)

Σcrit(zl, zs)
, (2.5)
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where R is the projected comoving radius from halo center, and the functions fNFW(x) and
gNFW(x) are given by

gNFW(x) =



1

x2 − 1

(
1− 1√

1− x2
cosh−1 1

x

)
, (x < 1)

1

3
, (x = 1)

1

x2 − 1

(
1− 1√

x2 − 1
cos−1 1

x

)
, (x > 1)

(2.6)

and

fNFW(x)

=



2

x2
ln

x

2
+

1

1− x2

(
1 +

2− 3x2

x2
√
1− x2

cosh−1 1

x

)
, (x < 1)

5

3
− 2 ln 2, (x = 1)

2

x2
ln

x

2
− 1

x2 − 1

(
1 +

2− 3x2

x2
√
x2 − 1

cos−1 1

x

)
, (x > 1).

(2.7)

The critical surface mass density Σcrit for a given system of lens cluster and source at redshifts
zl and zs, respectively, is given as

Σcrit(zl, zs) =
c2

4πG

DA(zs)

DA(zl)DA(zl, zs)(1 + zl)2
, (2.8)

where DA(z) is the angular diameter distance and the factor (1 + zl)
2 is from our use of the

comoving scale. From Eqs. (2.4) and (2.5), we can find that the lensing amplitudes of an NFW
halo scale with the NFW parameters (M∆, c∆) as

κNFW, γNFW
+ ∝ 2ρcrs ∝ M∆

/(
r2smNFW(c∆)

)
∝ M

1/3
∆ c2∆/mNFW(c∆). (2.9)

If we employ the c∆-M∆ scaling relation given as c∆(M∆) ∝ M−α, the lensing amplitudes roughly
scale with halo mass as γNFW

+ ∝ M1/3−2α as the function m(c∆) has a weak dependence on halo
mass. Note that, since the cluster sample is among the most massive clusters, we have checked
that the 2-halo term is much smaller than the above 1-halo term, by a factor of 100, over a range
of the radii we consider (e.g., see Oguri & Takada 2011; Takada & Spergel 2014). Therefore we
ignore the 2-halo term for the following analysis.

An actual lensing observable estimated from ellipticities of background galaxies for an NFW
lens is the lensing “distortion” profile or reduced shear profile:

⟨e+⟩(R) →
γNFW
+ (R)

1− κNFW(R)
, (2.10)

where e+ is the tangential component of the ellipticities with respect to cluster center. The
reduced shear correction is not negligible at the inner radii, and we need to take into account
the correction.
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2.2.2 Stacked lensing without NFW scaling

For the standard method to estimate the stacked lensing profile for Nc clusters, we follow the
method in Johnstone et al. (2007) and Mandelbaum et al. (2013):

⟨̂∆Σ⟩(R) =
1

N

Nc∑
a=1

∑
ia;|R(a)ia |∈R

w(a,ia)Σcr(a)e(ia)+(Ria), (2.11)

where e(ia)+ is the tangential ellipticity of the ia-th background galaxy in the a-th cluster region,
and N is the normalization factor defined as

N =
Nc∑
a=1

∑
ia

w(a,ia). (2.12)

The summation
∑

a runs over the sampled clusters, from a = 1 to Nc = 50 in our study, and the
summation

∑
ia;|Ria |∈R

runs over all the background galaxies that reside in the annulus of radius
R from the a-th cluster center to within the bin width. We employ the weight given as

w(a,ia) =
1

Σcr(za, zia)
2(e2(ia) + σ2

(ia)e
+ α2)

, (2.13)

where zia is the redshift of the ia-th background galaxy, e(ia) is the ellipticity amplitude, σ(ia)e is
the measurement error and α is the constant factor to regularize the weight for which we adopt
α = 0.4 (Okabe et al. 2010a).

Since we need to employ a finite number of the radial bins to study the “shape” of lensing
distortion profile, which binning scheme to use is not so clear. As for the representative value of
a given radial bin, we use the average of radii of background galaxies that reside in the annulus
taking into account their weights:

R ≡
∑Nc

a=1

∑
ia;|R(a)ia |∈R

w(a,ia)R(a)ia∑Nc

a=1

∑
ia;|R(a)ia |∈R

w(a,ia)

. (2.14)

In the literature the area-weighted value of each radial bin is often used. We have checked that,
using an analytical NFW profile and taking the actual distribution of background galaxies in the
Subaru data, the above radial binning is more accurate in a sense that the distortion profile is
in better agreement with the model NFW profile amplitude inferred by the representative value
of the radial bin, less than 1% in the fractional difference for most cases.

The statistical uncertainty of the stacked lensing at each radial bin can be estimated as

σ⟨∆Σ⟩(R)2 =
1

2N2

∑
a

∑
ia;|R(a)ia |∈R

w2
(a,ia)Σcr(a)(za, zia)

2e2(ia). (2.15)

In this thesiswe consider the intrinsic ellipticities as a source of the statistical errors in the
lensing measurement, and ignore the cosmic shear contribution that arises from different mass
distribution along the same line of sight to the cluster. For our study this is practically a
good approximation, because the mean number density of background galaxies is small, about 5
arcmin−2, after a secure selection of background “red” galaxies as we will discuss in § 2.3.1

When comparing the measured lensing profile to an NFW model, we need to account for the
contribution of reduce shear. In this paper, assuming that all the clusters follow a single NFW
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profile in average sense, we model the the stacked lensing profile, according to Eqs. (2.5) and
(2.10) as

⟨∆̂Σ⟩(R) ⇐⇒ ∆ΣNFW (R)

1− κNFW (R)

≃ ∆ΣNFW (R)

[
1 + ⟨ 1

Σcr

⟩ΣNFW (⟨R⟩)
]
, (2.16)

where the notation “ ⇐⇒ ” is meant to denote the comparison between the measurement (left-
hand side) and the model profile (right-hand side). The notation ⟨ ⟩ on the right-hand side
denotes the average taking into account the weights of background galaxies in each cluster region
as in Eq. (2.14). We will use the above equation to estimate the halo mass and concentration
parameter, M∆ and c∆, from the measured lensing profile.

2.2.3 Stacked lensing with NFW scaling

Now we consider the stacked lensing analysis with “NFW scaling”. To implement this method we
combine the weak lensing measurement and X-ray observables, where the X-ray observables are
needed to estimate halo mass of each cluster independently of the lensing observables. Assuming
that each of the 50 clusters follows an NFW profile specified by their respective parameters, M(a)

and c(a), we can define an estimator of the normalized NFW lensing profile from the measured
ellipticities of background galaxies, as motivated by Eq. (2.5):

̂⟨fNFW⟩(x) = 1

N

Nc∑
a=1

∑
ia;|x(a)ia |∈x

w(a,ia)Σcr(a)e(ia)+(xia)

2ρc

(
MX

(a), c
X
(a)

)
rs

(
MX

(a), c
X
(a)

) . (2.17)

Here MX
(a) and cX(a) are the halo mass and concentration for the a-th cluster, estimated from the

X-ray observables (see below for details). The scaled radius in the above equation, x, is defined
for the a-cluster as x(a)ia ≡ R(a)ia/rs(M

X
(a), c

X
(a)), where rs is the scale radius of NFW profile,

rs = r∆/c∆. We use the representative value of each radial bin, defined in a similar manner
to Eq. (2.14). The central density parameter of NFW profile, ρc, can be estimated from MX

(a)

and cX(a) for the a-th cluster, from Eq. (2.4). Note that the profile ̂⟨fNFW⟩ and the radius x are
dimension-less. With the above NFW scaling, weak lensing signals due to less massive halos
than the mean mass in the sampled clusters are up-weighted, while the signals of more massive
halos are down-weighted. In the following, when comparing the lensing profiles with and without
NFW scaling, we use exactly the same background galaxies in the 50 cluster regions.

Similarly, the measurement errors of the stacked profile at each radial bin are estimated as

σ⟨fNFW⟩(x)
2 =

1

2N2

∑
a

∑
ia;|x(a)ia |∈x

w2
(a,ia)

Σcr(a)(za, zia)
2e2(ia)

4ρc

(
MX

(a), c
X
(a)

)2
rs

(
MX

(a), c
X
(a)

)2 . (2.18)

To test an improvement in the stacked lensing analysis of NFW scaling compared to the
standard stacked lensing, we compare the scatters of lensing distortion profiles of 50 clusters
relative to the NFW prediction. We quantify the scatters by

d2 ≡
50∑
a=1

∑
i

[
∆̂Σ(a)(R(a)i)−∆Σbf−NFW

(
R(a)i;Mbf , cbf

)]2
σ∆Σ(a)(R(a)i)2

(2.19)
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or

d2w−scaling ≡
50∑
a=1

∑
i

[
f̂NFW
(a)

(
x(a)i

)
− fNFW

(
x(a)i

)]2
σfNFW(a)(x(a)i)2

. (2.20)

Here ∆̂Σ(a) and f̂NFW
(a) are the measured distortion profile without and with NFW scaling for the

a-th cluster, which are estimated in the similar manner to Eqs. (2.11) and (2.17), and σ∆Σ(a)

and σfNFW(a) are the errors at each radial bin, estimated similarly to Eqs. (2.15) and (2.18),
respectively. ∆Σbf−NFW(R) is the best-fit NFW profile of the stacked lensing profile (Eq. 2.16).
For the NFW scaling case, we similarly include the reduced shear correction: we multiply the
function fNFW(x) (Eq. 2.7) by the function, 1 + ⟨1/Σcr⟩w(a,ia)

ΣNFW(x) as in Eq. (2.16), where

we used the best-fit NFW model of the stacked lensing profile without NFW scaling in order
to compute ΣNFW(x). The above d2 and d2w−scaling are equivalent to the log-likelihood functions
of 50 lensing distortion profiles assuming that the statistical errors are given by the intrinsic
ellipticities. The radial bin R(a)i or x(a)i for the a-th cluster is similarly computed by Eq. (2.14)
from the background galaxies that reside in the annulus of the cluster. We carefully employ the
radial binning scheme so as to preserve the same background galaxies in the i-th radial bins for
both the two cases. With this binning scheme, the relation d2 = d2w−scaling holds if setting the

model profiles to ∆Σbf−NFW = fNFW = 0 2. If the lensing distortion profiles of 50 clusters are
similar in their shapes and amplitudes, following the NFW profile, the value of d2 is expected to
become smaller: d2w−scaling < d2.

2.2.4 Testing the method with N-body simulations

In this section, before going to the Subaru data, we test our method using analytical NFW model
and high-resolution N -body simulations.

First we consider an ideal case, albeit unrealistic, that each of 50 clusters exactly follows an
NFW profile. Figure 2.1 shows the lensing profiles with or without the NFW scaling for 50
halos. To take into account variations in halo masses that resemble the 50 clusters, we assign
one-by-one the X-ray inferred masses of 50 cluster to NFW halos3. Note that we use the c-M
scaling relation in DK14 to compute the halo concentration for each NFW halo. The different
blue curves show each NFW distortion profile relative to the best-fit NFW model of the stacked
distortion profile, as a function of the radius relative to the scale radius of the best-fit NFW
model. Here we consider the same range of radii, 0.14 ≤ R/[h−1Mpc] ≤ 2.8 for all the halos
as we will do for actual analysis of Subaru data. For the range of cluster masses, the lensing
distortion amplitudes differ from each other by up to a factor of 2.

On the other hand, the red curves in Figure 2.1 show the profiles after the NFW scaling
implementation, assuming that the true mass and concentration of each cluster are a priori
known, i.e. an ideal case. Each curve is the fractional profile relative to the NFW distortion profile
including the reduced shear correction, fNFW(x) (Eq. 2.7 and see below Eq. 2.17). The deviation
from unity is due to an imperfect correction of the reduced shear: the nonlinear correction
becomes non-negligible at small radii, and breaks the universality of the NFW lensing profile.
The horizontal axis is in the units of the “scaled” radius, R/rs, where rs is the NFW scale radius

2If we set ∆Σbf−NFW = fNFW = 0 in Eqs. (2.19) and (2.20), the values of d2 give the cumulative signal-to-noise
ratio of the lensing distortion measurements for the 50 clusters.

3We here employed the hydrostatic equilibrium mass in Martino et al. (2014), which was estimated from the
X-ray observables of each cluster.
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Figure 2.1: The distribution of NFW lensing profiles for 50 halos for each of which we took the X-ray
inferred mass of 50 Subaru clusters (here the hydrostatic equilibrium mass in Table 2.1) and assumed
the halo concentration based on the halo mass and concentration relation, c = c(M500c), in Diemer &
Kravtsov (2014, hereafter DK14). The blue curves are the lensing profiles without “NFW scaling”, and
the red curves are the lensing profiles with “NFW scaling”. These profiles are normalized by the best-fit
NFW profile to the stacked profile.

of each halo. Due to the radial transformation from the original fixed range of R, the range of
the scaled radius x, covered by each halo, differ from each other. The figure shows that the NFW
scaling significantly reduces the scatters of lensing profiles, making the differences within 20%
over a range of radii we consider.

Obviously actual clusters have much more complicated mass distribution than an analytical
NFW model: intrinsic scatters of halo concentration, aspherical mass distribution, substructures
and so on. To study these effects we use simulated halos of cluster scales, generated from a
high-resolution N -body simulation in Takahashi et al. (2012). In brief the N -body simulation
was ran with the publicly-available Gadget-2 code (Springel et al. 2001; Springel 2005) assuming
the WMAP cosmology. The simulation employed 10243 particles in a box of 320 h−1Mpc on
a side. The mass resolution (the particle mass) is 2.3 × 109 h−1M⊙, so is sufficient to resolve
cluster-scale halos.

To construct a catalog of cluster-scale halos from the N -body simulation output at z = 0, we
used the friends-of-friends (FoF) group finder (e.g. Davis et al. 1985) with a linking length of 0.2
in units of the mean interparticle spacing. For each halo we determined the halo center using an
iterative technique in which the center of mass of particles within a shrinking sphere is computed
recursively until a few particles are left inside (e.g. Power et al. 2003; Masaki et al. 2013). Then
the halo mass is defined by a spherical overdensity method – summing all the particles within a
sphere of a given overdensity ∆ around the halo center. We constructed a catalog that consists
of most massive 50 halos from the two simulation realizations. Besides the mass threshold, we
did not employ any other selection criteria such as sphericity or the degree of mass distribution
complexity. The mean mass of the selected halos is similar to the average mass estimated from
the lensing measurements of 50 Subaru clusters. Exactly speaking, although the simulated halos
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are not the same in detail as the Subaru clusters, other effects such as the intrinsic ellipticities
of background galaxies cause much larger variations in the lensing profiles as we will show later.
Hence we believe that the catalog of simulated halos is suitable enough for our purpose.

To test our method as well as to simulate the lensing observables from the above N -body
simulations, we use the following procedures:

• 3D mass density profile – We first computed the spherically-average mass profile for each
simulated halo, ρ(r), where r is the three-dimensional radius from the halo center. Then
we estimated the NFW parameters, M∆ and c∆ for ∆ = 500, by fitting the model NFW
profile (Eq. 2.3) to the mass profile, where we weighted the simulated mass density profile
at a given radial bin by the volume of the spherical shell. We stored the best-fit parameters
(M3D fit

500c , c3D fit
500c ) for each of the 50 halos.

• 2D lensing profiles – To simulate the lensing profiles due to a simulated halo, we use the
dark matter (N -body) particles inside or surrounding the halo in the simulation output.
We estimated the shear profile of each halo by projecting the N -body particles along the
line-of-sight direction:

∆Σ(R) = ⟨Σ⟩(< R)− Σ̄(R). (2.21)

Here we chose the z-direction of simulation realization for the projection, and R is the
projected radius from the halo center in the xy-plane (the plane perpendicular to the
projection direction). ⟨Σ⟩(< R) is the averaged surface mass density within a circle of
radius R, and Σ̄(R) is the averaged surface mass density over the annulus of radius R. In
this projection calculation, we used a cubic region containing the halo at the center, whose
side length is 20 h−1Mpc. Since the shear field arises from the tidal field around a halo,
the constant mass density field or the mass density field beyond the cubic region causes a
negligible contribution to distortion of background galaxies. We checked that the cubic box
is large enough for the range of radii we consider. We included the reduced shear correction
to compute the distortion profile of the halo, which is a direct lensing observable:

∆̂Σ(R) =
∆Σ(R)

1− Σ(R)/Σcr(zl, zs)
, (2.22)

where Σcr(zl, zs) is the lensing efficiency. In doing so we assign the source and cluster
redshifts of each of the 50 Subaru clusters to each simulated halo one by one in descending
order of halo masses, where we used the hydrostatic equilibrium mass of X-ray observables
in this matching. The assignment of Σcr becomes relevant when we will include the effect
of background shape noise in the Subaru data on the simulated lensing signals of N -body
halos. We estimated the NFW profile parameters, (M2D

500c, c
2D
500c), by fitting the NFW lensing

profile (Eq. 2.16) to the above simulated profile. In this fitting we weighted the lensing
profile at each radial bin by the area of radial annulus. We stored the distortion profile, the
lensing efficiency function, Σcr(zl, zs), and the best-fit NFW parameters (M2D fit

500c , c2D fit
500c ) for

each of the 50 simulated halos.

Figure ?? compares the best-fit NFW parameters, M500c and c500c, estimated by fitting the
NFW model to the three-dimensional mass density profile or the two-dimensional lensing dis-
tortion profile for each of the 50 simulated halos. The mean halo mass and the range of their
halo masses of simulated halos are similar to those of 50 Subaru clusters. Even if we did not
include any effect of measurement errors, the NFW parameters inferred from the 3D or 2D fitting
generally differ on individual halo basis. For some halos the 2D fitting halo mass is larger than
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Figure 2.2: Comparison of the best-fit NFW parameters, halo mass and concentration, estimated
by fitting the NFW model to the three-dimensional mass density profile (“3D NFW-fit”) or the two-
dimensional lensing distortion profile (“2D NFW-fit”), respectively, for the 50 massive halos in N -body
simulations of ΛCDM model, respectively

the 3D fitting mass, while the 2D concentration is smaller than the 3D one. These over- or
under-estimation would be due to the c-M degeneracy in the NFW fitting.

In Figure 2.3 we performed a hypothetical experiment of the stacked lensing analyses with
and without NFW scaling, using the 50 simulated halos. Note that we here ignored shape noise
contribution for simplicity. First, the upper-left panel shows the stacked lensing profile as well
as the lensing profiles of individual halos, without NFW scaling, i.e. based on the standard
method. Again note that we used a fixed range of radial bins, 0.14 ≤ R/[h−1Mpc] ≤ 2.8 as
we will do for the real data. The scatters of individual lensing profiles are significant over a
range of the radii. Each profile shows various features due to the aspherical mass distribution,
in contrast to an analytical, spherical NFW profile. Interestingly, however, the figure shows that
the average profile after stacking appears to remarkably well match the NFW profile; the stacked
profile and the best-fit NFW profile are almost indistinguishable, on top of each other. For the
sake of comparison we plot the amplitudes and the radius relative to the best-fit NFW model
of the stacked profile as in Figure 2.1: the best-fit parameters are Mbf

500c ≃ 4 × 1014 h−1M⊙
and cbf500c ≃ 2.50. These numbers are compared to the averages of their underlying true values:
⟨M3D fit

500c ⟩ ≃ 4.38×1014 h−1M⊙, ⟨c3D fit
500c ⟩ ≃ 2.76 or ⟨M2D fit

500c ⟩ ≃ 4.56×1014h−1M⊙ and c500c ≃ 2.57.
Thus the stacked lensing tends to underestimate the true mass, confirming the claims in the
previous work (Mandelbaum et al. 2005; Meneghetti et al. 2010; Becker & Kravtsov 2011; van
den Bosch et al. 2013; Meneghetti et al. 2014).

