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Abstract

We present the measurement of CP -violatingasymmetries inB0 → π+π− decays based on a 78 fb−1 data sample
collected at the Υ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e− collider. We fully
reconstruct one neutral B meson as a B0 → π+π− CP eigenstate and identify the flavor of the accompanying B
meson from its decay products. From the asymmetry in the distribution of the time intervals between the two
B meson decay points, we obtain the CP -violating asymmetry parameters Aππ = +0.77 ± 0.27(stat) ± 0.08(syst)
and Sππ = −1.23 ± 0.41(stat) +0.08

−0.07(syst), where the statistical uncertainties are determined from Monte Carlo
pseudo-experiments. We rule out the CP -conserving hypothesis, Aππ = Sππ = 0, at a 99.93% confidence level.We
discuss how these results constrain the value of CKM angle φ2.
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Chapter 1

Introduction

One of the most important concepts in physics is the symmetry or invariance under the operation in space and time,
here the symmetry strongly relates to the conservation laws. The symmetries under the basic transformations,
such as parity (P ), charge-conjugation (C), and time-reversal (T ) transformations, were believed until the middle
of the 20th century. In 1950s, the parity violation was discovered in the β-decays, and the charge conjugation
was also considered to be violated in the weak interaction because of the absence of the right-handed neutrino.
However the product of CP had been thought to be conserved. Then the subsequent discovery of CP violation
gave a deep impact to the modern particle physics.

The CP violation is expected to relate on the basic principle of the nature. For example, if we believe that
there were the same amount of matter and anti-matter at the beginning of the universe as explained in the Big-
Bang theory, the existence of CP violation is one of the key issues to explain why the universe we live in consists
predominantly of the matter, as A. D. Sakharov pointed out [1].

The CP violation was first observed in the neutral K-meson system in 1964 by J.H. Christenson et al. [2]. This
discovery initiated many theoretical efforts to understand the CP violation phenomenon. In 1973, M. Kobayashi
and T. Maskawa proposed a theory of quark mixing which can introduce the CP violation within the framework of
the Standard Model of elementary particle physics [3]. They noted that one or more irreducible complex phases in
the quark-flavor mixing matrix can introduce the CP violation, and pointed out that this requirement was satisfied
if there exist at least three generations of quarks, i.e. six quarks, even only three quarks, up (u), down (d), and
strange (s) were known at that time. In 1970s, the fourth and the fifth quarks, charm (c) and bottom (b), were
discovered. The observation of the sixth quark, top (t) quark, in 1995 established the Kobayashi-Maskawa model
(KM model) as an essential part of the Standard Model.

It is not known, however, whether the KM model explanation is quantitatively correct, though the model is
elegant and economical to explain the CP violation. Therefore precise measurements of the magnitude and the
phase of the quark-mixing matrix, which is called Cabibbo-Kobayashi-Maskawa (CKM) matrix, and the consistency
tests are important. The relation between the CKM matrix elements is presented by the unitarity triangle. The
measurements of sides and angles of the unitarity triangle give the tests of the KM model, since the KM model
provides the definitive predictions for three angles of the unitarity triangle, φ1, φ2 and φ3.

In 1980, A. B. Carter, A. I. Sanda and I. I. Bigi pointed out that the sizable CP violation can be observed in the
B-meson system in the framework of the Standard Model. They also predicted it is possible to measure the angles
of the unitarity triangle directly from the difference of the partial time-dependent decay rates between B0 and B0

to the same CP eigenstate. Subsequent observations of the long B-meson lifetime [4,5] and the large flavor-mixing
in the neutral B meson system [6] indicated that it would be feasible to carry out the several measurements of
CP violation in the B-meson system. The experimental method using an asymmetric e+e− collider at Υ(4S) was
proposed [7], and two B-factory accelerators were constructed in Japan and USA.

In 2001, the CP violation in the B-meson system was observed in B-factory experiments [8, 9] as predicted
by the KM model. Here φ1 was measured to be consistent with the KM model prediction using the decay modes
B0 → J/ψK0 and so on. Currently the measurements draw a consistent picture that the CP violation is induced by
the quark-flavor mixing as predicted by the KM model. Now B physics is in the next stage to deal with the precise
determination and test of the KM model, relating the CP violation, in both experimentally and theoretically.