The other three panels show the results with NFW scaling implementation. The lensing
profiles of individual halos or the stacked lensing profile are estimated by summing the “scaled”
amplitude of lensing distortion in each of the “scaled” radial bin relative to the NFW predictions
of each halo (see Eq. 2.17). The different panels are the results when using the best-fit NFW
parameters of 3D mass density profile for each halo, the NFW parameters of 2D lensing profile,
or the halo mass of 3D profile, but using the concentration parameter inferred from the scaling
relation, c500c = c(M500c) in DR14, respectively4. The lower-right panel is closest to our main
results using the Subaru and X-ray data. All the three panels clearly show that the NFW scaling
significantly reduces the scatters of individual lensing profiles relative to the NFW prediction,

4For the measurement we used the X-ray observables to infer the halo mass of each cluster. Here we assumed
that the X-ray observables are sensitive to the inner region of each cluster or relatively less sensitive to the
projection effect than in weak lensing. Hence we assume that the X-ray observables gives a proxy of the halo
mass via the 3D profile.
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Figure 2.3: Simulated lensing profiles for 50 massive halos in the N -body simulation (see § 2.2.4 for
details). Upper-left panel: The thin curves show the lensing profiles for each of the 50 halos, and the
bold black curve is the stacked lensing profile without NFW scaling. The blue curve is the best-fit NFW
profile to the stacked profile. We plot these profiles in dimension-less, so that the quantities in the x-
and y-axescan be directly compared to other panels; the “scaled” amplitude, ∆̂Σ+/(2ρcrs)

bf−NFW, as
a function of the “scaled” projected radius, R/rbf−NFW

s , where we used the best-fit NFW parameters
of the stacekd profile (blue curve). The lower plot in each panel shows the fractional difference of each
profile relative to the best-fit NFW profile. The other three panels show the lensing profiles for the same
halos when implementing the NFW scaling for each halo or for the stacked analysis (Eq. 2.17). Upper-
right panel: The lensing profile when using the NFW parameters of three-dimensional mass profile for
each halo, (M3D NFW−fit

500c , c3D NFW−fit
500c ), in the NFW scaling analysis. Lower-left panel: The results when

using the NFW parameters of two-dimensional lensing distortion profile, (M2D NFW−fit
500c , c2D NFW−fit

500c ).
Lower-right panel: Similar to the upper-right panel, but using the best-fit halo mass of each halo and
using the halo concentration inferred from the scaling relation, c∆ = c∆(M∆; z) in DK14. In these
three panels, the blue curve is not a fit, but the NFW prediction itself, fNFW(x) (Eq. 2.7). Note that,
for all the results, we ignored effects of measurement errors such as intrinsic ellipticities of background
galaxies.
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compared to the standard lensing analysis (the upper-left panel). The scatters appear to be
smallest when using the best-fit NFW parameters of the 2D lensing profile. Comparing the
upper-right and lower-right panels clarifies how the scatters are enlarged due to the lack of halo
concentration knowledge on individual halo or shows the degradation by ignoring the intrinsic
scatters of halo concentration in different halos. Encouragingly the figure shows that, even
without knowledge on the concentration of each halo, the NFW scaling can reduce the scatters
compared to the upper-left panel. However it should be noted that the stacked lensing profile
shows a sizable deviation from the NFW profile (the blue solid curve), compared to the upper-left
panel. In summary these results justify our approach of using the scatters of individual lensing
profiles in order to test the universality of mass density profile in 50 clusters.

2.3 Results

2.3.1 The cluster sample

(1) Subaru weak lensing data
To apply the method, described up to the preceding section, to real data, we use the shape
catalog of galaxies for 50 massive clusters, used in the work of Okabe et al. (2013). This is
the older version of shape catalog, derived as a part of the LoCuSS collaboration (see Okabe
et al. 2010a; Martino et al. 2014, for details)5. In brief, the 50 cluster sample comprises
all clusters from the ROSAT All Sky Survey catalogs (Ebeling et al. 1998, 2000; Bohringer
et al. 2004) that satisfy the criteria given as LX [0.1− 2.4keV]/E(z)2.7 ≥ 4.2× 1044 erg s−1,
0.15 ≤ z ≤ 0.30, nH < 7× 1020cm−2, and −25◦ < δ < +65◦, where E(z) ≡ H(z)/H0 is the
normalized Hubble expansion rate. The criteria on the redshift range and the declination
are adopted in order to have a sufficiently high elevation of these clusters from the Subaru
telescope and to have an entire coverage of the virial region of these clusters with the field
of view of the Subaru Suprime-Cam camera (Miyazaki et al. 2002). The cluster sample is
complete with respect to this selection function, and thus includes all clusters regardless of
their internal structure, thermodynamics, and galaxy populations.

All the clusters were observed by Subaru, with two passbands at least: i or IC data, which
is used for the weak lensing analysis, and the bluer-passband data, V or g data. For
this paper we take the position of brightest cluster galaxy in each cluster as the cluster
center. Okabe et al. (2010a) carefully studied a possible miscentering effect by comparing
the lensing signals of various center proxies such as the X-ray peak, and concluded that the
miscentering, even if exists, should be well within 100 kpc in radius (more exactly, within
about 50 kpc in our estimate), which is inside the minimum radius used in this paper.

A more problematic uncertainty than the shape measurement error is a possible residual
uncertainty in estimation of source galaxy redshifts, mainly limited by the two passband
data alone. Okabe et al. (2010a) (also see Okabe et al. 2013) developed a method of
making a secure sample of background galaxies, which is selecting galaxies with color
sufficiently redder than the red-sequence of early-type galaxies in each cluster region. In
other words, they found that it is very difficult to select “blue” background galaxies from
the two passband data alone or such blue galaxies always appear to be contaminated by
foreground or member (therefore unlensed) galaxies. However, this selection is conservative
and leaves only a small number of galaxies in the sample so as to ensure less than 1%

5http://www.sr.bham.ac.uk/locuss/
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Figure 2.4: The 50 clusters used in this work, in the cluster mass (M500c ) and redshift plane. The
mass estimate of each cluster was taken from Martino et al. (2014) (see also Table 2.1), derived based
on the Chandra and/or XMM X-ray data. The left panel is the mass estimate based on the hydrostatic
equilibrium (HSE) assumption, while the right panel shows the results derived using the scaling relation
of X-ray gas mass with halo mass (Eq. 2.24), respectively. The errorbars of each cluster are also taken
from Martino et al. (2014) (for Mgas,500 we propagated the errors of gas mass). Comparing the two
panels reveals that the same cluster (symbols at the same x-axis value) generally has different mass
estimates and errorbars.

contamination or diluation effect on the lensing signal, even if exists: the mean number
density of galaxies is about 5 arcmin−2, a factor 4 or 5 smaller than the number density of
all the galaxies usable of weak lensing analysis in the original i- or Ic-band catalog. Hence
the measurement errors of weak lensing signals are dominated by the shape noise, which
justifies that we ignore the error contribution of projection effects due to different structures
along the same line-of-sight to the cluster. The mean redshift of background galaxies in
each cluster was estimated by matching color of the selected background galaxies to the
COSMOS catalog. Since all the clusters are at low redshift z ∼ 0.2 and the deep Subaru
data typically probe galaxies at z ∼ 0.8, the lensing efficiency has a weak dependence on
source redshift and a possible residual uncertainty in the source redshift would not be large
and should be less than a 10% change in the lensing amplitude even if exists (see § 5.7.2
in Okabe et al. 2010a). We should also keep in mind an additional uncertainty in source
redshift estimation due to the sample variance in COSMOS calibration catalog, which refers
a possible difference in the populations of source galaxies in between the COSMOS and
cluster regions.

(2) X-ray observables : hydrostatic equilibrium mass, gas mass and gas tempera-
ture
All the 50 clusters were observed by the X-ray satellites, XMM-Newton or/and Chandra
(Zhang et al. 2010; Martino et al. 2014). In this thesis, we use the X-ray observables in
Martino et al. (2014) to infer the halo mass for each of the 50 clusters, which was estimated
based on either or both of the XMM and/or Chandra data. In the following we will use
two mass estimates: the mass estimated based on the hydrostatic equilibrium assumption
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(hereafter HSE for simplicity) and the self-similar scaling relation of gas mass (Mgas) with
the halo mass:

a) Hydrostatic equilibrium (HSE) mass – Martino et al. (2014) carefully developed a
method of estimating the HSE mass of each cluster by combining the surface brightness
and temperature profiles, measured from the Chandra and/or XMM data:

M(< r) = −kTg(r)r

Gµmp

[
d ln ρg(r)

d ln r
+

d lnTg(r)

d ln r

]
, (2.23)

where Tg(r) and ρg(r) are the three-dimensional radial profiles of gas temperature and
density, respectively. We will use the halo mass estimate for ∆ = 500 overdensity,
M500c, in Table 2 of Martino et al. (2014). For some of the clusters, the mass estimates
were derived for both the Chandra and XMM data. If the two mass estimates are
available, we use the XMM-derived mass because the mass accuracy is better than
that of the Chandra-based estimate. Note that the two estimates are consistent with
each other within the errorbars, We use the XMM-based mass for 32 clusters, and use
the Chandra-based mass for the remaining 18 clusters.

b) Mgas derived mass – The direct X-ray observables are the gas mass and temperature.
If non-gravitational processes are not significant for cluster evolution, the mass, tem-
perature, size and other properties of galaxy cluster follow self-similar scaling relations
(Kaiser 1986). The ratio of the total matter and gas masses in a cluster region is ex-
pected to follow the scaling relation: M∆(< r) ∝ Mgas,∆(< r). For the interior gas
mass, we will use the Mgas,500 value in Table 3 of Martino et al. (2014) for each cluster.
For the normalization factor, we here simply employ the cosmic mean value that is
inferred from the latest Planck result (Planck Collabolation et al. 2015):

M500c

1014M⊙
=

Ωm0

Ωb0

Mgas,500

1014M⊙

≃ 11.6×
(

Mgas,500

1014h−3/2M⊙

)
, (2.24)

where we took the best-fit values of Ωb0h
2, Ωm0h

2 and h in Table 3 of Planck Col-
labolation et al. (2015) to compute the normalization constant. The unit h−3/2 of
gas mass is from the fact that the gas mass estimate from X-ray observables has the
h-dependence. Note that the overdensity radius r500c used for the interior mass def-
inition is from the total mass profile derived from the HSE assumption, Eq. (2.23).
In this sense, exactly speaking, this treatment is not self-consistent. Comparing the
above normalization constant with Fig. 2 in Okabe et al. (2014) shows that our model
is within a range of the normalization constants implied from observations. However,
a precise determination of the normalization constant is not our primary purpose, and
the above choice is a working example. We will below study how variations in the
above scaling relation change the weak lensing measurements with NFW scaling.

Table 2.1 gives a summary of the above X-ray observables: the HSE mass and the gas
mass for each. Figure 2.4 shows the distribution of 50 clusters in the plane of halo mass
and redshift. The two proxies give a different estimate of halo mass on individual cluster
basis and the error bars quoted are also different. The mean mass of 50 clusters (without
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Figure 2.5: Upper panel: The stacked distortion profile measured from 50 Subaru clusters, based on
the standard stacked lensing analysis (Eq. 2.11). We employed the 32 logarithmically-spaced bins over
a fixed range of radii, 0.14 ≤ R/[h−1Mpc] < 2.8, for all the 50 clusters. The errorbar at each bin is
computed from Eq. (2.15) assuming that the statistical noise is dominated by the intrinsic ellipticities
of background galaxies. The solid curve is the best-fit NFW model, which is specified by the best-fit
parameters M500c = (4.0 ± 0.1) × 1014h−1M⊙ and c500c = 2.8 ± 0.3. For the sake of comparison with
the following figures, we plot the distortion profile relative to the best-fit NFW model, as a function of
the radius relative to the scale radius of the best-fit NFW model. Note that the representative value of
each radial bin is estimated from the average of radii of background galaxies that reside in the annulus
(see Eq. 2.14). The reduced chi-square for the best-fit model is χ2/d.o.f = 22.5/(32− 2). Lower panel:
Similar to the above panel, but for the 45◦-rotated components of background galaxy ellipticities.

lensing weights), ⟨M500c⟩/[1014h−1M⊙] = 4.42 or 3.82 for the HSE or gas mass proxy,
respectively. Note that we will later discuss how possible intrinsic scatters of the mass and
X-ray observable relation affect our results.

2.3.2 The stacked lensing analysis of 50 clusters with and without
NFW scaling

First of all, in Figure 2.5, we show the stacked lensing profile of 50 clusters, without NFW
scaling, for the sake of comparison with the following results. This result reproduces Figure 3
in Okabe et al. (2013). We employed 32 logarithmically-spaced bins over the radial range of
0.14 ≤ R/[h−1Mpc] ≤ 2.8. As given by Eq. (2.14), we estimated the representative value of each
radial bin by averaging the centric-radii of background galaxies in the annulus, and therefore the
neighboring bins are, exactly speaking, not equally spaced, although the difference is very small
after the average of 50 clusters. The cumulative signal-to-noise ratio is significant: S/N ≃ 34.5.
From the fitting to an NFW profile, we find the best-fit parameters, M500c = (4.0 ± 0.1) ×
1014h−1M⊙ and c500c = 2.8±0.3, respectively. The reduced chi-square is χ2/d.o.f = 22.5/(32−2).
Thus the results show that, even if the range of the X-ray inferred masses span over more than
a factor 10, the stacked profile is so remarkably well fitted by the NFW model. This appears to
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Figure 2.6: The expected, differential signal-to-noise ratio, d(S/N), at each of the 8 logarithmically-
spaced radial bins in the range 0.14 ≤ R/[h−1Mpc] ≤ 2.8, for each of 50 Subaru clusters. We computed
the d(S/N) value as follows. For the expected signal, we used an analytical NFW profile assuming the
X-ray HSE mass and the halo concentration inferred from the c − M relation in DK14. To compute
the statistical noise in each bin, we used the real Subaru data of background galaxies (their distribution
on the sky, the intrinsic shapes and the lensing weights) in each cluster region. This figure suggests
that about 79% of 400 data points (400 = 50 × 8), are expected to have the d(S/N) values greater
than unity. Note that the representative value of each radial bin is computed from Eq. (2.14) taking
into account the radii and weights of background galaxies, which causes variations in the representative
values especially for the small radii, even if we work on the fixed range of 0.14 ≤ R/[h−1Mpc] ≤ 2.8.

be consistent with what we found from the test using the simulated halos in Figure 2.3.
Next we employ the following procedures to implement the NFW scaling analysis of weak

lensing measurements:

(1) NFW scaling of galaxy ellipticities and radial bins – First, we employ, for the a-th cluster
(a = 1, 2, · · · , 50), the halo mass inferred from the X-ray observables, either HSE or gas
mass (see § 2.3.1). We then use the c-M relation in DK14 to infer the halo concentration
for the cluster. Using the X-ray inferred parameters, MX

500(a) and cX500(a), we compute the

expected lensing amplitude and the NFW scale-radius, 2[ρcrs](a) and rs(a), respectively, in
order to “scale” the amplitude of galaxy ellipticities as well as the radius for each ia-th
background galaxy in the a-th cluster region: e+(ia) → e+(ia)/[2ρcrs](a) and R(a)ia → x =
R(a)ia/rs(a). Thus, even if we use the same background galaxies over a fixed range of radii,
0.14 ≤ R/[h−1Mpc] ≤ 2.8, this NFW scaling leads to different ranges of the scaled radii,
x, for different clusters. The different amount of radial scaling requires a careful treatment
of the radial binning, especially when comparing the lensing distortion profiles with and
without NFW scaling. In the following we use the different binning schemes depending on
either case studying the stacked lensing profile or studying the scatters of 50 cluster lensing
profiles relative to the NFW prediction, which are summarized by the procedures (2a) and
(2b) below.

(2a) Stacked lensing analysis with NFW scaling implementation – As in Figure 2.5, we will study
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Figure 2.7: The stacked distortion profile of 50 clusters when implementing the NFW scaling analysis:
we summed the “scaled” amplitudes of background galaxy ellipticities in each bin of the “scaled” radii
according to the NFW parameters, halo mass and concentration, inferred for each cluster based on its
X-ray observables. In the left or right panels, we employed the X-ray inferred mass of each cluster from
the hydrostatic equilibrium assumption (HSE) or the gas mass, respectively, and then used the halo
concentration inferred from the scaling relation c = c(M ; z) in DK14. Note that we used exactly the
same background galaxies as those for the analysis without NFW scaling in Figure 2.5. The errorbar
at each bin is computed based on Eq. (2.18). The solid curve in each panel is not a fit, but the NFW
prediction (fNFW given by Eq. 2.7) including a small correction due to reduced shear at the small radii
(see below Eq. 2.17). The reduced chi-square is χ2/d.o.f = 31.3/32 or 30.7/32 for the HSE or gas mass
case, respectively.

the stacked distortion profile of 50 clusters after the NFW scaling of each cluster. Similarly
to Figure 2.5, we will use the 32 logarithmically-spaced bins in the “scaled” radius, x,
where we used exactly the same background galaxies behind the 50 clusters. After stacking
50 clusters, we can expect a significant detection of the lensing signal at each radial bin,
as implied from Figure 2.5. However, the above NFW scaling transforms the original
radial range to a different range of the scaled radius x. Hence, the sample of background
galaxies in each bin of R or x radii differ from each other. Since the stacked lensing has a
sufficiently high S/N at each bin, we checked that the NFW scaling almost conserves the
total S/N value (exactly speaking, it causes only about 0.5% fractional change). Note that
we estimate the representative value of each radial bin in a similar manner to Eq. (2.14).

(2b) Studying the scatters of lensing profiles for 50 clusters – As we discussed in § 2.2.3, we
monitor the scatters of 50 cluster lensing profiles relative to the NFW prediction in order to
address the existence of the universal NFW profile. To quantify the scatters, we compute
the d2 value for either case with or without NFW scaling (see Eqs. 2.19 and 2.20 for
the definition). In doing this, we need to probe the “shape” of lensing profile for each
cluster, and in other words each radial bin needs to be in the signal dominated regime on
individual cluster basis. Hence, if we take the 32 bins as in the stacked lensing analysis,
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Figure 2.8: The difference between the lensing distortion profiles of 50 clusters and the best-fit NFW
profile (∆Σbest−fit(R)) or the normalized NFW profile (fNFW(x)) for the weak lensing analysis with or
without NFW scaling implementation in the left or right panel, respectively. The right panel shows the
result when using the gas mass to estimate the halo mass of each cluster. To make a comparison, we
show the relative difference to the statistical error at each radial bin (see Eqs. 2.19 and 2.20). Since the
lensing profile is noisy on individual cluster basis due to the fewer number of background galaxies, we
employed the 8 logarithmically-spaced bins in the fixed range of 0.14 ≤ R/[h−1Mpc] ≤ 2.8 for all the
clusters as in Figure 2.6. In addition, we used the same background galaxies in each radial bin before
and after the NFW scaling transformation, x = R/rs, for each cluster so that the differences become
identical if we set the model NFW profile ∆Σbf−NFW = fNFW = 0 (see the procedure 2b in § 2.3.2 for
details). Also note that, due to the NFW scaling, the fixed radial range in the left panel is transformed
to the different range of the scaled radius for different clusters. The same-color curves in the two panels
correspond to the same cluster, and the bold curve shows, as an example, the result for A781, which has
the largest deviation from the NFW profile. The sum of squares of all the curves gives an estimate to
quantify the scatters of 50 cluster lensing profiles relative to the NFW model – here we call the d2 value.
The NFW scaling yields d2 = 527.1 or 504.6 for the HSE and gas mass cases, respectively, compared
to d2 = 543.2 for the case without NFW scaling (Figure 2.5). This corresponds to the improvement
∆d2 = d2 − d2w−scaling = (4.0)2 or (6.2)2, respectively.

each radial bin suffers from the shape noise contamination due to too low number density
of background galaxies in each bin. To tackle this trade-off between a finite number of
radial bins and the small lensing signals, we employ 8 logarithmically-spaced bins in the
range 0.14 ≤ R/[h−1Mpc] ≤ 2.8 for each cluster. Figure 2.6 shows the expected S/N at
each radial bin for the 50 clusters. The figure shows that 319 data points among 400 points,
corresponding to 79% of 400 data points, are expected to have the S/N value greater than
unity. Hence the 8 bins seem suitable for our purpose. Table 2.1 gives the total S/N of
each cluster when employing the 8 bins. However, the expected lensing signal at each radial
bin would be still noisy. To avoid any artifact arising from the noise dominated bins, we
transform each of the original bins in R to the corresponding bin in the scaled radius x
after the NFW scaling, rather than redefining the radial bins for a fixed range of x. With
this binning, each radial bin before and after the NFW transformation preserves the same
background galaxies. Hence, this binning method preserves the S/N value in each radial
bin as well as the total S/N value for each cluster, before and after the NFW scaling, as
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Figure 2.9: A test of the performance of the NFW scaling analysis in Figure 2.7. We randomly assigned
the X-ray inferred mass to each cluster, redid the scaling analysis, and then computed the d2 difference
(Eq. 2.25) , where the d2-value quantifies the scatters of 50 cluster lensing profiles relative to the NFW
profile as shown in Figure 2.8. The histogram shows the distribution of 200 random realizations, which
can be compared to our main result shown by the vertical line for either the HSE mass or the gas mass
case in the upper or lower panels, respectively. All the random realizations give a negative value of ∆d2,
and any of those does not reproduce the measurement value. Compared to the mean and variance of
the random realizations, the measured ∆d2 value is away from the mean at 3.6 and 3.7σ for the HSE
and gas mass cases, respectively.

can be found from Eqs. (2.19) and (2.20) mathematically. As a result, the different clusters
cover different ranges of the scaled radius x.

Figure 2.7 shows the stacked lensing profiles after implementing the NFW scaling (the above
case 2a), using the halo mass proxies based on the HSE assumption or the gas mass, respectively.
We again note that, to have a fair comparison with Figure 2.5, we have used exactly the same
background galaxies. The solid curve in each panel is not a fit, but rather is the NFW prediction
(Eq. 2.7), including the reduced shear correction 1/[1 − κNFW(x)], where we used the best-fit
NFW model to the stacked distortion profile in Figure 2.5. The reduced shear correction is not
large (by up to 20% in the amplitude) over the range of radii, as can be found from Figure 2.1.
The figure shows that the stacked profile is in excellent agreement with the NFW prediction, to
within the errorbars. This agreement supports the existence of NFW profile in the clusters, and
implies that the X-ray inferred mass indeed gives a proxy of the genuine mass for each cluster.
To be more precise, the reduced chi-square is χ2/d.o.f = 31.3/32 or 30.7/32 for the HSE or gas
mass case, respectively, compared to χ2/d.o.f = 22.5/(32− 2) in Figure 2.5.