In this thesis, we present the study of CP violation in B0 → π+π− decays. This decay mode is sensitive to
the angle φ2 of the unitarity triangle through a measurement of the CP violating asymmetry, then gives the other
test of the KM model than the φ1 measurement with B0 → J/ψK0 decays. Although the φ2 extraction from
the B0 → π+π− decays alone has the large theoretical uncertainty because the decay receives contributions from
both the b→ u tree diagram and the b→ dg penguin diagram, the measurement is expected to play an important
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2 CHAPTER 1. INTRODUCTION

role to understand the CP -violation mechanism, by observing direct CP violation. The direct CP violation is the
other type CP violation than the mixing-induced CP violation which is observed in B0 → J/ψK0 decays.

In the B0 → π+π− decays, the CP violation is observed as the time-dependent decay-rate asymmetry in B0

and B0 mesons. Experimentally, the proper-time difference ∆t between the two neutral B mesons, where one
decays to π+π− (BCP ) and the other decays to anything (Btag), is measured. The CP violation is extracted from
the difference between the ∆t distributions for Btag = B0 and Btag = B0.

The study is performed at the KEK B-factory experiment, which consists of the accelerator called KEKB and
the multi-purpose detector called Belle. KEKB is an asymmetric energy e+e− collider operated on the Υ(4S)
resonance and it produces a huge number of B mesons with clean final states. Because produced B mesons are
boosted, a time-dependent decay rate can be measured using the information of the flight lengths of B mesons. The
Belle detector is designed to be suitable for the CP violation measurements: it provides the precise determination
of the decay points of B mesons, the good particle-identification capability to identify the flavor of B mesons, i.e.
B0 or B0, the data acquisition system withstand the high event rate to achieve the high statistics, and so on.

Currently the B-factory experiment is unique to carry out the study of CP violation using B0 → π+π− decays.
Because the final state has the low particle multiplicity, the signals are hidden by huge backgrounds in hadron
colliders. Moreover, the branching fraction of B0 → π+π− is quite small of O(10−6). Thus, the high luminosity
e+e− collider is required.

In this thesis, we present the first evidence of CP violation in B0 → π+π− decays. The outline of this thesis is
as follows: Theoretical description of CP violation and the experimental consideration to measure the CP violation
in the neutral B-meson system are provided in Chapter 2. Experimental apparatus used in this study is described
in Chapter 3. The reconstruction procedure of the candidates for B0 → π+π− decays is explained in Chapter 4.
The measurement of CP asymmetry in B0 → π+π− decays is described in Chapter 5. Finally the estimation of
the statistical significance, the extraction of the φ2 information and the conclusion of this thesis are written in
Chapter 6.



Chapter 2

CP violation in the B meson system

2.1 Introduction of the CP violation

In this chapter, the basic theory of CP violation and the experimental consideration to measure the CP violation
in the neutral B meson system are described. First, we show the definition of the CP transformation. Then we
review the CP violation in the K-meson system and the quark mixing in the weak interaction. We explain the
Kobayashi-Maskawa model based on the quark mixing. We discuss the B0-B0 mixing and the CP violation in B
meson system based on the KM model, and show how to measure the CP violation in the B factory experiment.
Finally, we review the present experimental status of the test of the KM mechanism.

2.1.1 Parity, Time reversal and Charge Conjugation Operations

A parity transformation, P , reverses three-dimensional coordinates:

P |f(p, s)〉 = ηP |f(−p, s)〉, (2.1)

where |f(p, s)〉 represents the particle f with a momentum of p and a spin of s, and ηP is a phase of parity
transformation. Since P 2 is an identical operator, η2

P is 1, and thus ηP = ±1. The sign of the ηP is chosen
arbitrary as far as the definition is consistent through the discussion.

A time reversal transformation, T , inverses the time coordinates:

T |f(p, s)〉 = ηT |f(−p,−s)〉, (2.2)

where ηT is a phase and η2
T = 1.

A charge conjugation, C, changes the signs of internal charges such as electric charge, baryon number and so
on. This operation replaces particles with their anti-particles (and vice versa):

C|f(p, s)〉 = ηC
∣∣f̄ (p, s)

〉
, (2.3)

where ηC is a phase and η2
C = 1.

If a state is an eigenstate of these operators, it has an eigenvalue of ±1. We call the eigenstate with an eigenvalue
of +1 (−1) even (odd) state. Particles like mesons, baryons and gauge bosons may have intrinsic eigenvalues of
above symmetries.