We compare the scatters of 50 cluster lensing profiles with and without implementation the
NFW scaling, quantified by the d2 value (Eqs. 2.19 and 2.20), in order to address the existence
of universal NFW profile. By using the above method (2b), we find the difference between the
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Figure 2.10: As in the previous figure, but show effects of the statistical errors in X-ray inferred halo
mass of each cluster on the ∆d2 value. Here, we added a random scatter to each halo mass by an
amount of the quoted errorbar in Table 2.1 assuming the Gaussian distribution, redid the weak lensing
analysis with NFW scaling, and then computed the ∆d2 value for each realization.

10−1 100

R [h−1Mpc]

10

15

20

25

30

35

40

∆
d

2
=
d

2
-
d

2 w
−

sc
al

in
g

MHSE
500

Mgas-M500

Figure 2.11: The change in ∆d2 (the vertical axis) when using the different range of radii (the horizontal
axis) in the scaling analysis. The bold lines are the results for our fiducial choice: 0.14 ≤ R/[h−1Mpc] ≤
2.8 and 8 logarithmically-spaced bins for all the 50 clusters. The other lines are the results when
excluding the innermost or outermost bin from the analysis, respectively for the the HSE or gas mass
proxy cases.

d2 values with and without NFW scaling as

∆d2 ≡ d2 − d2w−scaling

=

{
543.2− 527.1 ≃ (4.0)2, (HSE)
543.2− 504.6 ≃ (6.2)2, (Mgas-M500c)

(2.25)
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Thus the NFW scaling for both the HSE and gas mass cases leads to the smaller d2-values,
meaning the smaller scatters of lensing profiles relative to the NFW profile than the scatters
without NFW scaling. The smaller d2 value for the gas mass implies that the gas mass gives
a better proxy of the underlying true masses of clusters (at least the relative mass differences
between different clusters). Thus the NFW scaling gives about 4- or 6-σ improvement for the
HSE or gas mass, respectively, assuming that the d2 distribution obeys a χ2-distribution. We
checked that, even if we use 16 bins instead of our fiducial 8 bins, the d2 values themselves get
enlarged because each bin is more in the shape noise dominated regime, but the d2 difference,
the ∆d2 value, is not largely changed.

The improvement in the d2 value due to the NFW scaling arises from two parts: the scal-
ing of lensing profile amplitude (or background galaxy ellipticities) and the scaling of cluster-
centric radius. The two scalings are specified by halo mass and concentration of each cluster:
e+/[2ρcrs] ∝ M

−1/3
500c c

−2
500c and x = R/rs ∝ M

−1/3
500c c500c, respectively. If we include only the scaling

of background galaxy ellipticities, without the radial scaling, we found d2w−scaling = 512.9 or 526.5
for the HSE or gas mass case, which equivalently correspond to ∆d2 ≃ (5.5)2 or (4.1)2, respec-
tively. That is, the HSE case shows an even greater improvement in ∆d2 compared to Eq. (2.25).
On the other hand, if we include only the scaling of radius, but without the scaling of galaxy
ellipticities, d2 = 547.1 or 522.3, which correspond to ∆d2 ≃ −3.9 or (4.6)2, respectively. Thus,
for the HSE case, the radial scaling does not appear to be adequate, and rather gives a positive
∆d2. For the gas mass case, both the two scalings about equally contribute to the improvement.

Figure 2.8 shows the contribution of each cluster to the d2-value, which shows the argument
of Eqs. (2.19) or (2.20) at each radial bin for each of 50 clusters. The total d2 value is obtained
by summing the square of each curve over the 8 radial bins and 50 clusters. Table 2.1 gives the
total d2-value for each cluster. The figure shows that, although it looks noisy, the NFW scaling
reduces the scatters. One might notice some outlier clusters: the clusters, which have top three
largest d2w−scaling values (see Table 2.1), are A781, A209, and A697 for the HSE case, while A781,
A2645 and A750 for the gas mass case, respectively.

To draw a more robust conclusion, we make several tests of our results. In Figure 2.9, we
studied how the scatters of 50 lensing profiles are enlarged if we implement the NFW scaling
analysis by randomly assign the X-ray inferred halo mass to each cluster (without repeated use
of X-ray mass). All the 200 random realizations have a negative value of ∆d2, and any of the
random realizations cannot reproduce a similar positive value to the measured ∆d2 (the vertical
line) for both the HSE and gas mass cases. To be more quantitative, the measured value ∆d2 is
away at 3.6 and 3.7 σ for the two cases, respectively, compared to the mean and variance of the
random realization distribution. These results give another support on the existence of NFW
profile in the 50 clusters.

One important source of uncertainties in the method is a residual uncertainty in the X-ray
inferred halo mass or a possible effect of intrinsic scatter in the mass scaling relation of X-ray
observable. Figure 2.10 shows how the statistical errors of X-ray inferred mass affect the ∆d2

value. To be more precise, we added a random scatter to halo mass of each cluster assuming
the Gaussian distribution with variance given by the quoted errorbar of each X-ray mass in
Table 2.1, i.e. M ′

500(a) = MX
500(a) + δM(a), treated the shifted mass as its true mass, and then

redid the NFW scaling analysis. The figure shows that adding the random scatter to each cluster
tends to decrease ∆d2, implying that the central value of the X-ray inferred mass is indeed closer
to the underlying true mass. The distribution of ∆d2 is wider for the HSE mass, but this would be
ascribed to the larger errors of HSE mass than those for the gas as can be found from Figure 2.4.
Again encouragingly, even if adding the random errors to the gas mass, the resulting ∆d2 values
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are positive, supporting that the gas mass is a better proxy of the genuine cluster mass as in
Figure 2.7.

Although we have used the fixed range of the original comoving radius, 0.14 ≤ R/[h−1Mpc] <
2.8, for all the clusters as our fiducial choice, Figure 2.11 shows how the results are changed if
excluding the inner- or outer-most radial bin of 8 logarithmically-spaced bins from the analysis.
The figure shows that, for the X-ray gas mass proxy, excluding the outer- or inner-most bin
degrades the NFW scaling or reduces the ∆d2 values, suggesting that the wider range of radii
is important to capture the curvature of the mass profile. On the other hand, for the HSE
mass case, excluding the outermost bin increases the ∆d2, again implying that the HSE mass
estimate might not be as accurate to infer the genuine mass as the gas mass and involve residual
systematic errors.

2.3.3 Discussion and Implications: Comparison with N-body simula-
tions

From a viewpoint of ΛCDM structure formation model, Figure 2.12 compares the measurement
results and the N -body simulated halos, as in Figure 2.3, in a two-dimensional space of the d2

values with and without NFW scaling. To make a fair comparison, we included the effect of
intrinsic galaxy ellipticities on the simulation results. To be more precise, (1) we first populated,
into each region of simulated halos, the background galaxies taken from the corresponding Subaru
cluster data (matched in descending order of halo masses), (2) made a random rotation of
orientation of each galaxy ellipticity, which erases the coherent lensing signal of each Subaru
cluster, and (3) then computed the d2 values after simulating the “observed” galaxy ellipticities
including both the intrinsic shapes and the lensing distortion of simulated halo. To account for the
statistical variance of intrinsic ellipticities, we generated 40 realizations of the N -body simulation
results: we redid the d2 calculations after random rotation of background galaxies. For the
simulation results, we consider the three cases similarly to Figure 2.3: the lensing analysis with
NFW scaling when using the best-fit NFW parameters of 3D mass profile, the NFW parameters
of 2D distortion profile, or the best-fit halo mass of 3D profile, but using the halo concentration
inferred from the c-M relation, respectively. The third case is closest to what we did for the
actual data. First of all, the simulation results without NFW scaling, denoted by the d2 values
in the horizontal axis, fairly well reproduce the measurements on average, reflecting that the
statistical errors in the d2 value are dominated by the shape noise. Also note that the horizontal
spread of the simulation realizations is roughly given by

√
d2 ≃

√
550 ≃ 23. However, all the

simulation results with NFW scaling, d2w−scaling in the vertical axis, are systematically smaller
than the measured values. Thus this disagreement suggests that we do not properly consider
some effects inherent in the measurements on the simulation results. For comparison, the star
symbols show the results when using analytical NFW halos to compute the d2 values where we
used the X-ray proxy masses for the HSE or the gas mass to compute the NFW lensing profile of
each cluster. The difference between the analytical NFW halos and the simulation results is due
to the complexity of mass distribution in the simulated halos, such as asphericity, substructures,
and the scatters of halo concentration.

A possible source to reconcile the difference between the measurements and the simulation
results in Figure 2.12 is an additional error or intrinsic scatter in the X-ray inferred halo mass
(Stanek et al. 2010; Okabe et al. 2010b). Figure 2.13 addresses this question. The left panel
shows how adding a scatter to each mass of simulated halos, parametrized by the fractional
variance σlnM = σ(M)/M = 0.1, 0.2 or 0.3, degrades the d2w−scaling values for the NFW scaling
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Figure 2.12: Comparison of the measurements and the simulation results for the d2-values. (Eqs. 2.19
and 2.20 for their definitions). The bigger-size circle and square symbols are the measurement results
for the HSE and gas mass cases, respectively. The other symbols are the simulation results for 40
realizations, combining the N-body halo profiles and the effect of intrinsic ellipticities of background
galaxies that are taken from actual Subaru data of each cluster region. The tilted triangle and hexagon
symbols are the simulation results; triangles are cases with the best-fit NFW parameters of 3D mass
profile for each halo, and the NFW parameters of 2D projected lensing profile.The hexagon symbols
are intended to mimic what we did for the actual measurements, using the best-fit mass of 3D profile,
and the concentration inferred from the scaling relation c∆ = c∆(M∆; z) , respectively. (see Figure 2.3
for details). We show the simulation results for 40 realizations of background galaxy ellipticities. Note
that, for each realization, we computed the three simulation results; each of the triangle and hexagon
symbols with same d2 value in the horizontal axis, but different d2w−scaling values in the vertical axis. For

comparison, the orange-color star symbol denotes one particular realization that has a similar d2 value
to the measurement for no NFW scaling case (the vertical axis). The two star symbols in the left-lower
corner are the results when using the same realization of background galaxies as in the orange-color
star symbol, but using the analytical NFW profiles for the d2 calculations. Note that the arrow in the
lower-left corner denotes the simulation result that is below the plotted range.

analysis. More precisely, we randomly generated a mass scatter δM for each halo assuming
the Gaussian distribution with variance σlnM , added the scatter to each halo mass as given by
M ′

(a) = M2D fit
500(a) + δM , and then computed the d2w−scaling value by treating the shifted mass M ′

as the true mass of each simulated halo. For the sake of comparison, we used the same 40
realizations of background galaxies as in Figure 2.12, and therefore the degradation is solely due
to the mass scatters. Note that, for each realization of background galaxies, adding the halo mass
scatters changes only the d2w−scaling value in the vertical axis. The figure shows that the halo mass
scatters generally degrades the NFW scaling result or equivalently enlarge the d2w−scaling value.
However, only the additional errors of σlnM ∼ 0.2–0.3 can reproduce the measurement result for
the gas mass proxy. This might imply that the X-ray halo mass involves an unknown, systematic
error or intrinsic scatter.

As an alternative test, the right panel of Figure 2.13 shows the effects of the quoted error-
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Figure 2.13: d2 plot with the effects of mass scatter of each halo on the simulation results. The hexagon
symbols are the same as in Figure 2.12. For each realization of background galaxies, we added a random
mass scatter to each halo, simulated the lensing analysis with NFW scaling by treating the shifted mass
as the true mass, and then computed the d2w−scaling value. Adding the halo mass scatters tends to
degrade the NFW scaling results or preferentially causes an up-scatter of each simulation result in this
two-dimensional space. Left panel: The simulation results when adding the Gaussian mass scatters by
the fractional errors of σlnM = 0.1, 0.2 or 0.3, respectively. The arrows in the upper horizontal axis
denote the case that the simulation results are outside the range shown in this plot. Right panel: The
results when adding a random mass scatter to each simulated cluster assuming the fractional error
proportional to the quoted error of the gas mass proxy relation ; σlnM(a)

≡ σX
M(a)

/MX
(a) or a factor 2 or

3 bigger one.

bars in the X-ray inferred halo masses. Here we added a random mass scatter to each cluster,
M ′

(a) = M2D fit
500(a)(1 + δ lnM) by taking the fractional mass error, σ(MX

(a))/M
X
(a), for each cluster

(see Table 2.1) assuming the Gaussian distribution, and then computed the d2w−scaling value for
each realization. Here we used the mass errors for the gas mass proxy in Table 2.1. Note that the
mean fractional error of 50 clusters is about 0.11, but here we included variations in the errors
for different clusters. The figure shows that, if each cluster has a factor 2–3 larger mass error
than the quoted error, the simulation results appear to reproduce the measurements. The mass
errors of X-ray observables might underestimate the genuine mass uncertainty, perhaps due to
the limitation of the X-ray based method or due to an unknown intrinsic scatter in the X-ray
observable and halo mass relation.

2.3.4 The halo mass proxy relation of X-ray observables

The method we have so far developed involves several assumptions. For instance, to implement
the lensing stacking with NFW scaling, we need to assume several scaling relations: the halo
mass proxy relation of X-ray observables and the halo mass and concentration relation. In the
following we address how possible variations in these scaling relations affect the NFW scaling
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Figure 2.14: Effects of variations in the halo mass proxy relation of X-ray gas mass on the NFW
scaling results. We model the variations as M500c/[10

14M⊙] = A× 11.6× (Mgas/10
14h−3/2M⊙)

β, where
A = 1 and β = 1 are our fiducial model corresponding to the self-similar scaling model. We estimated
the best-fit parameters (the star symbol) by minimizing the d2 value with varying the normalization
and mass slope parameters. The two contours correspond to the regions satisfying the conditions
∆d2 = d2w−scaling(A, β) − d2w−scaling(A

best−fit, βbest−fit) = 2.3 or 6.17, respectively. The triangle symbol
with errorbar denotes the result when varying the normalization parameter A alone, with fixing β = 1.
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Figure 2.15: Similar to the previous figure, but effects of variations in the halo mass and concentration
relation on the NFW scaling results, for the HSE and gas mass cases, respectively. Here we parametrized
the variations as c(M) ∝ Mα (Eq. 2.28), and then minimized the d2-value with varying the normalization
and mass slope parameters. The diamond symbol in each panel shows the parameters for our fiducial
model DK14 at the mean redshift of clusters, z = 0.23, while the triangle symbol denotes the parameters
of Duffy et al. (2008).
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results.
First we study a possible bias in the X-ray inferred halo mass. To address this we simply

introduce the calibration factor, MX,corr
(a) = AMX

(a), assuming the same constant factor A for all
the 50 clusters. A = 1 corresponds to no bias between the X-ray and lensing inferred masses, on
average sense of 50 clusters. We then repeat the NFW scaling analysis by varying the calibration
factor A. Here we consider the two approaches, (1)–(2a) or (1)–(2b), in § 2.3.2. When minimizing
the d2w−scaling value with varying A, we find

AHSE = 0.88± 0.04 (d2w−scaling = 517.9)

AMgas = 1.05± 0.05 (d2w−scaling = 503.6), (2.26)

compared to d2w−scaling = 527.1 or 504.6 for the fiducial model (A = 1), respectively. The errorbars

are taken from d2w−scaling(A = 1) − d2w−scaling(A
best−fit) ≤ 1. Thus adding the normalization

parameter in the halo mass proxy relation of X-ray observables slightly improves the NFW
scaling results. Although we employed a crude assumption of the halo mass proxy relation, our
method would offer a new new method to determine the underlying scaling relation. This is
complementary to the standard method which is done by comparing the X-ray observables and
the lensing inferred mass estimate on individual cluster basis (Okabe et al. 2010b; Mahdavi et
al. 2013; Okabe et al. 2014).

We further introduce another free parameter to allow the halo mass dependence in the X-ray
mass proxy relation in addition to the normalization parameter; i.e., we parametrize the halo
mass proxy relation as

MX
500

1014M⊙
= A× 11.6×

(
Mgas

1014h−3/2M⊙

)β

(2.27)

Then we perform the NFW scaling analysis with varying the two parameters, A and β, simulta-
neously. Figure 2.14 shows the constraint regions in the two parameter space. Here we minimize
the d2 value with varying A and β. The best-fit scaling model gives and d2w−scaling = 493.8
(about 3.3σ improvement from the fiducial model). The best-fit parameters A = 0.86± 0.06 and
β = 0.66± 0.10, where we quoted the errorbar from the range ∆d2 ≤ 1 with varying both A and
β, although the degeneracy between the two parameters is significant. The scatters of 50 lensing
distortion profiles prefer a weaker halo mass dependence than predicted by the self-similar scaling
relation at a 3σ level. This might be due to some residual uncertainty in our method, and would
be worth further exploring by using a larger sample of clusters or an independent mass proxy
relation such as the Sunyaev-Zel’dovich effect.

2.3.5 The halo mass and concentration relation

Another important model ingredient in our analysis is the scaling relation of halo concentration
with halo mass. We have so far employed the scaling relation in DK14 as for our default model.
On the other hand, other works have proposed a different scaling relation from DK14. For
example, Duffy et al. (2008) proposed a different fitting formula of the c-M relation, and predicts
a 20–30% lower concentration than in DK14 for cluster-scale halos. However, we found that, even
if we use the scaling relation in Duffy et al. (2008) instead of DK14, it almost unchanges the
d2w−scaling value; more exactly, it enlarges the d2w−scaling value only by ∆(∆d2) ≃ 1–2 for the HSE
and gas mass proxy relations. Hence the current data cannot discriminate these different models
of c-M relation.
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Here we show one constraint of the underlying c-M relation. Assuming the parametrized
form of c-M scaling relation given by

c500c(M500c; z) = fc

(
M500c

4× 1014 h−1M⊙

)−α

× (1 + z)−0.51, (2.28)

we minimized the d2w−scaling value with varying the normalization parameter and the mass slope
parameter, fc and α. We took the halo mass inferred from the stacked lensing in Figure 2.5,
M = 4× 1014 h−1M⊙, for the pivot mass scale, and the redshift dependence is taken from Duffy
et al. (2008)6. Note that we fixed the mass normalization parameter to A = 1 for the halo mass
proxy relation of X-ray observables. The figure shows that constraints on the two parameters
are significantly degenerate: the d2w−scaling for the best-fit model is 526.3 or 493.8 for the HSE
and gas mass, respectively, which is slightly smaller than our fiducial model, DK14, as found
from Eq. (2.25). The best-fit parameters are fc = 2.6+0.3

−0.2 and α = 0.080.13−0.12 for HSE, while
fc = 3.0 ± 0.3 and α = −0.08 ± 0.18 for the gas mass scaling relation. Thus the current data
prefers the amplitude of concentration to be c500c ≃ 2.6–3.0 for the 50 clusters of these mass
scales, which is consistent with both the theory predictions in Duffy et al. (2008) and DK14
within the errorbars, but cannot well constrain the mass slope due to the limited statistics or a
narrow range of halo masses.

2.3.6 The halo mass profile

The lensing analysis of NFW scaling rests on the assumption that the mass distribution in clusters
follows the universal NFW profile. However, the NFW profile is the simplified prediction of N -
body simulations, and a further improvement in our method might be available by employing a
better model of the mass profile.

Several works have pointed out variations in the inner region of the mass profiles. For in-
stance, there might be variations in the inner slope of the mass profile (e.g., Navarro et al. 2004,
and references therein). The baryonic processes would generally affect the inner structures, which
tend to cause a greater mass concentration in the inner region and generally breaks the univer-
sality of the total mass profile. However, in this study, we looked into the cluster lensing signals
down to R ≃ 0.14 h−1Mpc and above, and these effects would be unlikely o largely change our
results.

Another interesting effect is a possible variation in the outer mass distribution at radii near
to the virial radius or greater, as proposed in Diemer & Kravtsov (2014b) and Adhikari et al.
(2014). These works claimed that the logarithmic slope of massive halos steepens more sharply
than the NFW predicts, at the outer regions R >∼ 0.5R200c, depending on the details of mass
accretion and assembly history. This breaks to some extent the universality of NFW profile at
these outer radii. We tested this prediction by using the fitting formula for a typical accretion
history that is kindly made available to us by Surhud More. However, we found that the current
datasets cannot discriminate the steepened profile at the outer radii. This would be interesting
to further explore with an enlarged sample of clusters.

6Exactly speaking the fitting formula of Duffy et al. (2008) gives the c-M relation for M200c, so we converted
the scaling relation to the relation between M500c and c500c, and found that the redshift dependence is slightly
modified from the original dependence (1 + z)−0.47 by this conversion.
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2.3.7 Systematic uncertainty in the lensing measurements

As we discussed above, our results imply that the X-ray inferred mass may systematically under-
estimate the true mass: we found a possible bias of 5 – 10% level, although it is not significant (at
a 2σ level). Eq. (2.9) suggests that a 10% bias in halo mass corresponds to about 3% bias in the
lensing amplitudes. This is a tiny amount, and may imply a residual error in the source redshift
estimation that is obtained by matching the color of red background galaxies to the COSMOS
catalog. Due to the limited color information of the current data (mostly only 2 colors), we
cannot resolve this, but a further study is definitely worth exploring. For the same reason, it is
worth further looking into a possible remaining systematic error in the shape measurement.