It used to be naively believed that all are conserved under these transformations, C, T and P . However, in 1956,
T. Lee and C. Yang questioned the assumption of the parity conservation [10], and the subsequent experiments by
C. Wu et al. and by R. Garwin et al. in 1957 independently demonstrated the violation of the P -invariance and
the C-invariance in weak decays of nuclei and of muons [11, 12]. It was found in successive experiments that the
parity is maximally violated in the weak interaction. The neutrinos are completely polarized, i.e. a neutrino has
a helicity1 of −1 (left-handed), and an anti-neutrino has a helicity of +1 (right-handed). A left-handed neutrino
applied P or C operation becomes the unphysical state, as illustrated in Figure 2.1. In this example, however, the
combined operation CP to a left-handed neutrino is not forbidden.

The combined operation CPT has special importance in the quantum field theory. General principles of
relativistic field theory require the symmetry under the CPT transformation (CPT theorem). The CPT theorem
assures the equality of the masses, lifetimes, and magnitudes of charge between particle and anti-particles. Up to
now, no CPT violation has been observed experimentally.

1the sign of spin along the direction of motion

3



4 CHAPTER 2. CP VIOLATION IN THE B MESON SYSTEM
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Figure 2.1: Mirror image of a left-handed neutrino under C, P and CP transformation, where arrows indicate the
direction of motion.

2.1.2 The Discovery of CP violation in the K Meson System

Neutral K mesons, which has a non-zero quantum number, strangeness, are produced as the eigenstates of the
interaction,

∣∣K0
〉

and
∣∣K0

〉
. M. Gell-Mann and A. Paris predicted the K0-K0 mixing. They pointed out that K0

(K0) changes to the mixture of CP eigenstates,∣∣K0
1

〉
= (

∣∣K0
〉− ∣∣K0

〉
)/
√

2 (2.4)
and ∣∣K0

2

〉
= (

∣∣K0
〉

+
∣∣K0

〉
)/
√

2, (2.5)

where CP eigenvalues of
∣∣K0

1

〉
and

∣∣K0
2

〉
are +1 and −1, respectively, with the notation of CP

∣∣K0
〉

= −∣∣K0
〉
.

They also argued on the lifetimes of K0
1 and K0

2 . Assuming that the CP symmetry is conserved, only K0
1 can

decay into the 2π final state, and K0
2 decays into 2π is forbidden because CP eigenvalue of the 2π state is +1.

Then the leading non-leptonic decay channel for K0
2 is K0

2 → 3π, which is suppressed due to the very restricted
phase space. Thus, the lifetime for K0

2 is expected to be long respect to K0
1 . According to their prediction, in 1965,

K. Lande et al. [13] discover the long-lived particle. Since the lifetimes were quite different, ∼ 90ps and ∼ 52 ns,
K0

1 and K0
2 were referred to as KS and KL, respectively.

Whereas CP conservation was believed at that time, J. Christenson et al. discovered CP -violatingKL → π+π−

decays in 1964 [2]. Even the branching fraction of KL → π+π− is small (O(10−3)), this indicates mass eigenstates,
the KS and KL, are not CP eigenstates and should be rewritten as

|KS〉 = (
∣∣K0

1

〉
+ εm

∣∣K0
2

〉
)/
√

1 + |εm|2 (2.6)
and

|KL〉 = (εm
∣∣K0

1

〉
+
∣∣K0

2

〉
)/
√

1 + |εm|2. (2.7)

Subsequent observation of KL → π0π0 decays [14, 15], and charge asymmetries in KL → π±e±ν [16] and KL →
π±µ±ν [17] confirmed the CP violation in the neutral K-meson system.

2.2 The standard model and the quark mixing.

Since the semi-leptonic decay, which changes the strangeness, such as Σ− → ne−ν̄e is suppressed by a factor ∼20
compared with n → peν̄e and the β-decay of neutron is also suppressed by a few% respect to µ → ν̄µeν̄e, the
universality of the coupling constant of weak interactions looks violated outwardly. In 1963, N. Cabibbo proposed
the model that explained these differences of the decay rate with a single coupling constant [18]. In 1964, M. Gell-
Mann and G. Zweig proposed the quark model [19, 20] and introduced three flavors of quarks, u (up), d (down)
and s (strange). The Cabibbo model was interpreted in the context of the quark model. He proposed that the d
and s quark states participating a weak interaction are not pure flavor eigenstates, but the mixture of them; i.e.
the state of

|d′〉 ≡ cos θc|d〉 + sin θc|s〉 (2.8)

is coupled with u quark via a unique coupling constant of weak interactions, where θc is called Cabibbo Angle.
This model represents the difference of decay rates of semi-leptonic decays and the Cabibbo angle is obtained as
sin θc � 0.22 (cos θc � 0.98). The Cabibbo scheme based on the three-quark model does not forbid the neutral
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current to change the strangeness, such as K0 → µ+µ−, but is stringently suppressed in reality. In 1970, S. L.
Glashow, J. Iliopoulos, and L. Maiani proposed to introduce the fourth quark, c(charm) in order to explain this
suppression (GIM mechanism) [21]. In this model, the quark-doublet state of(

d′

s′

)
≡

(
cos θc sin θc
− sin θc cos θc

)(
d
s

)
(2.9)

couples with the quark doublet (u, c) via a unique coupling constant. For example, the two diagrams, which are
shown in Figure 2.2 contribute to K0 → µ+µ−, and each diagram cancels the other out.

In 1974, the existence of the charm quark was implied by the J/ψ meson discovery [22, 23], and the GIM
mechanism was confirmed2 .

u
W +

νµ

W−
d

K0

( s̄

µ−

µ+

+cosθc

+sinθc

c
W +

νµ

W−
d

K0

( s̄

µ−

µ+

−sinθc

+cosθc

Figure 2.2: Two diagrams contributing the decay K0 → µ+µ−.

2.3 Kobayashi-Maskawa model

In 1973, M. Kobayashi and T. Maskawa proposed that the existence of at least three quark generations can explain
the CP violation within the framework of the Standard Model [3].

2.3.1 Cabibbo-Kobayashi-Maskawa Matrix

They extend the framework of the quark mixing proposed by Cabibbo-GIM from 2-generations, (u, d) and (c, s),
to general N generations. Then the quark-mixing matrix in Equation 2.9 is extended to N ×N complex matrix,
Vij , which has 2N 2 real parameters. Since the matrix is a unitarity matrix, the conditions of

∑
j VijV

∗
jk = δik

are required, where δik is Kronecker’s δ. Thus, the number of the free parameter of the matrix is reduced to N2.
Since the phase of the quark fields can be rotated arbitrarily except an overall phase, (2N − 1) relative phases
can be removed from the matrix, and then the number of free parameter becomes (N − 1)2. On the other hand,
a general N ×N orthogonal matrix has N (N − 1)/2 rotational Euler angle. Thus, (N − 2)(N − 1)/2 parameters
corresponding to irreducible phase remain in the matrix V .

To summarize, the generalized quark-mixing matrix for N generations consists of N (N − 1)/2 rotational Euler
angles and (N − 1)(N − 2)/2 irreducible phases independently. In the two quark-generations model, the quark-
mixing matrix has one angle and no complex phase as in the Cabibbo-GIM theory described in Section 2.2. If
there exists three quark-generations, the quark-mixing matrix has three angles and a complex phase. Kobayashi
and Maskawa pointed out that the complex phase, which causes the CP violation, can be introduced to the
Lagrangian of the weak interaction via the quark-mixing matrix if there are at least three quark generations.
Subsequent discoveries of c, b (bottom/beauty) and t (top) quarks made the Kobayashi-Maskawa mechanism to
be incorporated into the standard model [24–26].

The 3 × 3 quark-mixing matrix in the standard model is now called the Cabibbo-Kobayashi-Maskawa (CKM)
matrix, VCKM:

VCKM ≡
 Vud Vus Vub

Vcd Vcs Vcb
Vtd Vts Vtb

 , (2.10)

 d′

s′

b′

 = VCKM

 d
s
b

 . (2.11)

2Note that c quarks was discovered after the Kobayashi-Maskawa model, which is described in Section 2.3, was proposed.
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L. Wolfenstein proposed to parameterize the CKM matrix in the form of an expansion in λ ≡ sin θc � 0.22 as:

VCKM =

 1 − λ2/2 λ Aλ3(ρ− iη)
−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

+ O(λ4) , (2.12)

where A, ρ and η are real parameters of order of unity [27].