2.4 Discussion and summary

In this work, we have developed a novel method of measuring the cluster lensing distortion profiles
along the NFW prediction, one of the most important predictions of CDM structure formation
model. The method measures the cluster lensing profiles by averaging the “scaled” amplitudes of
background galaxy ellipticities as a function of the “scaled” centric radius according to the NFW
prediction of each cluster. To apply this method to real data, we combined the independent
datasets for a volume-limited sample of 50 massive clusters that are the Subaru weak lensing
catalog in Okabe et al. (2013) and their X-ray observables of XMM and/or Chandra satellites
in Martino et al. (2014). Here we used the X-ray observables to infer the NFW parameters of
each cluster; more precisely, we used the halo mass of each cluster based on the halo mass proxy
relation of X-ray observables, either the hydrostatic static equilibrium or the self-similar scaling
relation of gas mass, and inferred the halo concentration from the c-M relation found in N-body
simulations of DK14. We found a 4 – 6σ level evidence of the existence of universal NFW profile
in the 50 massive clusters (see Figures 2.7, 2.8 and 2.9). Our results give a proof of concept of
the method we developed in this work.

However, the improvement in the scatters of 50 cluster distortion profiles due to the NFW
scaling analysis is not as much as expected from theory using simulations of cluster based on
high-resolution N -body simulations (Figures 2.12 and 2.13). We elaborated that, in order to
reconcile the difference between the measurements and the simulation expectation, we need to
introduce additional halo mass scatters to each cluster, by an amount of σ(M)/M ∼ 0.2–0.3
(see Figure 2.13). This implies intrinsic scatters in the halo mass and X-ray observable relation
(Okabe et al. 2010b). We also argued that the discrepancy might be due to an imperfect halo
mass proxy relation of the X-ray observables (see§ 2.3.4). Hence it would be worth further
exploring the method by combining different observables of clusters. A promising example is
the Sunyaev-Zel’dovich (SZ) effect. By using or combining the X-ray, optical richness and SZ
effects to develop a well-calibrated relation between halo mass and cluster observables for a
suitable sample of massive clusters, we can explore a further improvement in constraining the
universality of cluster mass distribution. In addition, we throughout used the model c-M relation
to infer the halo concentration of each cluster. In other words, we ignored intrinsic scatters of
halo concentration that is known to exist even for halos of a fixed mass scale from simulation
based studies. If we can use observables to estimate halo concentration for each cluster, it might
improve the NFW scaling results. For example, the concentration of member galaxies might be
a good proxy of halo concentration on individual cluster basis. This would be worth exploring.

Our method offers various applications. First, we inversely use the weak lensing analysis of
NFW scaling to infer the underlying true relation between halo mass and cluster observables.
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We made the initial attempt of this possibility in § 2.3.4, but the results seemed to be still
limited by statistics as well as unknown systematic errors in the halo mass proxy relation of
X-ray observables. Since the NFW scaling method up- or down-weights less or more massive
clusters in order to make their profiles to be in the similar amplitudes, it can be applied to halos
over a wider range of mass scales as long as the clusters in the sample follow the universal NFW
profile. Secondly, we can similarly use this method to explore the underlying true form of the
halo mass profile or the halo mass scaling relation with observables, as we attempted in § 2.3.5.
As claimed in Diemer & Kravtsov (2014b), massive clusters might display a steeper profile at the
outer radii around or beyond the virial radius than predicted by NFW model, depending on the
mass accretion history. By subdividing clusters into subsmaples using a proxy to infer the mass
accretion history, e.g. high or low concentration, we can use the NFW scaling analysis to explore
the deviations from NFW prediction at the outer radii. This is a direct test of the hierarchical
CDM structure formation model, and will be very interesting to explore.

Our current weak lensing measurements of 50 massive clusters are still limited by statistics,
mainly due to a low number density of background galaxies, which we needed to take in order
to define a secure sample of background galaxies based on two passband data alone. Hence our
method can be further improved by increasing background galaxies, based on photo-z information
of more passband data. We can also combine the lensing magnification bias measurement to
improve the statistics. On-going wide-area optical surveys such as the HSC survey and the DES
survey promise to provide us with a much larger, well-calibrated sample of massive clusters,
so it would be interesting to apply the method developed in this paper to those datasets in
combination with other wavelength surveys such as X-ray or SZ effects.
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Table 2.1: X-ray and Lensing Observables of 50 Clusters

Cluster redshift X-ray data M500c [1014M⊙] Lensing observables

r500c [Mpc] Telescope Mgas,500 [1014M⊙] MHSE
500c M

Mgas

500c (S/N)WL (d2)HSE (d2)Mgas

A2697 0.232 1.20± 0.04 XMM 0.880± 0.037 6.29± 0.65 5.98± 0.25 6.42 4.47 4.62
A68 0.255 1.40± 0.20 XMM 0.903± 0.135 10.44± 0.86 6.13± 0.92 6.24 13.62 7.52
A2813 0.292 1.25± 0.10 XMM 1.010± 0.092 6.32± 0.69 6.86± 0.63 5.45 4.66 4.28
A115 0.197 0.89± 0.07 XMM 0.546± 0.089 3.26± 0.21 3.71± 0.60 3.61 8.20 8.46
A141 0.230 1.02± 0.12 Chandra 0.550± 0.084 3.97± 1.37 3.74± 0.58 5.35 6.01 6.36
ZwCl0104 0.254 0.76± 0.01 Chandra 0.235± 0.004 1.67± 0.07 1.60± 0.03 3.55 5.46 5.50
A209 0.206 1.15± 0.07 XMM 0.972± 0.094 5.45± 0.18 6.60± 0.64 9.14 21.84 17.37
A267 0.230 1.17± 0.12 Chandra 0.703± 0.094 5.97± 1.84 4.78± 0.64 5.37 7.01 7.47
A291 0.196 0.94± 0.06 XMM 0.391± 0.031 2.92± 0.56 2.66± 0.21 4.92 8.61 8.92
A383 0.188 1.01± 0.08 XMM 0.425± 0.036 3.25± 0.45 2.89± 0.24 5.74 9.11 9.80
A521 0.248 1.25± 0.04 XMM 1.230± 0.050 7.05± 0.34 8.36± 0.34 5.98 4.66 5.23
A586 0.171 1.09± 0.08 Chandra 0.600± 0.049 4.42± 0.90 4.08± 0.33 5.58 10.90 11.47
A611 0.288 1.20± 0.06 Chandra 0.612± 0.039 6.80± 1.08 4.16± 0.26 5.98 8.24 12.30
A697 0.282 1.50± 0.10 Chandra 1.490± 0.127 13.14± 2.74 10.12± 0.86 4.89 20.89 12.84
ZwCl0857 0.235 0.85± 0.04 XMM 0.351± 0.017 2.33± 0.23 2.38± 0.12 2.45 4.53 4.60
A750 0.163 0.97± 0.12 Chandra 0.406± 0.061 3.17± 1.22 2.76± 0.41 6.82 16.54 18.17
A773 0.217 1.21± 0.11 XMM 0.907± 0.102 7.77± 0.94 6.16± 0.69 9.03 7.40 11.40
A781 0.298 1.13± 0.17 XMM 0.783± 0.142 6.72± 0.45 5.32± 0.96 4.27 28.93 25.32
ZwCl0949 0.214 0.93± 0.02 Chandra 0.315± 0.010 2.90± 0.20 2.14± 0.07 5.50 15.34 16.79
A901 0.163 0.79± 0.06 XMM 0.208± 0.020 1.68± 0.39 1.41± 0.14 5.58 11.98 13.43
A907 0.167 1.08± 0.06 XMM 0.623± 0.042 5.17± 0.64 4.23± 0.29 7.71 11.32 14.53
A963 0.205 1.14± 0.07 XMM 0.616± 0.050 5.60± 0.71 4.18± 0.34 7.49 13.40 17.46
ZwCl1021 0.291 1.26± 0.05 XMM 1.080± 0.048 6.82± 0.14 7.34± 0.33 6.78 8.76 9.23
A1423 0.213 1.18± 0.10 Chandra 0.711± 0.095 6.02± 1.53 4.83± 0.65 4.58 9.89 6.95
A1451 0.199 1.36± 0.11 XMM 1.050± 0.102 8.97± 2.18 7.13± 0.69 8.25 6.30 5.44
RXCJ1212 0.269 0.76± 0.05 XMM 0.196± 0.012 1.67± 0.31 1.33± 0.08 3.00 9.34 8.86
ZwCl1231 0.229 1.23± 0.08 Chandra 0.828± 0.078 6.82± 1.29 5.63± 0.53 5.09 17.35 16.05
A1682 0.226 1.24± 0.18 Chandra 0.764± 0.137 7.35± 3.06 5.19± 0.93 7.30 6.12 8.03
A1689 0.183 1.52± 0.07 XMM 1.290± 0.059 11.98± 1.94 8.76± 0.40 9.42 11.25 16.82
A1758N 0.280 1.38± 0.07 Chandra 1.220± 0.062 10.21± 1.54 8.29± 0.42 3.10 13.65 10.03
A1763 0.228 1.33± 0.11 XMM 1.230± 0.135 6.60± 0.56 8.36± 0.92 6.75 9.58 7.09
A1835 0.253 1.57± 0.11 XMM 1.550± 0.120 14.04± 1.27 10.53± 0.82 5.96 14.77 13.27
A1914 0.171 1.38± 0.08 XMM 1.160± 0.073 8.08± 1.00 7.88± 0.50 4.83 9.22 8.88
ZwCl1454 0.258 1.06± 0.10 XMM 0.578± 0.060 3.65± 0.42 3.93± 0.41 3.18 3.94 4.13
A2009 0.153 1.29± 0.13 Chandra 0.708± 0.082 7.33± 2.47 4.81± 0.56 4.91 5.79 5.14
ZwCl1459 0.290 1.08± 0.25 XMM 0.675± 0.187 5.65± 0.36 4.59± 1.27 3.31 4.16 3.73
RXCJ1504 0.215 1.47± 0.35 XMM 1.300± 0.337 10.93± 0.82 8.83± 2.29 4.55 7.70 6.23
A2111 0.229 1.17± 0.14 Chandra 0.719± 0.110 5.99± 1.89 4.88± 0.75 4.83 13.10 12.57
A2204 0.152 1.49± 0.08 XMM 1.280± 0.082 10.66± 1.72 8.70± 0.56 6.48 11.20 9.16
A2219 0.228 1.75± 0.11 XMM 1.882± 0.216 14.35± 2.04 12.79± 1.47 7.51 6.21 6.06
RXCJ1720 0.164 1.23± 0.11 XMM 0.771± 0.083 6.97± 0.68 5.24± 0.56 3.80 11.47 7.02
A2261 0.224 1.22± 0.12 Chandra 1.000± 0.127 6.75± 1.89 6.79± 0.86 8.88 13.44 13.33
RXCJ2102 0.188 1.00± 0.06 XMM 0.450± 0.033 3.52± 0.61 3.06± 0.22 4.04 13.87 12.78
RXJ2129 0.235 1.08± 0.04 XMM 0.749± 0.037 4.22± 0.16 5.09± 0.25 3.17 5.10 6.17
A2390 0.233 1.60± 0.11 XMM 1.700± 0.088 13.67± 2.09 11.55± 0.60 6.30 8.47 7.41
A2485 0.247 1.11± 0.15 Chandra 0.558± 0.087 5.32± 2.08 3.79± 0.59 4.71 1.89 0.52
A2537 0.297 1.19± 0.10 XMM 0.739± 0.081 7.20± 0.73 5.02± 0.55 5.05 8.73 9.81
A2552 0.300 1.25± 0.09 Chandra 1.020± 0.094 7.81± 1.64 6.93± 0.64 3.98 11.30 10.85
A2631 0.278 1.20± 0.09 XMM 1.030± 0.088 8.51± 0.98 6.93± 0.64 4.61 18.05 16.23
A2645 0.251 1.15± 0.18 Chandra 0.541± 0.117 5.98± 2.59 3.68± 0.79 6.59 19.54 19.62

Note: The X-ray observables (r500c, M
HSE
500c and Mgas,500) taken from Tables 2 and 3 of Martino et al. (2014):

r500c is the radius for the interior overdensity ∆ = 500, MHSE
500c is the mass estimate based on the hydrostatic

equilibrium, and Mgas,500 is the gas mass interior to r500 (see text for details). M
Mgas

500c is the total mass interior
to r500c assuming the simple self-similar scaling relation given by Eq. (2.24). The mean mass of 50 clusters
⟨M500c⟩/[1014h−1M⊙] = 4.42 or 3.82 for the HSE and gas mass cases, respectively. The last three columns are
the lensing observables that are computed from the lensing measurement of Okabe et al. (2013). (S/N)WL is
the total signal-to-noise ratio of lensing distortion measurement for each cluster over the 8 radial bins in the
range 0.14 ≤ R/[h−1Mpc] ≤ 2.8. (d2)HSE or (d2)Mgas is the deviation of the lensing distortion profile compared
to the NFW prediction, defined by Eq. (2.19) or (2.20) for each cluster.
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Chapter 3

Transient survey of M31

3.1 Introduction

3.1.1 Magnification property of point source-lens system

General relativity predicts that a background object can be significantly brightened by strong
lensing if the background and foreground objects are almost perfectly aligned along the line
of sight of an observer. We can use the lensing magnification to search for an invisible, small
compact object that is a possible candidate of dark matter and, if so, should exist in the halo
regions of the Milky Way and M31 Galaxy.

Here we describe the observational properties of lensing magnification, as illustrated in
Fig. 3.1. We denote, by β, the angle between the lens and the source object on the sky, and α as
the angular separation between the source and the image. We also define the following distances;
r0 as the distance between the lens and the image in the lens plane, r between the lens and the
image, DS as the distance between the observer and the source, and x as the distance to the lens
normalized by DS. Then β and α can be described as: β = r0/xDS, and α = r/xDS.

The bending angle for a point mass is given as

δ =
4Gm

c2l
(3.1)

(see Appendix A for the derivation). In the following we call the object which makes foreground
gravitational field as “lens”, and “source” for the background object (eg. m in Eqs. (1.52) denotes
the lens mass). Then the lens equation in this system can be described as:

DSβ +DS(1− x)δ = DSα, (3.2)

Putting α, β, δ in this equation:

r2 − r0r −R2
E = 0 (3.3)

where RE is Einstein radius defined as:

R2
E =

4GMD

c2
, D ≡ DSx(1− x) (3.4)

Note that Einstein radius is the size of so-called Einstein ring, which appears only when the
observer, lens, and source are perfectly aliened in the line of sight and the lens has a axially
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Figure 3.1: An illustration of gravitational lensing system. The light ray emitted from a source is
bent by the gravitational field of a lens, and the source can be observed by multiple images due to the
lensing. For a system where a star in M31 is a source object and a PBH of 10−7M⊙ in either halo
region of MW or M31 is a lensing object, the two images due to lensing are not resolved even by the
Subaru data, because the angular separation between the two images is about 107 arcseconds compared
to O(0.1”), a typical angular resolution of the HSC/Subaru data.

symmetric mass distribution. Thus the following solutions of the lens equation represent positions
of the two images:

r1,2 =
r0 ±

√
r20 + 4R2

E

2
(3.5)

Since lensing does not change the surface brightness of a source object, the lensing magnification
is given by the change of the apparent angular extent of the source object due to lensing:

A1,2 =

∣∣∣∣r1,2r0

dr1,2
dr0

∣∣∣∣ = ∣∣∣∣ r41,2
r41,2 −R4

E

∣∣∣∣ (3.6)

For a system where a star in M31 is a source object and PBH of ∼ 10−7M⊙ in the halo regions of
MW or M31 is a lens object, the two images due to strong lensing events are not resolved by the
Subaru data, because the angular separation is order of 10−7 arcseconds compared to ∼ O(0.1)
arcseconds resolution of Subaru data. This is the so-called “microlensing” effect. Note that we
assume that source star is a star in M31, and we don’t consider that a star in the MW halo
region is a source star in our analysis. The total magnification of the lensed image is given by

A = A1 + A2 =
u2 + 2

u
√
u2 + 4

, u ≡ r0
RE

(3.7)

Next we describe time variation of the flux during a microlensing event. The magnification
of source image varies with time as the lens object moves in front of the source object. Here we
define v as the relative velocity component of the lens object perpendicular to the line of sight,
and d as the closest distance of lens to the line of sight. The closest distance to the lens image
can also be characterized by the impact parameter, defined as umin = d/RS. Here we define a
typical time scale of the magnification time variation as

t0 =
RE

v
(3.8)
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Figure 3.2: Simulated light curves for microlensing events, taken from Fig. 2 of Paczyński (1986).
Each light curve stands for different impact parameter umin at 0.1, 0.2, ..., 1.1, 1.2, and light curve with
larger magnification amplitude corresponds to smaller umin parameter.

With this parameter, the time variation of lens flux can be characterized as:

(v(t− tmax))
2 + d2 = r20 (3.9)

where tmax is the time when the lens and the source are in the closest separation on the sky. By
combining Eqs. (3.7) and (3.9), we obtain

u2 =
r20
R2

E

=
(t− tmax)

2

t20
+ u2

min (3.10)

Hence the flux magnification of microlensing event is given by a function of time as:

A(t) =
y2 + u2

min + 2√
y2 + u2

min

√
y2 + u2

min + 4
, y =

t− tmax

t0
, (3.11)

which implies that magnification is larger for smaller impact parameter umin. Note that neither
the wavelength of the light ray observed nor the original luminosity of the source alter an amount
of the lensing magnification.

If a source star is located at DS = 770 kpc, the standard timescale of microlensing event as
in Eq. (3.8) is given by:

t0 ≃ 1.8hours

(
M

10−7M⊙

) 1
2
(

xDS

100kpc

) 1
2
(
200km/sec

v

)
(3.12)

where we assumed that a target mass of PBH is 10−7M⊙, DL = 100kpc for a distance to the lens
PBH, and Vhalo = 200km/sec for the perpendicular velocity component of the lens.

48



3.1.2 Preview of our study

The properties of dark matter has been studied from many aspects with observations and simu-
lations. The previous studies have suggested that dark matter is non-baryonic, non-relativistic,
and interacts with ordinary matter only via gravity. Currently unknown stable particle(s) be-
yond the Standard Model of Particle Physics is considered as viable candidates, so-called Weakly
Interacting Massive Particles (WIMPs). However they haven’t been yet detected neither in elas-
tic scattering experiment nor by collider experiments. Primordial black hole is another viable
candidate of dark matter, which was first proposed by Hawking (1974). A scenario of PBH dark
matter does not require new stable particles. The mass range of PBH varies depending on the
formation scenario in the early universe (Carr et al. 2010).

Gravitational microlensing effect is a unique way to probe dark matter candidate, first pro-
posed by Paczyński (1986). In microlensing regime, the flux of background star is magnified by
the gravitational field of foreground object when they come in line of sight. Thus dark compo-
nents can be detected through the magnification of background stars while they move. Previous
microlensing studies using data such as Kepler and MACHO projects have already succeeded to
detect exoplanets. The current upper limits on an abundance of PBH covers almost full range of
mass scales we are interested in Capela et al. (2013a). Nevertheless, it is worth further exploring
a more stringent limit on the PBH abundance.

In this study we propose a transient search for M31 dense-star region, using Hyper Suprime-
Cam at Subaru telescope. Our survey expects higher event rate of PBH microlensing than the
previous search, owing to the wide field-of-view and excellent image quality for the dense star
field. The one pointing of HSC can cover the entire bulge and disk regions of M31. However,
the analysis is expect to be not straightforward; for example, reduction procedures need some
careful treatments because no previous transient search performed a careful reduction for images
with such a dense field taken by highly resolved wide field camera. Thus we will develop the
method to optimize the transient analysis using the software called HSC-pipe. Our observation
also enables to search for various variable stars such as flares, binary stars and microlensing due
to free-floating exoplanets.

3.2 Observation and analysis

We expect a large number of transient candidates in the dense star region of M31. The M31 is
the largest spiral galaxy in the neighbor of Milky Way and is about 770kpc away from us. Hence
many stars, especially in bulge and disky regions of the M31, can be in one CCD pixel; that is,
each star cannot be resolved even by the HSC/Subaru. In § 3.2.1 we describe our strategy for
our observation in detail. Then we describe the methodology of data reduction in § 3.2.2, and
procedures we used to extract variable candidates in § 3.2.3.

3.2.1 Obsevation

(1) Methodology of transient survey : pixel lensing
In the previous microlensing study in Large Magellanic Cloud (LMC), another dense-star
region, the photometry on each star is achieved because of its proximity; only 50 kpc away
from us (Alcock et al. 2000). However, this is not the case for M31. As M31 is about 770
kpc away and further than LMC, multiple stars can be in the same CCD pixel.
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Figure 3.3: The total transmission curve for each broad-band filter of the Subaru/Hyper Suprime-
Cam system. Each curve takes into accounts the transmission of each filter, quantum efficiency of fully
depleted CCDs, transmittance of the dewar window, transmittance of the Primary Focus Unit of the
HSC (POpt2), and reflectivity of the Primary Mirror.