2.3.2 The Unitarity Triangle

The unitarity of the CKM matrix leads to the relations:∑
j

VijV
∗
jk = 0 (i �= k). (2.13)

Since the CKM matrix elements are complex, these relations imply that they form triangles in a complex plane,
such as shown in Figure 2.3(a). These triangles are often referred to as the unitarity triangles. There are six
unitarity triangles. The six unitarity conditions are explicitly written as

Vud Vus
∗︸ ︷︷ ︸

O(λ1)

+Vcd Vcs
∗︸ ︷︷ ︸

O(λ1)

+Vtd Vts
∗︸ ︷︷ ︸

O(λ5)

= 0, (2.14)

Vud Vcd
∗︸ ︷︷ ︸

O(λ1)

+Vus Vcs
∗︸ ︷︷ ︸

O(λ1)

+Vub Vcb
∗︸ ︷︷ ︸

O(λ5)

= 0, (2.15)

Vus Vub
∗︸ ︷︷ ︸

O(λ4)

+Vcs Vcb
∗︸ ︷︷ ︸

O(λ2)

+Vts Vtb
∗︸ ︷︷ ︸

O(λ2)

= 0, (2.16)

Vcd Vtd
∗︸ ︷︷ ︸

O(λ4)

+Vcs Vts
∗︸ ︷︷ ︸

O(λ2)

+Vcb Vtb
∗︸ ︷︷ ︸

O(λ2)

= 0, (2.17)

Vud Vtd
∗︸ ︷︷ ︸

O(λ3)

+Vus Vts
∗︸ ︷︷ ︸

O(λ3)

+Vub Vtb
∗︸ ︷︷ ︸

O(λ3)

= 0 (2.18)

and
Vud Vub

∗︸ ︷︷ ︸
O(λ3)

+Vcd Vcb
∗︸ ︷︷ ︸

O(λ3)

+Vtd Vtb
∗︸ ︷︷ ︸

O(λ3)

= 0, (2.19)

where the magnitude of each term is evaluated using the Wolfenstein parameterization. The 4 unitarity triangles
have extremely squashed shapes because the magnitudes of the terms in the unitarity conditions are not balanced.
On the other hand, since all the terms in Equation 2.18 and 2.19 are the same order of O(λ3), the angles in two
unitarity triangles that correspond to these equations expected to be equally large. Equation 2.18 and 2.19 are
related to b and t quark decay, respectively. Thus, it is expected to observe relatively larger CP violations in B
meson system than the K meson system. A large CP violation is expected in t quark system also, but it is difficult
to investigate the top quark system experimentally due to its large mass. B meson system is therefore the most
suitable to examine the Kobayashi-Maskawa mechanism.

Figure 2.3(a) shows the unitarity triangle, which corresponds to Equation 2.19. It is a test of the Kobayashi-
Maskawa mechanism whether the sides and angles of the unitarity triangle, which are determined experimentally,
form a closed triangle, or not. Especially, the CP -conservation is violated if the area of the triangle does not
vanish. This requires all of the three angles in the unitarity triangle:

φ1 ≡ π − arg
(−VtdV ∗

tb

−VcdV ∗
cb

)
, (2.20)

φ2 ≡ arg
(

VtdV
∗
tb

−VudV ∗
ub

)
, (2.21)

and

φ3 ≡ arg
(
VudV

∗
ub

−VcdV ∗
cb

)
(2.22)

should be non-zero values.
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It is convenient to rescale the unitarity triangle by dividing all the sides by VcdV ∗
cb, as shown in Figure 2.3(b).

The rescaled triangle has the vertices at (0, 0), (1, 0) and (ρ̄, η̄), where ρ̄ and η̄ are related to ρ, η and λ in the
Wolfenstein parameterization as

ρ̄ = (1 − λ2/2)ρ (2.23)

and
η̄ = (1 − λ2/2)η, (2.24)

respectively.

BC

A(a)

VudV *
ub VtdV *

tb

VcdV *
cb

(α)

(β)(γ)

C = (0,0)

A = (ρ,η)

B = (1,0)

(b)

(α)

(β)(γ)

φ2

φ3

φ2

φ1 φ1φ3

Rb
Rt

Figure 2.3: The unitarity triangle of the CKM matrix (left) and its rescaled form in ρ-η plane (right).

2.4 CP violation in the B meson system

In 1980, A. B. Carter, A. I. Sanda and I. I. Bigi pointed out that the Kobayashi-Maskawa mechanism indicates the
possibility of the sizable CP violation in the B meson system [28–30]. In the K meson system, the CP -violating
phase appears through the off-shell transitions to heavy flavors, such as s → W−c,W−t, which occur during
K0-K0 mixing, and the order of CP asymmetry is about 10−3. On the other hand, in the B meson system, the
CP -violating phase also enters in the on-shell transitions, such as b→W−c, which make up the decay cascades of
the b quark. The on-shell transitions can produce CP asymmetry of order 10−1 – 10−2.

Subsequent observations of long B mesons lifetimes [4, 5] and large mixing in the neutral B meson system [6]
indicated that it would be feasible to carry out the measurement of CP violation in asymmetric e+e− collider [7].

In this section, the phenomenology of the time evolution and the CP violation in the B meson system is
described.

2.4.1 B0-B0 mixing

B0 and B0 can mix through the second order weak interactions described with the diagrams shown in Figure 2.4.
Thus, the time-dependent wave function of a neutral B meson is written as a linear combination of the B0 and
B0 states:

|B(t)〉 = α(t)
∣∣B0

〉
+ β(t)

∣∣B0
〉
, (2.25)

where we use the notation of CP
∣∣B0

〉
= −∣∣B0

〉
. The phenomenological time-dependent Schrödinger equation:

i
∂

∂t
|B(t)〉 = H|B(t)〉 (2.26)

is expanded as

i
∂

∂t

(
α(t)
β(t)

)
=

(
M0 − iΓ0/2 M12 − iΓ12/2
M∗

12 − iΓ∗
12/2 M0 − iΓ0/2

)(
α(t)
β(t)

)
, (2.27)

where the CPT theorem is assumed. M in the diagonal term is the mass of the flavor eigenstate of B0 and B0,
and Γ is their width. The off-diagonal elements are responsible for the B0B0 transition. The eigenvalues are given
as

µ± = M0 − iΓ0/2±
√

(M12 − iΓ12/2)(M∗
12 − iΓ∗

12/2), (2.28)
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which correspond to the eigenvectors of

|B±〉 = p
∣∣B0

〉± q
∣∣B0

〉
, (2.29)

q

p
=

√
M∗

12 − iΓ∗
12/2

M12 − iΓ12/2
, (2.30)

where p and q are normalized as |p|2 + |q|2 = 1. In the B0
d meson system, the standard model predicts [31–34]∣∣∣∣ Γ12

M12

∣∣∣∣ � 3πm2
b

2m2
t

∼ O(10−2) � 1, (2.31)

where mb and mt are the mass of b and t quarks, respectively. Thus, p/q is approximated as

p

q
�

√
M∗

12

M12
=

V ∗
tbVtd
VtbV

∗
td

, (2.32)

and, |p/q| = 1. The eigenvector |B−〉 (|B+〉) corresponds to the mass eigenstate |BH〉 (|BL〉) with a eigenvalue of
µH = µ− (µL = µ+). The time evolutions of mass eigenstates are expressed as:

|BH(t)〉 = exp (−iµHt) |BH〉 ≡ exp [−i(mH − iΓH/2)t] |BH〉 (2.33)
and

|BL(t)〉 = exp (−iµLt) |BL〉 ≡ exp [−i(mL − iΓL/2)t] |BL〉, (2.34)

where the difference of mass and width of the two mass eigenstates are given as:

∆m ≡ mH −mL = −2Re
√

(M12 − iΓ12/2)(M∗
12 − iΓ∗

12/2) (2.35)

and
∆Γ ≡ ΓL − ΓH = −4Re(M12Γ12)/∆md, (2.36)

respectively. The time evolution of the state
∣∣B0(t)

〉
(
∣∣B0(t)

〉
) which is initially the eigenstate of the weak inter-

action,
∣∣B0

〉
(
∣∣B0

〉
), is obtained from Equations 2.33 and 2.34, and the relations of∣∣B0

〉
= (|BH〉 + |BL〉)/2p (2.37)

and ∣∣B0
〉

= −(|BH〉 − |BL〉)/2q. (2.38)
(2.39)

Thus,∣∣B0(t)
〉

= g+(t)
∣∣B0

〉
+
q

p
g−(t)

∣∣B0
〉

(2.40)

and ∣∣B0(t)
〉

= g+(t)
∣∣B0

〉
+
p

q
g−(t)

∣∣B0
〉
, (2.41)

g±(t) ≡ 1
2

exp [−i(mL − iΓL/2)t] · {1 ± exp [−i(∆md + i∆Γ/2)t]} (2.42)

=
1
2

exp (−imt) exp (−Γt/2) (2.43)

· {exp (i∆mdt/2) exp [− (∆Γ/2) t/2]± exp (−i∆mdt/2) exp [+(∆Γ/2)t/2]} (2.44)

where m and Γ are the average mass and width of the two mass eigenstates, respectively, i.e. m ≡ (mH +mL)/2
and Γ ≡ (ΓH + ΓL)/2.