In order to measure the time variation of flux in such a crowded imaging data, we adopt
a method called pixel lensing (Alard & Lupton 1998). Even when multiple stars locate in
a pixel, we can trace the change of flux in a pixel unit. Thus we can extract the location
of variable candidates assuming that there is only one variable star in a pixel. In addition
we adopt a technique so-called image difference to make comparison between images in
different time frames. Image difference technique is also helpful for precise photometry in
pixel lensing regime because we can cancel the effect from surrounding stars (see Sec 3.2.3
for the detail). As this comparison requires an accurate astrometry matching between
different frames, we use the reference image generated by combining best-seeing frames
to perform the image difference between the reference image and a target frame image in
order to minimize effects of imperfect astrometry.

(2) Instrument : Hyper Suprime-Cam
Hyper Suprime-Cam (HSC) is a wide-field imaging camera attached at the prime focus of
Subaru telescope. This camera consists of 116 CCD chips; 104 for science, 4 for auto-guide,
and 8 for auto-focus, and each CCD has 2k x 4k pixels, with a pixel scale of 0.168 arcsec.
One unique characteristic of this camera is the wide field of view (FoV) as large as 1.5 degree
at a single frame, which is three times larger than the size of full Moon in radius. Also high
resolution is expected owing to the large primary mirror of 8.2 meters in effective diameter
and low humidity of the summit of Mauna Kea. 261 robotic fingers keep the primary
mirror in a perfect shape no matter where the telescope is pointing in the sky. The filter
transmittance is shown by Fig. 3.3 using the HSC filter model1 including quantum efficiency
of fully depleted CCDs (FDCCDs), transmittance of the dewar window, transmittance of
the Primary Focus Unit of the HSC (POpt2), and reflectivity of the Primary Mirror.

(3) Details of observation
A search of microlensing events requires a precise photometry of stars. The HSC pointing
of our observation was determined so as to cover the entire region of M31, from the inner
bulge to the outer disk regions, with its one pointing. Hence the pointing is centered at the
coordinates of the M31 central region: (RA, dec) = (00h 42m 44.420s/+41d 16m 10.1s).

1http://subarutelescope.org/Observing/Instruments/HSC/sensitivity.html
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Figure 3.4: Characteristics of our HSC M31 observation. Left panel shows the time-variation of altitude
of target field (M31) during observation. Our observation started from 18:33:59 on November 24 2014,
and ended at 1:35:34 when the altitude gets lower than 30 degrees. Right panel shows the seeing of
each exposure. We conducted the “focusing” (determined the focus position of the camera) three times
during the night, 19:50:33, 22:37:02, and 0:37:07.

As we described above, we need to compare/differentiate the total flux of the same CCD
pixel between different exposures in order to find transient candidates. That is, we want
to measure the same (multiple) stars by the same CCD pixel, because we then care only
about the relative flux difference in the same pixel of different exposures (do not care about
an absolute flux calibration between different pixels). Therefore, we did not employ any
dithering strategy for our observation. However, in reality the HSC/Subaru system has
an imperfect accuracy of auto-guiding and/or pointing, so we have found variations in the
pointings of different exposures, by a few pixels up to pixels, as we will discuss later.

Our observation was conducted in November 23, 2014 on dark night, one day after new
moon. We acquired the 194 exposures of M31 for about 7 hours starting from sunset of the
day until the elevation of M31 on the sky becomes down to about 30 degrees. The sampling
rate of images is about 2 minutes, 90 seconds for each exposure and about 30 seconds for
readout. All images were taken in r-band filter, corresponding to 0.64 µm in wavelength.
The visibility (elevation) of M31 and the seeing size of each exposure are given in Fig. 3.4.
Here the “seeing” is a commonly-used quantity to characterize a spatial resolution of an
image, i.e. the size of the point spread function (PSF) of the image.

3.2.2 Data reduction: single frame processing

One HSC exposure consists of data from 104 science CCD chips. The raw data transferred from
the Subaru Observatory is given in fits format, and each exposure amounts to about 2Gbyte in
data size. The data itself contains only flux information (more exactly, ADU counts) in pixel
coordinate. For example, to compare the images between different exposures, i.e. the difference
image, we need to use the common coordinates of the images used (the same objects should be in
the same coordinates in between different exposures). A precise photometry requires a correction
of various systematic effects such as night glow, instrument noise, vignetting of the camera, and
variations in responses between different CCD pixels.
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In this section we describe our analysis method, focused on the reduction method on a single
exposure data. Our current procedure is not prefect, and some problems are described in § 3.3.1.
All data reduction was done using the HSC pipeline, the specialized software package that has
been developed for the HSC SSP program, being led by scientists at Kavli IPMU, Princeton
University and NAOJ.

Single frame processing of CCD data

Raw CCD data contain various contamination. Some effects are time-dependent and could cause
an inhomogeneity between different images (taken in different time). Thus we calibrate every
CCD data to correct for these effects. To make some basic calibrations as described below, we
used the calibration data that was taken during the same observation run, on November 14 2014.
The basic calibrations we implemented are summarized below: 2

• Bias subtraction
The CCD readout noise fluctuates the pixel counts around some non-zero constant, even if
a shutter of the camera is not open (i.e. no incident photon). Hence the procedure “Bias”
correction is needed to correct for this non-zero counts by using the counts of zero-second
exposure data in each CCD pixel. We used the 3 sigma clipped mean of 10 BIAS exposures
to make correction in each pixel.

• Dark current subtraction
Another CCD noise is the so-called dark current. Dark current is caused by random motion
of electrons in detector, and the characteristics is different from pixel to pixel. The amount
of dark current depends on the length of exposure time. We took the 300 sec exposures,
with closing the shutter, then estimate the dark current rate (counts/sec), and subtract the
dark current contamination from each science exposure based on the exposure time. Note
that the dark current contamination for the r-band image is negligibly small compared to
Poisson noises from sources plus sky background.

• Flat-field determination
Even if all the CCD chips are illuminated by the same photon flux, each CCD pixel generally
has different acquired counts due to variations in the pixel-to-pixel sensitivity of the detector
and/or due to distortions in the optical system (e.g. vignetting). We performed the flat
field correction, i.e. corrected for the inhomogeneities, by using the dome flat data.

After the above basic data processing, we need to subtract background contamination due to
light diffusion of the atmosphere or other unknown source – background subtraction. However,
the background subtraction for the M31 region is quite challenging, because there is no blank
region and every CCD chip is to some extent affected by unresolved, diffuse stellar light. Hence,
we would suffer from an an under- or over-subtraction. Nevertheless, since we are mainly inter-
ested in time-variable stars, we tried to perform the two methods of background subtraction, as
will be described in § 3.3.1 in detail.

We further need to correct for effects of cosmic rays. For the fully-depleted CCDs, cosmic ray
events imprint a characteristic trail-like image. For a blank field, it is relatively straightforward

2Main reference for this part is http://subarutelescope.org/Observing/DataReduction/. The detailed pro-
cedure on HSC-pipe is described in http://hsca.ipmu.jp. Details are described in the following reference:
http://www.astro.princeton.edu/\~rhl/photo-lite.pdf.
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Figure 3.5: An example of our exposure image of the M31 region. Left panel displays one raw image
taken by Hyper Suprime-Cam. Each rectangle-shape sub region, enclosed by black-color gap, corre-
sponds to a single CCD chip. Right panel shows one example of reduced image, the one later called as
reference image in z-scale (The detail of this image is described in § 3.2.3). This figure is in a unit called
“tract”, composed of sub-regions called “patches” (displayed as different-color rectangular regions in
this figure).

to identify the CR image from the trail-like image, or by combining several exposures. However,
the CR removal is not so straightforward for the dense star field we are working on. We skipped
the CR removal for simplicity, and will discuss the residual effect later.

To implement the difference image technique in order to find transient candidates, we used
the following methods:

• WCS deterimination
Here we describe how to determine the WCS coordinate system for 194 exposures. In
addition to our fiducial exposures each of which is a 90 sec exposure data, we also took 30
sec exposure at the beginning of our observation, because bright stars are less saturated
in the short exposure, and therefore we can use more stars for astrometry determination.
By using the star catalog of Pan-Starrs survey as the input catalog for the M31 region,
we solved astrometry solution of every 11 images, 30 sec exposure plus time-sequential 10
exposures taken from the science 194 exposures.

The HSC pipeline provide us with a useful feature, the so-called “SkyMap”, which defines
a conversion of the celestial sphere to the flat coordinate system, “SkyMap coordinate”,
based on a tiling or tessellation. The largest region in the coordinate is called a “Tract”, and
it contains a “Patch”. These processes performed a warping of each exposure to determine
the common WCS of the SkyMap.

3.2.3 Data process for transient survey

After the basic data reduction as mentioned in the previous section, we apply the image difference
technique to the 194 exposures in order to search for transient candidates. If an object had a
variation in its flux, the object would appear as an object with positive or negative counts in the
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difference image. On the other hands, other objects, which have no flux change, will disappear
in the difference image. In the following, we describe procedures that we used for our transient
search.

(1) Methodology : Image difference
Making the image difference or image subtraction comparing different exposures is one
of the most important data processes for our science. If two exposures to be compared
have same seeing, same pointing and similar sky noise, the image difference would be
straightforward. However, our 194 exposures have quite different seeing sizes (ranging
from 0.4′′ to 1.6′′), and have variations in the pointing accuracy (within 5 pixels between
time-sequential two exposures). In addition, the M31 field contains dense, crowded star
regions. Hence, we need to make a more careful analysis.

To have a robust result of the image difference, we combined or coadded 10 best-seeing
size exposures among the 194 exposures to generate the “reference” image, where the 10
exposures are not time sequential (but most of the 10 exposures are from the data in 3
hours from the observation start). Fig. 3.4 shows how the seeing size changes with time
from the observation start. For a target image to be compared with the reference image,
we coadded the 5 time-sequential exposures to generate the target image with improved
signal-to-noise ratio. We have 37 target images (note that the target images might contain
some exposures used in the reference image). Hence, we have 37 time-sequential target
images, given in the units of SkyMap patches. Our method thus has a sensitivity to find
transient objects with time scales longer than 10min.

We subtract the reference image from each of the 37 target images in order to generate the
difference image. Fig. 3.6 shows an example of the difference image. Almost all the stars
are cleanly subtracted. Note that, if a single visit is used to compare with the reference
image, cosmic rays show up in the difference image. This is another region to use the
coadd image of 5 exposures for the image difference. We expect that an object that has
a flux change shows up in the difference image (for this particular example, there is no
secure candidate of variable star). Note that there are several failure regions in performing
the image subtraction. For example, in the bulge region of M31, we cannot construct the
coadd images because there are too many stars and we cannot solve the astrometry from
the distribution of identified stars. The summary of image difference scheme is given in
Fig. 3.7.

(2) Detection method of variable candidates
As we described, we constructed the 37 difference images by comparing each of 37 time-
sequential coadded images with the reference image. Since time separation between the 37
coadded images is about 10min, we can search for transient candidates whose variations
are longer than 10 minutes. Our main interest is variable stars, and we need to exclude
fake candidates arising from cosmic rays, fakes due to imperfect image subtraction (e.g.
around bright stars), and so on.

To remove obvious fakes in the first step, we impose the following conditions to identify
transient candidates, based on the fact that the secure candidates should look like a PSF
image in the difference image.

– minSizeRatio (Mininum value of size ratio of detected source and PSF): 0.75

– maxSizeRatio (Maximum value of size ratio of detected source and PSF): 1.25
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Figure 3.6: An example of the image subtraction of the two images. Here we show the image taken
from the 1/60 region of patch=2.6, which is in between the disk and halo regions; the size of image is
25′′ for the horizontal width. Upper left: one example of reduced image of single-visit frame. Upper
right: the “reference image” generated by combining or coadding the 10 best-seeing exposures among
the 194 exposures. Lower left: the difference image obtained by subtracting the target image, which is
constructed by coadding the 5 time-sequential images, from the reference image. Almost all the stars,
except for a saturated, bright stars, are cleanly subtracted. Our default analysis for transient search
uses the target images of 5 time-sequential coadds for other patches. Photometry of transient candidate
object is performed on the difference image. Lower right: for comparison, the difference image when
subtracting the single exposure from the reference image. For this case, there are cosmic rays in the
image.

– limAxisRatio (Limit value to be consistent with PSF): 0.75

– maxResidual (Maximum value of residual after PSF subtraction): 3.0

– thresholdValue (Threshold of signal to noise ratio of PSF counts): 5.0

The former two conditions exclude candidates which looks unlikely to be a point source;
minSizeRatio excludes candidates whose shapes are very elongated, and maxSizeRatio
mainly excludes those with tiny, vague shapes. The latter two conditions are imposed
concerning the flux distribution. As mentioned before, variable star candidates are ex-
pected to have a point-source flux distribution that can be therefore well fitted by the PSF
in the image. Thus limAxisRatio condition excludes candidates whose flux distribution
cannot be well fitted by PSF in the difference image. In addition maxResidual removes
candidates whose residual image after subtraction of the fitted PSF image is too large.
Finally thresholdValue selects candidates whose PSF magnitude in the difference image
satisfies S/N> 5.

We identify secure candidates that pass all the above conditions. However, the number of
identified transient candidates in the 37 difference images are still too many, although the
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Figure 3.7: Summary of § 3.2.3, describing the image difference method in our survey. Upper panel
shows the way reference image is constructed; simply by stacking the best-seeing 10 frames. Note that
these frames are concentrated on the period around ∼ 11, 000 sec from the observation start; in other
words, some of the 10 exposures are not time-sequential. Lower panel shows the way of generating
target images to be compared with the reference image. We coadded 5 time-sequential exposures to
generate each target image, where each object has an improved signal-to-noise ratio and cosmic rays
are more cleanly removed.

images with worse seeing size tend to give us a smaller number of the candidates. Fig. 3.8
shows typical fake candidates that passed the above conditions. In particular, the number
of survived fakes changes a lot depending on a chosen threshold value of limAxisRatio.
However, we consider the upper conditions are loose enough to pick up any real variable
candidate because they already pick up many fake events. One important note is that
median subtraction around a target greatly helps to reduce some fakes (see the detail in
§ 3.3.1).

After the detection selections we construct a catalog of variable candidates, simply group-
ing those within ±2 pixels in pixel coordinates from the 37 different-time frames. The
properties of variable candidates is described in detail on § 3.3.2.

(3) Photometry of a time-variable star candidate
Once a secure candidate of time-variable point source is found, we have to make a pho-
tometry of the candidate in order to measure the light curve. However, the photometry in
a dense star region, where multiple stars exist in each CCD pixel, is difficult. To overcome
this difficulty, we use the following method by making best use of the difference image.

For a secure candidate found based on the above method, we first determine the WCS
position of the candidate in the difference image. Then we measure the PSF magnitude
at the WCS position of the candidate in the reference image that is deepest and has the
highest spatial resolution:

mRef = −2.5 log

(
CRef

fluxmag0Ref

)
(3.13)

where CRef is the counts of the PSF photometry and fluxmag0Ref is the magnitude zero
point of the reference image. Then we also perform the PSF photometry at the same WCS
position of the candidate in the difference image of each target exposure, rather than in
the original image. In this way we believe that we can measure the change in the PSF flux
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Figure 3.8: Examples of transient candidates that are excluded by our conditions to select a point
(PSF-like) source transient in the difference image. The 4 postage-stamp images in each panel show
the reference image (the coadd image of the 10 best-seeing images), target image (the coadd image of
5 time-sequential images), the difference image and the residual image after subtracting the best-fit
PSF image, from left to right, for each fake candidate. Upper panel shows a typical example of fake
candidates that are excluded by the condition maxSizeRatio (the image looks smaller than the size of
PSF at the image position). Upper right panel shows a typical example of fake candidates that are
excluded by the condition maxSizeRatio (the image looks larger than the PSF size). Lower left panel
displays an example of fake candidates that are excluded by the condition limAxisRatio (the shape of
the image appears inconsistent with the PSF shape, although the size looks consistent with the PSF
size). Lower right panel displays an example of fake candidates that are excluded by the condition
maxResidual (the residual image looks too large).

for the candidate. By adding the PSF magnitude to the magnitude in the reference image,
we can estimate the apparent magnitude of the candidate in the target image:

mi = −2.5 log

(
Ci,diff + C i,diff

Ref

fluxmag0i,diff

)
(3.14)

where Ci,diff is the counts of the candidate for the i-th target image. Fig. 3.9 shows the light
curve for an example secure candidate measured based on the method. For comparison,
the right panel shows the light curve for the candidate, if we measure the PSF magnitude
at the same WCS position of the candidate in the target image, rather than measuring
in the difference image. In this case, the shape of the light curve is similar to the curve
of seeing size shown in Fig. 3.4. In this case, the PSF magnitude contains contamination
from surrounding stars; for an image with larger PSF size, the PSF magnitude tends to
be brighter due to contamination of the surrounding stars within the PSF size. Fig. 3.10
illustrates our photometry method of each variable candidate in each target image.

3.3 Results

After an identification of secure time-variable stars and their light curve measurements, we can
study properties for different types of time-variable point sources. Here we describe the main
results based on our analysis. There should still be a room to improve the transient search. We
first discuss effects of different data processing methods on our search of time-variable point-
source candidates, in § 3.2.2. Then we will discuss properties of different types of time-variable
point-source candidates in § 3.2.3.
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Figure 3.9: An example of the light curve of a secure time-variable point source candidate. We made
a photometry of the candidate in a dense star region, where multiple stars can be in a CCD pixel. We
first find a secure candidate from the image difference comparing the reference image and the target
image, as we described in Sec. 3.2.3. We then make the PSF photometry at the same WCS position of
the found candidate in each of the 194 difference images. Note that the PSF counts in the difference
image can be negative, if the candidate gets fainter compared to that in the reference image. Then
we add the PSF magnitude counts to the PSF magnitude at the same WCS position in the reference
image in order to estimate the total flux of the candidate at the time of the target image. Note that the
reference image is mostly form the best-seeing exposures at t ∼ 10000 sec. For comparison, the right
panels shows the light curve of the candidate if we use the PSF magnitude at the same WCS position
of the candidate using each of the target image, rather than using the difference image. The shape of
the light curve appears similar to time variation of seeing size in Fig. 3.4, reflecting that the estimated
PSF magnitude is overestimated for the image with larger PSF size due to contamination from the
surrounding stars in the image.
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Figure 3.10: An schematic illustration of our photometry measurement of time-variable point-like
source in the dense star region of M31. We made use of the difference image in the target image rather
than using the original image. The left image is a postage-stamp image around a secure time-variable
star candidate in the reference image. Then, the middle image shows the difference image for the
target image. We make the PSF photometry on the difference image at the same WCS position of
the candidate. The upper image show the case that the candidate in the target image appears fainter
than that in the reference image, while the lower image shows the case that the candidate appears
brighter than that in the reference image. By adding the PSF magnitudes in the reference image and
the difference image of the target exposure, we estimate the PSF magnitude of the target image as given
in the right panels.

3.3.1 Impacts of different data processing methods

As we stressed several times, a photometry in a dense star region of M31 is very challenging.
Hence, the different data processing methods change the photometry results of time-variable
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Figure 3.11: Comparison of the two images reduced by using different background subtraction methods.
Left panel shows an example of the difference image using the 6th order polynomial fitting for background
estimation, as in the lower right panel of Fig. 3.6. Right figure shows an example of the difference image
using the spline fitting method for the 64 meshes in each CCD chip (default method). This image
shows a residual pattern of the background field, which causes an inaccuracy in the photometry of
time-variable star candidates.

point-source candidates. Here we discuss effects of different analysis methods.

(1) Background subtraction for single-frame processing
As we stressed in § 3.2.3, background subtraction is an important process for precise
photometry (see § 3.2.3 for the detail). This process, however, is not simple especially for a
wide field imaging data like HSC. Normally we divide each CCD chip into different meshes
(the default subdivision is done into 64 meshes in each CCD chip), and then estimate
a smooth background by spline-interpolating the average counts over different meshes.
However, the spline fitting does not work well because a large number of stars in each CCD
chip cause a large variation of background counts even within the chip. Thus a over- or
under-subtraction of the background counts can often happen, leaving an inhomogeneous
pattern in the background-subtracted image as shown in the right panel of Fig. 3.11.

In order to overcome this inaccuracy, we employed a higher-order polynomial fitting of the
background. We employed the 10-th order polynomial fitting for the CCD chips around
the bulge region, which are particularly dense star regions. For other CCD chips, we used
the 6-order polynomial fitting.

The different background subtraction methods lead to a different number of time-variable
candidates. Fig. 3.12 compares the distributions of identified candidates based on the
different subtraction methods, the spline-fitting method (right panel: the default method
of HSC pipeline) and the polynomial fitting method developed in this paper (left panel).
The number of candidates found using the polynomial method is about 11,000, while it is
about 1500 candidates for the spline fitting method. Note that both the methods fail for
M31 bulge region and a region around NGC205, which are extremely dense star regions.
This is due to the fact that the pipeline can’t identify a sufficiently number of stars due to
too dense stars, with many saturated pixels, and warping different exposures to the same
WCS doesn’t succeed. Hence, we can’t either make the difference images for these regions.