2.4.2 B Meson decays into CP eigenstates

In this section, we see the time evolution of neutral B meson decays into the final state f that is possible for both
B0 and B0 decays. We define the instantaneous decay amplitudes of B0 and B0 to f and f̄ , which is the charge
conjugation state of f , as:

A(f) ≡ 〈
f
∣∣Hint

∣∣B0
〉
, (2.45)

A(f) ≡ 〈
f
∣∣Hint

∣∣B0
〉
, (2.46)

A(f̄ ) ≡ 〈
f̄
∣∣Hint

∣∣B0
〉

(2.47)
and
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t
W

t
W

d

B0

( b̄

b

)
B

0

d̄

Vtd

V ∗
tb Vtd

V ∗
tb

t

W

t̄

W

d

B0

( b̄

b

)
B

0

d̄

Vtd

V ∗
tb Vtd

V ∗
tb

Figure 2.4: Diagrams for B0-B0 mixing.

A(f̄ ) ≡ 〈
f̄
∣∣Hint

∣∣B0
〉
, (2.48)

where Hint is the Hamiltonian of weak interaction. A(f) and A(f) are equal to A(f̄ ) and A(f̄ ), respectively,
because f = f̄ . The time-dependent decay amplitude for a pure B0 state at the time t = 0 to decay into a final
state f at time t is obtained from Equations 2.40 and 2.41, and the instantaneous decay amplitudes as:

A(t;B0 → f) = g+(t)A(f) +
q

p
g−(t)A(f)

= A(f)
[
g+(t) +

q

p
ρ(f)g−(t)

]
, (2.49)

where ρ(f) ≡ A(f)/A(f) = 1/ρ(f). The time-dependent decay amplitude for a pure B0 state at the time t = 0 to
decay into a final state f̄ at time t is obtained with similar way as

A(t;B0 → f̄ ) = g+(t)A(f̄ ) +
p

q
g−(t)A(f̄ )

= A(f)
[
g+(t) +

p

q
ρ(f)g−(t)

]
. (2.50)

The dime-dependent decay rates are thus given by

Γ(B0(t) → f) = |A(t;B0 → f)|2

=
exp(−Γt)

2
|A(f)|2

[(
1 + |λf |2

)
cosh

(
∆Γ
2
t

)
+
(
1 − |λf |2

)
cos(∆mdt)

−2 Re(λf ) sinh(
∆Γ
2
t) − 2 Im(λf ) sin(∆mdt)

]
(2.51)

and
Γ(B0(t) → f) = |A(t;B0 → f)|2

=
exp(−Γt)

2
|A(f)|2

[(
1 + |λf |−2

)
cosh

(
∆Γ
2
t

)
+
(
1− |λf |−2

)
cos(∆mdt)

−2 Re
(
λf

−1
)
sinh

(
∆Γ
2
t

)
− 2 Im

(
λf

−1
)
sin(∆mdt)

]
, (2.52)

where λf is defined as

λf ≡ q

p
· ρ(f) =

q

p
· 1
ρ(f)

. (2.53)

In the B0
d meson system, ∆Γ/Γ is mush smaller than unity, because the difference is produced by common

decay channels to B0 and B0 with branching fractions of 10−3 or less. Therefore, the time-dependent decay rates
are approximated as

Γ(B0(t) → f) =
exp(−Γt)

2
|A(f)|2 [(1 + |λf |2

)
+
(
1 − |λf |2

)
cos(∆mdt) − 2 Im(λf ) sin(∆mdt)

]
(2.54)

and
Γ(B0(t) → f) =

exp(−Γt)
2

|A(f)|2 [(1 + |λf |−2
)

+
(
1 − |λf |−2

)
cos(∆mdt) − 2 Im

(
λf

−1
)
sin(∆mdt)

]
.(2.55)
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A time-dependent CP -violating asymmetry is defined as the normalized decay difference:

ACP (t; f) ≡ Γ(B0(t) → f) − Γ(B0(t) → f)
Γ(B0(t) → f) + Γ(B0(t) → f)

=
|λf |2 − 1
|λf |2 + 1

cos(∆mdt) +
2 Im(λf )
|λf |2 + 1

sin(∆mdt). (2.56)

The CP violation that appears in cosine term comes from difference of decay amplitude between B0 and B0

to same CP eigenstate. This kind of CP violation referred to as direct CP violation. On the other hand, the CP
violation which appears in sin term is due to the interference between a decays with and without mixing which
can occur whenever Im(λf ) �= 0. This kind of CP violation is called mixing-induced CP violation.