(2) Star-flag treatments on astrometry procedure
One problem to note is that polynomial fitting often fails in mosaic procedure because
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Figure 3.12: Distribution of variable star candidates across the M31 region covered by 104 CCD
chips. The right panel shows the distribution of variable candidates obtained when using the spline
fitting method for background subtraction in each CCD chips (the default method of HSC pipeline).
For this case we found about 1500 candidates in total. The different color symbols are different types
of variable candidates classified based on their light curves. Left panels displays the distribution of
variable candidates obtained by using the 6 or 10-th order polynomial fitting method for each CCD chip
(see text for details). For this case, we found about 11,000 candidates. For a particularly dense star
region such as the bulge region or NGC205 region, our data processing method cannot properly work,
and we cannot properly find candidates of variable stars in these regions.

only limited number of stars are used for the calculation. This problem is caused by
the misdirection of cosmic rays as stars and the following misclassification of stars and
galaxies due to the wrong measurement of PSF magnitudes. Therefore we applied object-
size condition for PSF measurement, and abandon to use smaller candidates than default
condition for images with seeing worse than 0.8′′ (default minimum size threshold is 0.9,
and here changed to 1.3 for images with seeing ∼ 1.2′′). At this moment we have succeeded
to achieve a fairly accurate background subtraction using the polynomial fitting method,
as shown in the left panel of Fig. 3.11.

(3) Median background subtraction in the postage-stamp image around each can-
didate in the difference image
As we described, we use the difference image to perform the PSF photometry of each
time-variable candidate. However, the background subtraction is challenging and we often
find a residual background mode around a candidate in the difference image. For exam-
ple, if the difference image has a coherent negative counts around a candidate, the PSF
photometry cannot work, because the PFS function is a decaying function with radius,
asymptotically going to zero at large radii, and therefore a fitting of the PSF function to
the difference image of the candidate with varying either positive or negative PFS flux
parameter fails to reproduce the coherent background at large radii. To avoid a contami-
nation of the residual background to the PSF photometry of a candidate, we measure the
median background mode in 41 × 41 pixels around each candidate, subtract the median
background from the postage-stamp image, and then perform the PSF photometry of the
candidate in the difference image. Fig. 3.13 shows the improvement in the PSF photometry
due to the local background subtraction in the difference image. Based on the results, we
used the median background subtraction around each candidate in the difference image as
our default analysis. We succeed to discard more than 1000 fake events from images with
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Figure 3.13: Effects of residual background uncertainty in the difference image on the PFS photometry
of a time-variable candidate. The left and right panels show the postage-stamp image around the same
time-variable candidate: from left to right in each panel, the reference image, the target image, the
difference image and the residual image after subtracting the fitted PSF image from the difference
image. In the right panel, we found a residual background counts in the difference image. Due to
this residual background, the PSF photometry doesn’t work, and the rightmost image shows a residual
image after subtracting the fitted PSF image. Left panel shows that the PSF photometry can work
if the median background in the 41 × 41 region around the candidate is subtracted before the PSF
photometry.
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Figure 3.14: A typical example of a fake candidate whose light curve (upper panel) has a clear corre-
lation with the seeing variation (lower panel). The light curve has a sharp feature when the seeing size
has a sudden change.

median subtraction.

(4) Fake candidates due to imperfect PSF matching in the image difference process
Making the difference image or subtraction of the reference image from the target image
requires a matching of different PSFs in the two images; more exactly, the HSC pipeline
allows us to estimate the differential Kernel between the two PSFs so as to minimize
residual images in the difference image. However, in reality, an imperfect PSF matching
leaves residual fluxes of every object in the difference images. For some objects, the residual
images might pass our detection threshold (S/N> 5). Again, once a candidate passes the
detection threshold in a single target image, we will study the light curve of the candidate
over time. If this is the case, the light curve of such a fake object would correlate with
the seeing size. In fact we are finding such fake candidates, as shown in Fig. 3.14. At
the moment we think that such candidates are fake, if their light curve has a correlated
shape with seeing variations in time. We have found about 1,000 such fake candidates,
among 11,000 candidates. We simply made several ways tests in mosaic procedure by
changing the group of image used to solve astrometry: 20-frame grouping instead of 10-
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frame (current analysis), or 1-frame combined with one 30 sec exposure image. The number
of failure changed a bit but not drastically, because most candidates are detected in other
time-frames. Therefore we skip this part to continue the analysis.

3.3.2 Properties of secure candidates

In this section we discuss properties of secure candidates whose light curve has a typical transient
feature (flash, contiguous variation, etc.), as shown in the left panel of Fig. 3.12. Our classification
of different types of time-variable stars is based on our eye-ball checks of their light curves. We
found 11,462 secure candidates.

To study color of each secure candidate we used the g-band data of M31 that was taken in
the engineering run on June 16, 2013, in addition to our r-band data. The g-band data have a
seeing size of about 0.6′′, consist of 10 exposures, and have 750 seconds in total (120×5+30×5).
We made the coadd images of the g-band data. We used Kurucz (1993) to model the stellar
color taking into account the HSC filter responses we used.

In the following, we summarize properties of each type of time-variable candidates. The
typical light curve for each type is shown in Fig. 3.15, and the light curves for individual promising
candidates are given in Appendix C.
　

• Eclipsing binary
This type of candidates display a light curve with eclipse dip, during a given duration,
and then such a transient feature repeats with a given period. We classify these kinds of
candidates as an eclipse binary of stars, where two stars are rotating around each other and
either of the two stars causes an eclipse on another star, leading a dip in the light curve of
their total flux. The depth of ellipse, time duration and period are different from candidate
to candidate. All the candidates seem to be M-type stars based on their g-r colors. The
candidates are described in Fig. C.4.

• Binary stars
For candidates that have pulsating light curves, we classify those as candidates of binary
stars. If the two amplitudes of light curve within one period are similar, the stars have
almost same mass and size stars. Their g-r colors indicate that almost all binary systems
are M-type stars. About 10 systems have a period shorter than our observation duration
(about 7 hours), and the shortest period is about 1.2 hours. These short period binary
systems would be a contact binary system, where the two stars share the common envelope.
These binary systems we found are shown in Fig. C.5.

• Cepheid variable stars
For candidates whose light curves display a rising or declining curve over 7 hours with
about 0.1-1 magnitude change, we classify those as Cepheid variable star candidates. Most
Cepheid candidates are found along the disk region of M31, and the distribution seems
to match the distribution of classical δ Cep variable stars found by PAndromeda project
(Kodric et al. 2013). Due to the limited time observation, we can’t measure an entire period
of the light curve, so can’t determine the period of each candidate. Their g-r colors indicate
that most candidates are A- or F-type stars. Fig. C.6 show the Cepheid candidates.

• Stellar flare
For the candidates whose light curve shows a sudden magnification in brightness, followed
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Figure 3.15: Examples of the light curves for different types of variable star candidates, as described
in § 3.3.2. The panels in the left column, from top to bottom, show candidates of eclipse binary system,
Cepheid variable star, moving object in the Solar system, and deflection spikes. Similarly, the panels
in the right column show candidates of binary star system, star flare, a star near to CCD chip edge,
and RR-Lyrae variable star. Left column shows candidates of eclipsing binary stars, Cepheid variable
star, moving object in the Solar System, and magnification due to mirroring spikes; while right column
displays candidates of binary star, flare star, star close to CCD edge, and candidate of RR-Lyrae variable
star, from top to bottom. More details and examples are described in Appendix B and C.
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by an almost exponential decay, we classify the candidates as a stellar flare. The magni-
fication is typically 1 mag, but one candidate shows almost more than 2 magnitude mag-
nification. Their g-r colors indicate that most candidates are M-type stars. Hence, these
flare stars are likely to be in the MW halo region. Prominent star flare is a well-known
phenomena for a M-type star, and originates from a reconnection of the magnetic field in
the atmosphere as observed in the Sun. We didn’t find a flare candidate for G-type star.
This is consistent with the previous work, which shows that M-stars have more frequent
flare events because energetics in the atmosphere is more affected by their magnetic field
compared to G-type stars (Moffett 1974; Lacy et al. 1976; Henry & Newsom 1996).

• Moving objects: asteroids in the Solar system
These candidates are main confusion to microlensing search. These candidates display a
Gaussian-shape curve at the fixed WCS position. However, after more careful look of these
candidates, we found that these candidates are moving objects: point-source images in the
time-sequential difference images display a clear trail in the postage-stamp image region.
Hence, we consider these candidates as asteroids or comets in the Solar system. We have
so far found two promising candidates of asteroids.

• Fake candidates near to the edge of CCD chip
We sometime found fake candidates that are around pixels within a few pixels from CCD
chip edge. These are electrostatic effects near the edge of CCDs (a few pixels for our
Hamamatsu CCDs) which means that the photometry is incorrect. This magnification
feature is unique property for shot-period sampling: from the same test as discussed in
§ 3.3.2, we found that candidates from longer sampling selection are not sensitive to this
incorrect photometry. One example is displayed in Appendix B.

• Artificial candidates due to imperfect photometry correlated with seeing size
These are fake candidates whose light curve is as shown in Fig. 3.14. Even if we identify
a candidate from a PSF-like source in the difference image and then make the photometry
to measure the light curve from the time-sequential difference images, the resulting light
curves has a similar shape or correlation with seeing size. Hence, we conclude that this
is due to an imperfect subtraction of the reference image from the target image due to
the imperfect PSF measurement. Hence, we think that the light curve has a correlation
with the seeing size. In particular, the exposures around ∼ 3500 and ∼ 14, 000 sec have
a bad seeing (∼ 1.0′′), and the light curve shows a feature (e.g. bump or dip) around
the particular epochs. When a CCD pixel has a defect, it sometimes causes an artificial
image in the difference image. Furthermore, we sometime found artificial candidates in
the vicinity of a bright star due to the imperfect image subtraction. After checking these
images by visual inspection, we identify these fake objects. Some examples are shown in
Appendix B.

• Candidates whose light curve peaks at the best-seeing epochs
1,000 candidates have a similar light curve which peaks at the best-seeing epochs. The
exposures of best-seeing conditions are deepest, and the PSF photometry at the candidate
position has least contamination from the surrounding stars. Most candidates have a peak
magnitude of r ∼ 24.5 - 25, and the distribution of these candidates is across the halo region
of M31. If these candidates are RR-Lyrae variable stars, which have an absolute magnitude
of r ∼ 1mag, the apparent magnitude is consistent with the hypothesis that the RR-Lyrae
stars are in 750 kpc distance, which is the distance to M31. However, selection from color
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criteria of the Solar spectral models suggests that many of them are M-type or K-type
stars, which is inconstant with empirical law that RR-Lyrae variables tend to be A-type
or F-type stars. Still there are more than 100 candidates of A-type or F-type candidates.
Note that currently we cannot distinguish these candidates from fake candidates (see the
detail in § 3.3.2).

Following the above study we also get some indication of event properties as follows:

(1) Frequency of time variables for each type of variable stars
Our observation has unique property that many light curves has a peak ∼ 11000sec,
around the best seeing period as displayed in Fig. 3.14. To see if these peaks are real, we
imposed another detection conditions as following § 3.2.3: first separate all images into
even-odd groups using serial numbers. For each group we conducted the same detection
tests as mentioned before; imposing selection conditions to the each stacked images that are
composed of five time-sequential images. The final time-variable candidates are constructed
from those which passed the conditions more than twice. Therefore we construct two sets
of candidates which can imply for the variable stars with timescale longer than 20 minutes.

We compared the two results of even-odd tests with the candidates of 10 minutes cadence,
derived from § 3.2.3. The candidates are be classified into three groups by the detection
frequency and property: the first group including those detected in both even-odd cases,
the second corresponding to those detected either in even-odd criteria, and the third con-
structed by those detected in only in previous analysis. The first group includes candidates
that are feasible, most of which contain smooth curve or bumps; characteristics often seen
in Cepheid stars or binary stars. Also the candidates categorized in the third group are
likely to be fakes because many of them have noisy behavior or log-flux peaks. The unique
event with peaks around the best seeing are contained in all three group sets, with almost
the distribution for three cases. The same is true for events with sub-peaks correlated with
the variation of seeing. Although we cannot get clear implications for the seeing-correlated
events, this sampling rate test can work as a way to remove fake candidates.

(2) Color and magnitude property
Color and magnitude are important rulers to measure the stellar property. In this study
we classify the time-variable candidates with these properties. Fig. 3.16 shows the results.
Color selection suggest that many variable candidates have colors corresponding to low
temperature stars, with similar distribution as suggested by faint star distribution. Also,
most of stars in M31 disk have similar color or magnitude properties with g-r ∼ 0.

　

3.4 Searching for microlensing events of PBH for cadence

M31 observation

As we have so far described, we found about 11,000 time-variable candidates from our analysis.
We search, from the host sample of candidates, for microlensing events due to primordial black
holes that might exist in the halo regions of MW and M31. After briefly reviewing basic properties
of microlensing, we estimate an expected event rate of the microlensing for stars in M31 assuming
that all the dark matter in halo regions of WM and M31 are PBHs of an assumed mass scale.
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Figure 3.16: Event classification from color and magnitude implications. Upper panels: candidates
categorized by g-r color conditions; each star-type category is calculated by combining HSC filter
model as displayed in Fig. 3.3 and stellar spectrum of Kurucz air model (here we adopt solar type
stars of Kurucz 1993). Note that we only take into account temperature information for stellar-type
classifications. Left panel shows all candidates, and right panel excludes stars with low temperature.
Lower panels: candidate distribution classified by r-band magnitude in the reference image. Left panel
shows all candidates, and right panel shows only those brighter than 23 magnitude.

We then use a simulation of the microlensing taking into account observational conditions and
noise in order to estimate a detection efficiency of the microlensing events. Finally we estimate a
number of source strs in M31 from the HSC data and then derive constraints on the abundance
of PBHs from our search of the microlensing events.

3.4.1 Basic properties of microlensing events from Massive Compact
Halo Objects (MACHOs)

In this section we briefly summarize microlensing properties. We especially take into account
the pixel lensing regime in our survey, where we need additional care other than basic canonical
microlensing scheme.

(1) Optical depth of microlensing event
We consider a microlensing event illustrated in Fig. 3.17 following Paczyński (1986). Here
we define, by “microlensing”, as a phenomena where a background source enters within an
Einstein radius of PBH on the sky, leading to a large magnification effect on the background
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Figure 3.17: The systems describing gravitational microlensing effect. Left figure shows a case when
a source star enters the Einstein radius of a lens star. Right figure describes the simplified system of
Fig. 3.1; light from source object are bent to form multiple images, but their separation is too small to
be resolved for us.

source: r0 < RE. If we consider a distribution of PBHs in between an observer and a source
star, which are PBHs in halo regions of MW and M31 for our case, we can define an optical
depth of microlensing for a source star:

τ =

∫ DS

0

n(DL,M)πR2
E(DL,M)dDL (3.15)

where n(x,M) is the number density of PBHs with a single mass M and at distance xDS

from an observer. RE is the Einstein radius defined as

R2
E =

4GMD

c2
, D =

DLDLS

DS

= DSx(1− x) (3.16)

where DL, DLS and DS are the distances between the observer and the lens PBH, the lens
and the source star, and the observer and the source, respectively. Then we can rewrite
optical depth using the average mass density ρ = nM :

τ =

∫ 1

0

4πGD

c2
ρ(x)dx (3.17)

Thus optical depth τ does not depend on the mass of MACHOs M , and only depends mass
density ρ(r) as a function of the distance from galactic center r. Note that we throughout
this paper consider the optical thin limit, τ < 1.

Next we model the mass distribution between M31 and us in the Milky Way Galaxy (MW).
We assume that the dark matter distribution in each halo region of MW or M31 is given
by an Navarro-Frenk-White (1997; hereafter NFW) model

ρNFW(r) =
ρc

(r/rs)(1 + r/rs)2
, (3.18)

where rs is the scale radius and ρc is the central density parameter. We adopt ρc = 1.40×107

M⊙/kpc
3 and rs = 16.1 kpc for MW (Nesti & Salucci 2013), and ρc = 4.05× 107 M⊙/kpc

3

and rs = 8.18 kpc for M31 (Geehan et al. 2006). These NFW profiles are shown to reproduce
the observed rotation curves for MW and M31, respectively (Klypin et al. 2002). Taking
into account the fact that the Earth (an observer) is placed at distance, R⊕ = 8.5kpc, from
the MW center, the distance to a PBH at distance DL is given as

r(DL) =
√
R2

⊕ − 2R⊕DL cos(l) cos(b) +D2
L (3.19)
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Figure 3.18: Left panel: Mass density profile as a function of distance from the Earth (an observer) in
the direction to M31. We assume that the Earth is at 8.5 kpc from the MW center. We assume NFW
profiles for the mass density profiles either of which is consistent with the observed rotation curve of
MW or M31 as proposed in Klypin et al. (2002). The mass density profile is given by a superposition of
the two NFW profiles. Right panel: The differential optical depth of microlensing due to PBH of mass
10−7M⊙ at the distance xDS [kpc] (DS = 770 [kpc], 0 < x < 1) from an observer, for a star in M31.
Here we assumed that the mass in the MW and M31 halo regions is fully composed of PBH.

where we assume the M31 position in Galactic coordinates as l = 121.2◦, b = −21.6◦ as
mentioned in § 3.2.1, the distance to M31 is DS = 770 kpc. As for M31 halo profile we take
into account the location of the targeting field (patch=2,6), which is ∼ 6.7 kpc away from
the M31 center. The left panel of Fig. 3.18 shows the mass density profile as a function
of distance from the Earth towards to M31, while the right panel shows the differential
optical depth; integrating the curve up to a given distance, xDS (x axis) gives the optical
depth. Thus optical depth for a star in M31 is τ ∼ 2× 10−6, that means that microlensing
is very rare even for a single source star. However, we consider a millions of source stars
in M31, we expect one event, if dark matter in halos of WM and M31 is made of PBHs.

Note that one can calculate optical depth from the property of microlensing event detected.
The estimator is given by

τobs =
1

E

π

4

∑
i

t̂i

ϵ(t̂i)
(3.20)

where t̂i is typical timescale of microlensing, ,ϵ(t̂i) is detection efficiency for i-th microlensing
event, and E is the total exposure in the unit of [The number of stars observed(star)×observation
length(years)]. Thus optical depth can be a indicator of halo models by comparing the
model estimator with observation.

(2) Expected event rate
In the following we calculate the expected number of microlensing events of PBHs per
unit observation time – i.e. expected even rate. If a source star moves across the Einstein
radius, with a relative velocity on the sky, v, the time scale of microlensing is computed as

T =
2
√

R2
E − d2

v
=

2

v

√
4GMD

c2

√
1− β2 = 2t0

√
1− β2 (3.21)

where RE is the Einstein radius, d is the shortest separation between star and PBH, and
β ≡ d/RE is the impact parameter. To model the velocity component, we assume that
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each PBH in the halo region of MW or M31 moves according to the gravitational force of
the interior mass at the PBH position:

Vhalo =

√
GMran(< r)

r
(3.22)

where Mran(< r) is the interior mass at radius r from the center, defined as

Mran(< r) = 4πρsr
3
s

[
ln(1 + x)− x

1 + x

]
, x = r/rs (3.23)

The typical time scale of microlensing can be estimated as

t̂ = 2t0 ≃ 3.5hours

(
M

10−7M⊙

) 1
2
(

xDs

100kpc

) 1
2
(

v

200km/sec

)−1

(3.24)

Here we employed Vhalo = 200km/sec for the typical velocity v, and considered PBHs with
mass scale of 10−7M⊙ and at distance 100kpc from us, as an example. Therefore the event
rate of microlensing can be calculated as:

Γ =
4

π

τ

t̂
= 0.91

(
M

10−7M⊙

)− 1
2
(

xDs

100kpc

)− 1
2
(

v

200km/sec

)
[events/star/year] (3.25)

Next we take into account the velocity dispersion of PBH for precise modeling by assuming
the Maxwell distribution:

f(v; r) =
1

π
3
2v3c

e
− v2

V 2
halo d3v⃗ (3.26)

Then the event rate can be expressed in the cylinder coordinate d3v = vrdvxdvrdθ as:
(Griest et al. 1991)

dΓ =
ρ(r)

M
f(v)v2rcosθrEdvxdvrdθdαdx (3.27)

where we assume that velocity direction of PBH is isotropic, and the mass density is
consisted of NFW density profiles of MW and M31 halo. The integral can be calculated by
substituting the variable as: t̂ = 2RE

vr
. Therefore the event rate of microlensing is given by:

dΓ

dt̂
=

32DS

t̂4Mv2c

∫ 1

0

ρ(x)R4
Ee

− 4R2
E

t̂2v2c dx [events/star/year2], (3.28)

As for PBH in MW halo, we convert the lens distance r, originally expressed in the galactic
coordinate (l, b) to the the distance x normalized by DS following the same way as in
Eq. 3.19: r2 = R2

⊕ + (xDS)
2 − 2R⊕xDScoslcosb, where R⊕ is the distance from the solar

system to the Galactic center. Fig. 3.19 displays the event rate for lens PBH in either MW
halo or M31 halo, and source stars in M31 (DS = 770 kpc). We calculated for cases with
PBH mass of M = 10−7-10−9M⊙. The event rate for PBH mass M can be calculated by
scaling the m = M⊙ case with

√
M for horizontal axis and M−1 for vertical axis. The left

panel of Fig. 3.19 shows the expected event rate from our data, showing that PBH in mass
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Figure 3.19: The differential event rate of microlensing due to PBHs, per unit observation time (hour),
per a single star in M31, and per unit time scale of mirolensing (hour). The x-axis is the timescale of
mcorlensing. Here the mass distribution of MW or M31 halo region is given by the NFW profile, all the
dark matter is made of PBHs, and we considered PBHs with mass 10−9, 10−8 or 10−7M⊙, respectively.
The lighter PBH has a shorter microlensing time scale. Right panel shows the relative contribution to
the microlensing rate due to PBHs in either MW or M31 halo region.

range 10−9M⊙ - 10−7M⊙ has maximum event rate in our sampling rate. Also one example
of the contribution from PBHs in the two halos is given in the right panel.

We can calculate the total event rate by integrating Eq. 3.28 with t̂:

Γ =

∫ ∞

0

dΓ

dt̂
dt̂ = 1.7× 10−6

(
M

10−7M⊙

)− 1
2

[events/star/hour] (3.29)

The average timescale t̂ is also given by:

⟨t̂⟩ = 1

Γ

∫ ∞

0

t̂
dΓ

dt̂
dt̂ = 1.8

(
M

10−7M⊙

) 1
2

[hour] (3.30)

(3) Light curve characterization in pixel lensing regime
The property of microlensing event is characterized by two factors: magnification amplitude
and event duration. These two quantities are characterized by the Einstein time scale tE
and the maximum magnification of the light curve, A0.

As we described, our definition of microlensing is the case that a source star enters within
the Einstein radius of PBH, which correspond to the magnification A > 1.34. In the pixel
lensing method we need to discriminate the lensed star from other stars. When extracting
the physical parameters from the observed light curve of microlensing, it is known that
the fitting gives a strong degeneracy between the Einstein time scale (tE) and the impact
parameter β (Gould 1996; Baltz & Silk 2000).

In order to quantify the microlensing event, we adopt two observables for characterizing
the events following Riffeser et al. (2006): the full-width-half-maximum timescale of the
event (tFWHM) and the flux excess above the background (∆F ). These two quantities are
related to the canonical microlensing parameters as following: First we characterize the
event duration as the full width of the half-maximun peak in the light curve. By definition,
tFWHM of a light curve can be described as:

A

(
tFWHM

2

)
− 1 ≡ A0 − 1

2
(3.31)
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where A0 represents the maximum magnification of the light curve. Here we will charac-
terize the timescale as a function of impact parameter β, the quantity described as umin in
Eq. (3.10). Then we can rewrite the timescale in the same way as described in Gondolo
(1999):

tFWHM = tEω(β) (3.32)

where

ω(β) = 2
√
2f(f(β2))− β2, (3.33)

f(x) =
x+ 2√
x(x+ 4)

− 1 (3.34)

where ω(β) satisfies ω(β ≪ 1) ≃ β
√
3, and ω(β ≫ 1) ≃ β(

√
2 − 1)0.5. Next we describe

another parameter to represent the amplitude of light curve. In image difference tech-
nique it is much convenient to adopt the maximum flux of the event instead of maximum
magnification:

∆Fmax = F0

(
β2 + 2

β
√
β2 + 4

− 1

)
(3.35)

where ∆F represents the excess flux due to microlensing effect. Following the image dif-
ference technique we can set the detection threshold flux ∆Fdet as: ∆Fdet ≡ F (t)− Fref =
∆Fbl + F0(A(t) − 1). Note that ∆Fbl = 0 holds for case where the source is not affected
by gravitational lensing effect.

3.4.2 Current status: constraint of PBH abundance from HSC M31
data

In this section we describe the current status of microlensing analysis. Here we briefly summarize
the results of our analysis using the data of one patch region alone, “patch=2,6”, which is located
between the halo and disk regions of M31.

(1) Null test
A detection efficiency of microlensing event is sensitive to the noise properties in the
difference image. To estimate the noise field in the difference image difference, we use the
following method. We first randomly select 1000 points in a bank region of the difference
image (excluding the region of a candidate). Second we make the PSF photometry of the
random points. Then we compute the variance of the PSF magnitude, which gives us an
estimate of the noise field in the patch. Note that, in estimating the noise variance, we
performed the median background subtraction in the difference image of the patch as we
described above.

Fig. 3.20 shows the case with noise threshold 1σ, 3σ and 5σ flux converted to magnitude
unit. On each panel, square symbols are tests with difference images constructed from
time-sequentially five-stacked images, and circle marks are tests with difference images of
each visit. We used the former images for detection and the latter images for photometry.
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Figure 3.20: An estimation of noise variance in the difference image. Here we show the results for
the difference image of patch=2,6 as an example. We randomly select 1000 points in a blank region
of the difference image (as shown in the right panel), measure the PSF magnitude of each point and
then estimate the variance of PSF magnitude. The left panels shows the noise variance, 1, 3 or 5sigma,
as a function of observation time. The square symbols show the results when using the coadd images
of 5 time-sequential exposures for the difference image. The circle symbols, connected by the line, are
the results for each exposure. The difference in the upper and lower plots, in the left panel, is with or
without the median background subtraction of the difference image.

As expected, the noise gets smaller when we stacked five images than cases with each image.
Also it is proved by comparing the upper and lower panels that the threshold gets smaller
for the measurement with local median subtraction. The results imply that stars with base
magnitude 25 or 26 magnitude are around the borderline for 5 or 3 sigma noise thresholds
respectively.

(2) Magnification threshold from photometry error
Until now, we define magnification threshold of microlensing event as A > 1.34 in this
experiment. To see if the threshold is proper, we looked into the uncertainty of PSF
photometry. Fig. 3.21 shows the magnitude or PSF flux error distribution of field stars on
the reference image. The error distribution indicates that stars with PSF flux ∼ 0.6[ADU]
at 90 sec exposure, corresponding to stars brighter than 25.8 mag can barely probe A > 1.34
magnification. Although this flux error comes from reference image and the measurements
on difference images might have different effect, we conclude that 3σ threshold Fig. 3.20
can work as noise threshold by comparing the result in the upper panel.

(3) Detection efficiency
We have so far employed the formal definition of microlensing that a source star should be
within the Einstein radius of a foreground PBH, corresponding to the magnification A >
1.34. However, it is unclear whether the lensed source can be detected by our observation.
The detection threshold should depends on the intrinsic brightness of a source star, the
noise field in the difference image, the amount of lensing magnification, and the time-scale
of light curve in order for us to capture the light curve within our observation time duration
(7 hours). Thus we need to properly estimate the detection efficiency.
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Figure 3.21: Uncertainty of star flux in our data. Left panel shows PSF magnitude errors of each
star. The star samples are constructed from the star catalog of the targeting field (the detail of catalog
property is described in § 3.4.2). Right panel displays the PSF flux error in the unit of ADU for the
same star samples of 90 sec exposure. The red line corresponds to the border line that flux error is
above or under 0.34 times of PSF flux, which indicates that stars with PSF flux larger than the line can
overcome the magnification condition: A > 1.34. The error distribution indicates that stars with PSF
flux ∼ 0.6[ADU] at 90 sec exposure, corresponding to stars brighter than 25.8 mag can barely probe
A > 1.34 magnification.

Detection efficiency is simply given by ϵ(t̂i) ≡(The number of detected events)/(Total
number of events occurred). In the following we discuss the two kinds of tests performed
for efficient estimation; one with simulated light curves, and the other with embedded
candidates in the image.

a) efficiency test with light curve simulations
First we studied the event property with simulation of microlensing light curves. The
theoretical light curves are constructed by mimicking our detection method as in
§ 3.2.3; we simulated the time-variated flux of each event in the difference images. For
each event we change the conditions using three parameters; Einstein time scale tE,
impact parameter β, and the time when maximum amplification occurs tmax. Note
that impact parameter is decided to meet the condition 0 < β < 1, and typical
time scale tFWHM and maximum flux parameter ∆Fmax are calculated from the above
parameters. Also for excess noise parameter, we correct for the base flux in the same
way as derived from image difference technique; the reference magnitude is constructed
from the average of 10 best-seeing frames.

By assuming cases with the PBH mass 10−7M⊙, we created every 1000 events for
different tFWHM, and counted the number of events when more than three data points
continuously passed the 3σ noise threshold as in the upper panel of Fig. 3.20. For the
event time scale we take 5 minutes for the minimum so as to have more than three data
points above the noise threshold. We also take 11 hours as the maximum timescale
because events longer than this timescale have longer half-width-half-maximum than
the total observational time, which makes it difficult to discriminate the microlensing
event with other variable star such as Cepheid variable stars. On each light curve we
add the flux noise to the simulated microlensing flux measured at the random point in
the difference image. One example of simulated light curve is given in Fig. 3.22. Note
that 1000 points are selected by avoiding the CCD edge region, because we cannot
measure the flux property at that point.

Fig. 3.23 describes the detection efficiency for events with different timescale and
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Figure 3.22: One example of simulated light curve of a microlensing event in the difference image.
Red points indicates the simulated light curve, taking into account the flux noise at an assume position
in the difference image at a given time. Smooth blue points is the fitting curve of the simulated light
curve, and faint blue lines in the background represents the 3σ noise threshold.
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Figure 3.23: The detection efficiency estimated from light curve simulations taking into account the
noise field in each difference image of 194 target images we used for the analysis (see text for details).
Here we generated Monte Carlo simulations of microlensing events randomly varying the two parameters:
the impact parameter (or maximum lensing magnification) and the FWHM time scale parameter, for
source stars of a fixed magnitude as indicated by legend. The x-axis is the microlensing time scale. The
detection efficiency for each source magnitude is estimated from 1,000 realizations.

source magnitudes. There exist drastic drops of detection efficiencies for events longer
than the observational period, longer than 7 hours. one reason for this effect is that
fitting by theoretical microlensing light curve does not work for these events because
of unstable baseline. For events with time scale shorter than observational period, the
detection efficiencies are almost constant for stars brighter than 23 magnitude. On
the other hand, when the source stars fainter than 24 magnitude have lower detection
efficiency, which indicates that faint stars need some specification to pass the threshold.
Another characteristics of detection efficiency is that it takes lower value for events
with shorter time scale. This is reasonable for shorter events because it is hard for
them to pass the threshold when magnification peak falls in high noise period.
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Figure 3.24: The distribution of microlensing parameters for source stars with 24 magnitude. Each
point is derived by the fitting of a simulated light curve. We tested 400 events for every event with
different time scale. Here we perform the fitting with two parameters; impact parameter β and timescale
parameter tFWHM, and the maximum time of the event tmax is fixed at the time of maximum flux.

We also looked into parameter properties that meet the selection conditions, just by
fitting the simulated light curves with theoretical microlensing prediction. To simplify
the case, we fit the light curves with tFWHM and β parameters, and fix tmax as the
time of maximum peak during observation. Fig. 3.24 shows the best-fit parameter
distribution derived from simulated events of 24 magnitude. This figure indicates
that β has some threshold for all the time scale, suggesting that events are detected
only when source stars come close enough to the center of PBH lens in the line of
sight.

b) efficiency test with fake object simulations
We performed another test to estimate the detection efficiency in more concrete way;
burying fake microlensing stars in the observational CCD imaging data and proceed
the same analysis as mentioned in § 3.2.3. Thus we can include the PSF smoothing
effect followed by the stacking or subtracting procedures, which might affect the flux
count in the output images. Also we can take advantage of the same detection condi-
tion, including shape conditions or the residual condition, which are all neglected in
the light curve simulations.

Fake stars simulations are all performed by fake-pipe module installed in HSC-pipe,
which enables one to bury fake stars in CCD reduced image by means of PSF infor-
mation in that field. In order to study the detection efficiency we buried 1000 stars
at random position, avoiding the CCD edge regions. The flux variation due to mi-
crolensing effect are calculated in the same way as we performed in the light curve
simulation; taking tE, β, and tmax as free parameters.

Fig. 3.25 shows the comparison of detection efficiency derived from the different tests:
light curve simulation, light curve simulation with successful fitting, and burying tests.
Among the results from source stars of 24 magnitude, burying test implies slightly
smaller efficiency compared to tests with simulated light curve. This might come
from the additional performance of HSC-pipe for the subtraction and detection in the
difference images. In the following we adopt the implications from simulated light
curves although the estimation is very optimistic.
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Figure 3.25: Comparison of detection efficiency from different tests, focusing on the results from stars
with 22 and 24 magnitude (All the error-bars come from Poisson noise). Small circles show the results
from light curve simulations (the same as shown in Fig. 3.23), and large marks represent the results
from fake image simulations, where we inject fake point source in the real image and performed the
same analysis of microlensing search.

(4) Star number counts in HSC M31 data
The expected number of microlensing events in a field greatly depends on the number of
source stars in that field (see the detail in § 3.4.3). However in M31 field, it is hard to
estimate the star number counts because multiple stars are expected to exist in one pixel
and cannot be resolved; the situation so-called pixel lensing regime. In the following we
describe our test in the targeting field to seek for better estimation way of the star number
counts .

In the first step we take a look at the star property in the targeting field by taking advantage
of the reference image with seeings ∼ 0.45. Even in the pixel lensing regime, stars in M31
halo region are almost resolved with the help of high resolution. Therefore we constructed
two kinds of star catalogs by HSC-pipe, and look into the properties. The properties of
two catalog are summarized as follows:

(1) Star catalog constructed by HSC-pipe — containing stars detected by multiband.py
programs, which performs auto-debrending procedures. Photometry was performed
on fixed point with PSF magnitude. Due to the failure of the program, stars are
selected only from partial regions.

(2) Peak catalog — including the positions of auto-detected peaks by HSC-pipe. For each
peak we perform PSF photometry. The distribution of peaks is spread all over the
image, but some magnitude threshold might prevent the detection of dark candidates.

Fig. 3.26 shows the magnitude distribution of stars for three regions: halo region, targeting
region in-between halo and disk, and bulge region. Basically two catalogs have similar
distribution, but the number counts from star catalog tends to be lower than that of
peak catalog due to the lack of analyzed region in star catalog. Also for distribution
of number counts, star catalogs tend to have log-declined slope in the fainter end while
peak catalogs have magnitude threshold, both of which is inconsistent with the monotonic
increase tendency suggested by empirical star luminosity function (ex. Mamon & Soneira
1982). We also calculate the sum of pixel count with PSF count from catalog, with the
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Figure 3.26: The number counts of stars in some patch regions of M31. Here we employ 0.1 mag for
the magnitude binning, and considered two different catalogs of stars. The blue histogram shows the
number counts for stars that are identified by the HSC pipeline based on the imposed conditions. The
green histogram shows the number counts for ”peaks” that are identified from local peaks in the flux
field in each image. Left panel is from M31-halo region (patch=1,5), middle panel is from halo-disk
region corresponding to the targeting field in this section (patch=2,6), and right panel is from bulge
region (patch=4,4).

Figure 3.27: Flux and peak number counts distributions of HSC-M31 region. The rectangles in each
map show analyzed regions: blue rectangle is M31-halo region (patch=1,5), cyan one is halo-disk region
corresponding to the targeting field in this section (patch=2,6), green one is disk region (patch=3,8),
and red one is from bulge region (patch=4,4). Both panels are plotted with linear color scales; white
side of the bottom color bars means larger and black means smaller. Left panel shows the distribution
of the average flux counts in the unit of patch, suggesting the existence of very bright patches around
M31 bulge and NGC205. Right panel shows the distribution of the number density of peaks. The
number counts of peaks is smaller for disk and bulge regions, which is inconsistent with higher pixel
counts compared to halo region.

sum of the whole pixel counts in the image. The result is summarized in the following
table, which indicates that the total PSF count calculated with peak positions is in the
same order of total pixel count.

From the above pixel count result, we conclude that the peak catalog can basically work
as star catalog of the targeting field. We also consider that the number counts can be
more safely estimated by extending the threshold magnitude up to around 26 [mag] with
monotonically increased counts following empirical luminosity function and the halo region
case (in the left panel of Fig. 3.26).
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Table 3.1: Properties of flux count and star number counts for sub-regions of HSC-M31

Region #patch Total pixel count Total peak count Total Star count #peaks #stars
Halo 1,5 3.11× 106 2.34× 106 1.52× 105 147387 14807
Halo-disk 2,6 4.71× 106 5.70× 106 9.66× 105 136933 40976
Disk 3,8 4.87× 106 6.12× 106 8.86× 105 119188 32694
Bulge 4,4 5.91× 106 1.24× 106 2.32× 106 124096 46904

Note: Total pixel count property in different regions; M31-halo region (patch=1,5), halo-disk region cor-

responding to the targeting field in this section (patch=2,6), disk region (patch=3,8), and bulge region

(patch=4,4). The total PSF count of the targeting region (patch=2,6) derived from peaks is in the same

order as total pixel count of that image.

Figure 3.28: Color-magnitude diagram for three regions constructed from star catalog: halo region
(patch=1,5), targeting region in-between halo and disk (patch=2,6), and bulge region (patch=4,4) from
left to right. Red giants in M31 are expected to show up around g0 ∼ 25mag and (g − r) ∼ 1.0
region (corresponding to yellow box; red giants in MW is expected in blue-box region). However, we
cannot study the expected clumpy property due to the failure in the debrending process of multiband.py
program, which prevent the statistical study of the stars.

Note that there exists a conventional way to correct the field magnitude by combining
extinction map and empirical luminosity function. Magnitude property differs due to the
dust distribution in the field, which redden the magnitude in homogeneously even within
the same galaxy, and might cause a systematic bias and large uncertainty. Extinction map
can be constructed by studying the sub-field properties; taking advantage of the color-
magnitude distribution of Red Clump Giants in that field (Paczyński et al. 1999). We
draw color-magnitude diagram by g-band and r-band star catalog as in Fig. 3.28, and
searched for red giants such as Asymptotic Giant Branch (AGB) stars by Kurucz (1993)
air model. However, due to the magnitude cut in the star catalog we could not estimate
the property of Red-Clump stars from the diagram.

As for magnitude bias, we take into account extinction effect when modeling the M31 halo
density profile, because inhomogeneity can largely bias the microlensing result especially for
M31 halo-lensing case. Currently for the self-lensing case we do not allow for the extinction
effect because Andromeda Galaxy is 20 degree away from the galactic plane, which makes
the inhomogenity small enough compared to M31’s contribution.

(5) Event selection on M31 data
In this section, we describe our selection criterion for microlensing events with HSC-M31
data. Basically we applied the same selection criterion as we imposed in simulation: noise
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Figure 3.29: Expected number of microlensing events for source stars in the patch=2,6 region, as a
function of PBH mass in the horizontal axis. The right panel shows an upper limit on the abundance
of PBHs assuming we don’t have any secure candidate of PBH microlensing (no detection). To convert
no detection to the upper limit, we assumed that some portion of dark matter in the halos regions of
MW and M31 is made of PBHs, parameterized by ΩPBH/ΩDM in the vertical axis.

threshold and fitting condition. We select candidates by fitting theoretical microlensing
light curve with our database, with errorbars from PSF photometry. Here we take the base
magnitude As for the 176 candidates in targeting field of patch=2,6, for example, we have
no candidate to have best-fitting parameters by successful fitting.

There are some candidates which can pass the fitting conditions. For example, the light
curve of moving object, the third figure in left law of Fig. 3.15 can be fitted by microlensing
light curve. As we have no criterion to clearly exclude such candidates, for now we just
exclude them by comparing with image or eye-ball selections.

3.4.3 Constraint on abundance of PBHs

From the all the results above, we can derive the mass fraction of PBHs occupying the entire
halo. In the following we estimate the fraction by null detection of microlensing event at
the targeting field (patch=2,6). First we consider the expected number of microlensing
events, taking into the account of the detection efficiency we estimated above. Here we
assume the halo model of Milky Way galaxy as the standard exponential model. Then the
event rate can be estimated as:

dΓ

dt̂
=

32DS

t̂4Mv2c

∫ 1

0

ρ(x)R4
Ee

− 4R2
E

t̂2v2c dx [events/star/yr2]

where M is the mass of PBHs, and t̂ is the duration time of the microlensing event. In the
case where MACHO has flat mass distribution like delta function, the expected number of
events Nexp with MACHOs of mass M is estimated as the integral of the event rate via t̂,
multiplied by duration time and the total exposure:

Nexp(M) = E

∫ ∞

0

dΓ

dt̂
(t̂,M)ϵ(t̂)dt̂ (3.36)

where E is the multiplication of the number of stars and the total observational period in
the unit [star×years]. By assuming that the length of our observation is 7 hours and the
targeting field (patch=2,6) contains 1.4× 105 stars, We can calculate the expected number
of events as in the left panel of Fig. 3.29.
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Figure 3.30: Summary of upper bound on the abundance of PBH, as its contribution to dark matter,
in comparison with other constraints (Capela et al. 2013a). The orange line is the upper limit obtained
from this thesis work using the 4 patch fields as used in Fig. 3.27. The red dashed line is the constraint
if using all the data of M31 (very preliminary) and assuming no detection of PBH microlensing.

From this result we estimate the mass fraction of PBH to dark matter. Assuming that the
event has Poisson distribution, the upper limit where less than one event happens in 95%
confidential level is Nexp < 3.7. Then we can put upper limit on the dark matter fraction
of PBHs in the total dark matter halo as:

flim(M) =
3.7

Nexp(M)
(3.37)

Note that this upper limit holds whichever the lens body resides in the Milky Way halo
or not. The current limit from four-patch fields from our analysis is presented in the right
panel of Fig. 3.29. We also display the constraint expected from the whole field of view by
the fact that total star counts from peak statics are 6, 843, 112.

3.5 Discussion and summary

In this work we discussed our tests of nature of dark matter on star scales, and searched dark
matter candidate so-called primordial black hole (PBH). We make use of microlensing effect
for the search which is expected when PBH comes in the line of sight of background stars.
Microlensing effect is rare event; only one in million stars can happen. Thus we used the Hyper
Suprime-Cam (HSC) images of Andromeda Galaxy (M31) on stars in M31 to gather large number
of stars and achieve higher event rate. The PBH is one of viable candidates for dark matter,
and we performed tests to establish a way to constrain the abundance of PBHs of mass scales,
10−9-10−7M⊙, with the dense-cadence imaging data from wide-field camera. One large problem is
that default analysis mode of HSC-pipe software could not reduce the images with large number
of stars; which caused troubles as in background subtraction, star catalog construction, image
difference, and event detection. Therefore we managed to establish the reduction method as
described in § 3.2 and § 3.3, to extract transient candidates from the images.
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From the reduced images we performed two kinds of analysis: transient study and microlens-
ing implication. As for transient study we succeeded to extract as much as ∼ 11, 000 transient
candidates. We draw light curves for all the events and classified them by peak characteristics,
g-r color and magnitude. These characteristics help us figure out unique candidates as well as
noise properties. The summary of candidate characteristics is provided in § 3.3 and Appendix B
and C. We also started the second analysis; estimating microlensing properties and implication
expected from our data. Currently we could not find any microlensing candidates from the data
by the fitting of theoretical microlensing light curve. Thus we started to estimate the upper
limit of mass fraction of PBH to the total dark matter abundance implicated from our data. As
our data covers large field of view, we need to take into account field-dependent properties such
as star number counts and extinction. Therefore we divided the field of view into 10 × 10 sub-
regions. In the first step we carefully looked into one single patch targeting region (patch=2,6)
to reveal the position dependence, somehow succeeded to estimate the star number counts in
the field. Our method constructed for one patch can be basically applied for wider field survey
simply by considering position dependence and repeating the analysis. Also we make sure that
our observation achieves strongest constraint on the mass fraction by simplified analysis.

This project is still ongoing, and we might need further investigation of microlensing property.
Especially disk and bulge region we might need further correction for estimating the magnitude
or number counts of stars, because peak counts might not work for these regions. Also for
microlensing event from PBHs in M31 halo region, we need to estimate the event rate more
carefully by taking into account so-called finite-source effects or limb-darkening effect, which
might greatly affect event time-scale estimation (see Riffeser et al. 2008, for the detail).

The development achieved in our study can be applied to to future new time-space astron-
omy; aiming at faint, short-timescale events by wide-field or short-cadence survey. Currently
several wide-field deep transient surveys are ongoing or planned not only by HSC, but also by
the Palomar Transient Factory (PTF)3 and the Large Synoptic Survey Telescope (LSST)4. As
for transient candidates, we can establish clear criteria to categorize the events like flares and
binary stars including noise characteristics. Since our observation presents unique properties
of faint, short-timescale variable candidates that has never been searched before, it would be
helpful to characterize the time-dependent behavior of events in the future short cadence survey;
as for microlensing study, event criteria can work as reference to remove contamination from
microlensing candidates, for example.

3http://www.ptf.caltech.edu/iptf
4http://www.lsst.org
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Chapter 4

Summary and Conclusion

In this thesis we explored properties of dark matter by using the gravitational lensing observables
of Subaru data. To address this question we studied astronomical objects of totally different
scales: massive clusters at Mpc scales and primordial black holes at 10−3 cm scale (the horizon
scale for the formation of PBH with mass scales of 1025g). Our finding is summarized as follows:

• Part I: Universality test with weak lensing cluster profiles
We developed a method of using the weak lensing measurements of massive clusters in order
to test “universality” of the dark matter density profile that is as predicted by Navarro-
Frenk-White (NFW) model, one of the most important predictions of the cold dark matter
dominated structure formation scenario. The universality of NFW profile means that all
the mass profiles for clusters of different masses can be transformed to a universal function
if properly scaling the amplitude and radius for each mass profile.

To apply this method to real data, we combined the independent datasets for a volume-
limited sample of 50 massive clusters that are the Subaru weak lensing catalog in Okabe
et al. (2013) and their X-ray observables of XMM and/or Chandra satellites in Martino et
al. (2014). We found a 4 – 6σ level evidence of the existence of universal NFW profile in
the 50 massive clusters. To derive these results we have carefully studied a proper radial
binning of the lensing distortion measurement and how to define the representative central
value of each radial bin taking into account the cluster-centric distances and the lensing
weights of background galaxies in the annulus. Our results give a proof of concept of the
method we developed in this work.

We quantified the performance of the NFW scaling analysis by monitoring the scatters of
50 cluster distortion profiles relative to the NFW prediction. However, the improvement
in the scatters of 50 cluster distortion profiles due to the NFW scaling analysis is not
as much as expected from theory using simulations of cluster based on high-resolution
N -body simulations. We elaborated that, in order to reconcile the difference between
the measurements and the simulation expectation, we need to introduce additional halo
mass scatters to each cluster, by an amount of σ(M)/M ∼ 0.2–0.3. This implies intrinsic
scatters in the halo mass and X-ray observable relation (Okabe et al. 2010b). We also
argued that the discrepancy might be due to an imperfect halo mass proxy relation of the
X-ray observables.

• Part II: M31 transient survey
PBH, which might have been formed in the early universe, is one of viable candidates of
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dark matter. Here we used the dense cadence observation of M31 Galaxy (2 min cadence
observation over about 7 hours ) in order to search for microlensing events of PBH with mass
scales of 10−9 - 10−7M⊙, with the Hyper Suprime-Cam (HSC) data. The wide field-of-view
of HSC allows us to cover the entire bulge and disk regions of M31 with one pointing and
the 8.2m Subaru aperture allows us to measure a light curve of a star down to r ∼ 25mag
even with 90sec exposure.

However, the PBH microlensing is in the pixel lensing regime; although multiple stars in
M31 can be in a single CCD chip, only one source star can be amplified in its flux by
gravitational lensing of a foreground PBH that is in halo regions of MW or M31. Thus the
pixel lensing requires a careful analysis. Using the HSC pipeline, which has been developed
for the HSC SSP program, we search for time-variable star candidates based on the image
subtraction between the target and reference images. The current pipeline achieves a clean
subtraction of most stars by taking into account the different PSFs of target and reference
images, and illuminates candidates of time-variable point sources in the difference image.
We then measure the light curve of each candidate based on the PSF photometry of the
candidate in the difference image. We found about 11,000 transient candidates across the
entire M31 region. These include secure candidates of star flare, binary stars, eclipse,
variable stars, moving object, etc. However, at this moment, we haven’t yet found a secure
candidate of PBH microlensing event.

Employing the NFW profiles to reproduce the observed rotation curves of MW and M31,
respectively, and assuming that all the dark matter in their halo regions is made of PBHs,
we found that at least one star among 105-106 stars in M31 can be gravitationally lensed by
a foreground PBHs. Since the HSC data allows us to detect 105 stars in each patch (about
100 arcmin2) region or there should be much more stars including unresolved fainter stars,
a null detection of PBH microlensing in our data allows us to derive a stringent upper
bound on the abundance of PBHs. We derived an upper bound such as ΩPBH/ΩDM ∼ 0.01
for PBH of mass scales 10−8M⊙.

Our studies can be easily extended to upcoming wide-area imaging surveys such as the HSC
SSP Survey and the LSST Survey.
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Appendix A

Deflection angle in the spherically
symmetric gravitational field

In this section we describe the deflection angle in the spherically symmetric gravitational field,
following the method of Futamase et al.(1995). Since the general relativity predicts the light
path as Schwarzschild metric, we consider the following geodesic equation without perturbation:

ds2 = 0 ⇐⇒ 2K ≡
(
1− 2m

r

)
ṫ2 −

(
1− 2m

r

)−1

ṙ2 − r2θ̇2 − r2sin2θϕ̇2 = 0 (A.1)

where · is the differential derivative with affine parameter s. We adopt the variational calculus
method using the Euler-Lagrange equation:

∂K

∂xα
− d

ds

(
∂K

∂ẋα

)
= 0 (A.2)

where the four variable x0 = t(x), x1 = r(s), x2 = θ(s), x3 = ϕ(s). Combining α = 0, 2, 3 cases
with Eq. (A.1):

α = 0 :
d

ds

((
1− 2m

r

)
ṫ

)
= 0 (A.3)

α = 2 :
d

ds
(r2θ̇)− r2sinθcosθϕ̇2 = 0 (A.4)

α = 3 :
d

ds
(r2sin2θϕ̇) = 0 (A.5)

Here we consider the motion in the θ = π/2 plane. If θ̇ = 0 holds in this plane, the motion is
within this plane because θ̈ = 0, and higher-order derivative also becomes zero from Eq. (A.4).
Integrating Eq. (A.5) makes preservation of angular momentum equation,

r2ϕ̇ = h (A.6)

where h is constant. Similarly integrating Eq. (A.3) makes:(
1− 2m

r

)
ṫ = k (A.7)

where k is constant. Putting this equation into Eq. (A.1) becomes:(
1− 2m

r

)−1

k2 −
(
1− 2m

r

)−1

ṙ2 − r2ϕ̇2 = 0 (A.8)
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Figure A.1: A simple schematic representation of gravitational lensing effect describing the deflection
of light path around massive object.

Also r in Eq. (A.6) can be transform by u = 1/r as:

ṙ =
d

ds

(
1

u

)
= − 1

u2
u̇ = − 1

u2

du

dϕ
ϕ̇ = −h

du

dϕ
(A.9)

Putting Eq. (A.6) and Eq. (A.8) into Eq. (A.9)(
du

dϕ

)2

+ u2 =
k2

h2
+ 2mu3 (A.10)

Then differentiating this equation with ϕ describes a light path projected to a t = const. plane,

d2u

dϕ2
+ u = 3mu2 (A.11)

Since m = 0 holds in the limit of the special relativity theory, the general solution can be
described as:

u =
1

l
sin(ϕ− ϕ0) (A.12)

This solution has the same form with Newtonian prediction, which expresses the straight line
from ϕ0 to ϕ0 + π where l = const. Thus the light path in the Schwarzschild metric can be
considered as the perturbed form of the special case. Then the solution of Eq. (A.11) can be
written as

u = u0 + 3mu1, (A.13)

where u0 is Eq. (A.12) in the limit that mu is small enough, and ϕ0 = 0. Putting Eq. (A.13)
into Eq. (A.11) and neglect terms with higher-order than (mu),

d2u1

dϕ2
+ u1 = u2

0 =
sin2ϕ

l2
(A.14)

Therefore, general solution of Eq. (A.11) is:

u =
sinϕ

l
+

m(1 + Ccosϕ+ cos2ϕ)

l2
(A.15)

where m/l is small.
Next we move on to decide deflection angle δ in spherically symmetric gravitational field,

considering the case where r → inf, which means u → 0 so the right side of Eq. (A.15) is zero,
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then the asymptote angles are −ϵ1 and π + ϵ2 as shown in the figure. In the limit of ϵ1, ϵ2 → 0,
Eq. (A.15) shows

−ϵ1
l
+

m(2 + C)

l2
= 0

−ϵ2
l
+

m(2 + C)

l2
= 0

∴ δ = ϵ1 + ϵ2 =
4m

l
(A.16)

If we explicitly write the gravitational constant G and light velocity c, the deflection angle can
be written as:

δ =
4Gm

c2l
(A.17)
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Appendix B

Effects from non-celestial moving bodies

Short-cadence transient survey can be suffered from non-celestial causes from telescope or CCD
properties. In this section we summarize the possible properties suggested from our results.

• Defraction spikes
There are around 80 events with some sharp peaks in the light curves, which are not
correlated with the time-variation of seeing. For these events many spiky patterns show
up as in Fig. B.1, especially around nearby bright stars. These spikes are artificial noise
of telescope, caused by the change of the targeting direction in the sky. The patterns turn
clockwise around a star as the observation goes on, and magnify the surrounding stars
when the spikes pass by.

• CCD edge
In this HSC-M31 study we fixed the observational field of view by automatic tracking
system of the telescope so as to reduce the coordinate uncertainty in image difference
technique. However, there exists small movement due to the uncertainty of the tracking
system as displayed in the lower left panel of Fig. B.2. Therefore electrostatic effects near
the edge of CCDs (a few pixels for our Hamamatsu CCDs) cause incorrect photometry,
which induces magnification of flux for nearby objects as in the upper left panel. Around
a few hundred stars close to CCD edges are detected as candidates in our observation.

• CCD defect
There also exist around 30 cases where small defected parts of CCD are detected as tran-
sient candidates. As CCD defects cannot give correct flux measurement, they sometimes
produces small bright region in difference images, which are detected as time-variant can-
didates.
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Figure B.1: The effect from diffraction spikes. Left panel shows one part of difference image containing
spike patters. Spikes are often seen in brighter stars, and the patterns turn clockwise during the
observation. Right panel displays an example of light curve affected by spikes of a nearby star. Peak
around ∼ 13000sec is caused by a spike.
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Figure B.2: Examples of moving candidates; Left panel shows an example of CCD-edge move during
HSC-M31 obervation. The green region corresponds to region outside a CCD chip, and red circle draws
the trace of the edge. Middle panel displays one example of light curve affected by CCD defects. Peak
around ∼ 9000sec is caused by the defect part. Right panel shows one example of moving candidate of
celestial object. Unlike the other two images this object draws a straight motion path.
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Appendix C

Characteristics of unique events

In this section we describe some detailed properties of unique candidates.

C.1 Eclipsing binary stars: white - brown dwarf system

Among the eclipsing binaries we found a unique candidate; as shown in Fig, C.1, one dark star
totally hide the other star so that the flux becomes totally dark. This system is considered to
be composed by a white dwarf and a brown dwarf.

C.2 A star before nova

A red nova was found on February 2015, about three months after our observation. Therefore
the candidate might be at the stage of merging of two stars. Fig. C.2 shows the light curve and
image of the target star, at 00h 42m 07.99s +40d 55m 01.1s in radec coordinate which is close to
M31 bulge. This object is not detected with our selection criteria probably due to small change
of flux. The magnification is only 0.02 mag during our observation, which is so small that we
cannot say clearly if this is true.

C.3 Appearing star or disappearing star

There are around 10 stars which suddenly appear or disappear during observation without the
effect from CCD edge. We could not find out the reason so far, but many of them reside close
to the bulge region.
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Figure C.1: Eclipsing binary stars consisted of a white dwarf (WD) and a brown dwarf (BD). Left
panel displays pictures of WD-BD system; showing time variation from left to right. Right panel gives
the light curve of the same eclipsing-binary system, containing very deep dips with length around 10
minutes.
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Figure C.2: Left figure shows the light curve of nova candidate which contains very faint magnification.
For comparison, right figure shows a typical example of light curve for a star without magnification.
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Figure C.3: Light curves for appearing and disappearing stars.
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C.4 Eclipsing binary
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Figure C.4: Light curves of eclipsing binary-star candidates.
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C.5 Binary stars
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Figure C.5: Light curves of binary-star candidates.
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C.6 Cepheid candidates
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Figure C.6: Light curves of cepheid variable-star candidates.
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C.7 Flares
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Figure C.7: Light curves of flare-star candidates.
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C.8 Fake events with common light curves
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Figure C.8: Light curves of fake candidates which might contain RR-Lyrae variables.
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Appendix D

Other constraints on the abundance of
primordial black hole (PBH)

As shown in Fig. 3.30, the abundance of PBH is constrained for various mass range. In this section
we overview these current constraints on PBH abundance other than HSC-M31 observation.

D.1 Hawking radiation

Primordial black hole (PBH) emits Hawking radiation at a rate inversely proportional to their
mass, which encourages PBHs to evaporate (Hawking 1974). Thus the life time of PBH in mass
range of mBH < 5×1014g is shorter than the age of the universe, and cannot exit as a candidate of
dark matter today (Page & Hawking 1976). On the other hand, PBHs slightly heavier than this
mass limit are expected to emit γ-ray around 100MeV. Thus the observation of from extra galactic
γ-ray background can constrain the cosmic density of PBH. Current constraint is achieved from
the Energetic Gamma Ray Experiment Telescope (EGRET) as ΩPBH ≤ 10−9 for mBH = 1015g
(Sreekumar et al. 1998; Carr et al. 2010). In summary, PBH of mBH ≤ 1016g cannot constitute
dark matter more than 1%, and that of mBH ≥ 7× 1016g disappears due to Hawking radiation.

D.2 Femtolensing

Femtolensing is a type of gravitational lensing effect caused by PBH, named after the very
small separation of lens images. As Schwarzschild radius of PBH is as large as the wavelength
of photons, one needs to consider radiative electromagnetic properties in femtolensing regime,
where interference patterns are expected to show up in the energy power spectrum of the lensed
object. Therefore the abundance of PBHs can be constrained by the event rate of femtolensing
effect, in the same way as we adopt for microlensing study. The current constraint described
in Fig. 3.30 is derived from the search of femtolensing by compact objects, sensitive to PBH of
mBH ≥ 1019 − 1020g by combing the Fermi satellite GRB data and redshift data (Barnacka et al.
2012).

D.3 Star formation

Dark matter is trapped by stars due to the adiabatic contraction during their star-formation
epoch. If PBHs exist as kind of dark matter, they are also trapped by compact stars such as
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white dwarf or neutron stars. As the matter accretion rate to PBH is expected to be very fast,
compact stars including PBHs are in fate be destroyed (Kouvaris & Tinyakov 2011a; Kouvaris
2012; Kouvaris & Tinyakov 2011b). Therefore the capture process of PBH needs to be very
small for the star remnant compacts, stars after the phase of white dwarf, to be observed up to
data. The constraint of PBH abundance here is derived from the observation of globular clusters,
where the density of dark matter is relatively high and have small velocity. By considering the
scenario of destruction, the amount of PBH with typical mass is constrained by the dark matter
distribution during the formation epoch of globular cluster; represented by the current number
of compact stars. Thus one can put constraint on the abundance of PBHs as shown in Fig. 3.30
(Capela et al. 2013a).

D.4 Neutron stars in globular cluster

One can also apply the star formation scenario above for the current abundance of dark matter
in globular clusters. As in the same scenario as described in D.3, the current amount of PBHs in
compact objects is expected to be small enough to avoid the capture process. Strong constraint
can be achieved in the dense core of globular clusters by comparing the direct capture mechanism
of neutron stars with the corresponding numerical simulation. Fig. 3.30 shows constraint from
Capela et al. (2013b), sensitive to PBH mass range of 3 × 1018g≤ mBH ≤ 1024g. On the other
hand, the dark matter density derived from the model indicates that PBH for this mass range is
less than 5%.

D.5 CMB (WMAP3, FIRAS)

Evaporation process due to Hawking radiation of PBH is expected to affect the signal from
cosmic microwave background radiation. The distortion of spectrum can be described by chemical
potential µ and Compton parameter y. By combining these parameters with the peak formation
theory about the mechanism of PBH formation, one can put constraint on the power index of
primordial perturbation n and PBH mass fraction β; the index of primordial perturbation is
constrained from the threshold amplitude of peaks to become PBHs, while the mass fraction can
be calculated from the implication of density perturbation. The constraint displayed in Fig. 3.30
is given by WMAP3 and FIRAS experiment respectively (Tashiro & Suiyama 2008; Carr et al.
2010).

D.6 Microlensing (MACHO, EROS, Kepler)

Two representative microlensing projects which have put constraint on the mass fraction of PBH
are the EROS + MACHO collaboration and the Kepler mission (Alcock et al. 1998; Tisserand
et al. 2006; Griest et al. 2014). They put constraint on the abundance of PBHs from the null
detection of microlensing events of PBHs, in the same way as our observation adopts. The
strongest constraint comes from the MACHO project, where they search for microlensing events
with timescale longer than a few days in the Large Magellanic Cloud. The mission of Kepler
satellite, on the other hand, targets at events with a-few-hour timescale in the Cygnus-Lyra
region which have sensitivity to PBH DM in the mass range of 10−9M⊙ to 10−7M⊙. The Kepler
mission and our HSC-M31 observation targets at PBH with similar mass range, but each has
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different advantages; the comparison of Kepler and HSC mission indicates that the Kepler mission
has large advantages on precise photometry, larger field-of-view and longer time-allocation. On
the other hand, HSC-M31 observation is expected to be more competitive owing to the larger
number of field stars in M31 and a larger coverage of 3D volume, or a more number of PBHs in
the volume.
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