2.4.3 φ1 measurement in B0 → JψK� decays

B0 → JψKS decays, where KS decays into two charged pions, is the promising decay mode to extract φ1 experi-
mentally. This decay mode is called golden mode, because B0 → JψKS decays can be reconstructed with a large
S/N ratio. The diagrams of B0 → JψKS decays are shown in Figure 2.5(a) and 2.5(b), which are called tree
diagram and penguin diagram, respectively. The amplitude of the tree diagram, Atree(JψKS), and the penguin
diagrams Apenguin(JψK0), are

Atree(B0 → JψK0) ≡ 〈
J/ψK0

∣∣Htree

∣∣B0
〉

= V ∗
cbVcsAtree (2.57)

and
Apenguin(B0 → JψK0) ≡ 〈

J/ψK0
∣∣Hpenguin

∣∣B0
〉

=
∑

q=u,c,t

V ∗
qbVqsA

q
penguin, (2.58)

where Atree, and Aqpenguin are the amplitudes apart from the explicitly shown CKM matrix elements. Using the
unitarity condition,

∑
q=u,c,t V

∗
qbVqs = 0, Aqpenguin is expressed as

Apenguin(JψK0) = V ∗
ubVus(A

u
penguin −Atpenguin) + V ∗

cbVcs(A
c
penguin − Atpenguin)

� V ∗
cbVcs(A

c
penguin −Atpenguin), (2.59)

because the magnitude of (V ∗
ubVus)/(V

∗
cbVcs) is equal to O(λ2) according to the Wolfenstein parameterization.

Equation 2.59 indicates that the weak phase in the penguin diagrams is the same as in the tree diagram. Therefore,
we can neglect the contribution from the weak phase in other than the tree diagram, and we can conclude

|A(B0 → JψK0)| = |A(B0 → JψK0)| (2.60)
and

A(B0 → JψK0)
A(B0 → JψK0)

=
VcbV

∗
cs

V ∗
cbVcs

. (2.61)

Then we consider theK0-K0 mixing because we haveKS in the final state. By similar discussion in Section 2.4.1,

〈KS | = p∗K
〈
K0
∣∣− q∗K

〈
K0
∣∣, (2.62)

where the ratio of qK to pK is estimated by the similar way to extract Equation 2.32 using |V ∗
cdVcs| � |V ∗

tdVts| as

q∗K
p∗K

� VcsV
∗
cd

V ∗
csVcd

. (2.63)

The amplitude for B0 → J/ψKS is obtained as

A(B0 → JψKS) ≡ 〈
J/ψKS

∣∣B0
〉

=
〈
KS

∣∣K0
〉〈
J/ψK0

∣∣B0
〉

= p∗kA(B0 → JψK0) (2.64)

and
A(B0 → JψKS) ≡ 〈

J/ψKS

∣∣B0
〉

=
〈
KS

∣∣K0
〉〈
J/ψK0

∣∣B0
〉

= q∗kA(B0 → JψK0). (2.65)

Here, we use the facts CP
∣∣B0

〉
= −∣∣B0

〉
, CP

∣∣K0
〉

= −∣∣K0
〉
, CP |J/ψ〉 = |J/ψ〉 derived from JCP = 1−− for J/ψ,

and CP
∣∣J/ψK0

〉
=
∣∣J/ψK0

〉
because the angular momentum of the system should be 1.
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Thus, λf (Equation 2.53) for B0 → J/ψKS decays is obtained as

λJ/ψKS
= −A(B0 → JψK0)

A(B0 → JψK0)
·
(
q

p

)
·
(
q∗K
paKst

)
(2.66)

� −VcbV
∗
cs

V ∗
cbVcs

· V
∗
tbVtd
VtbV ∗

td

· VcsV
∗
cd

V ∗
csVcd

(2.67)

= − exp (−2iφ1) , (2.68)

where the minus sign is caused that the state of |J/ψKS〉 is CP odd. As results, Equations 2.54, 2.55 and 2.56 for
B0 → J/ψKS decays become much simpler:

Γ(B0(t) → J/ψKS) = exp(−Γt)|A(J/ψKS)|2 [1 − sin(2φ1) sin(∆mdt)] , (2.69)
Γ(B0(t) → J/ψKS) = exp(−Γt)|A(J/ψKS)|2 [1 + sin(2φ1) sin(∆mdt)] , (2.70)

and
ACP (t; J/ψKS) ≡ sin(2φ1) sin(∆mdt). (2.71)

According to Equation 2.71, φ1 is obtained from the time-dependent CP -violating asymmetry for B0 → J/ψKS

directly.

W

d
B0

(
b̄

d

)
K0 → KS

s̄

c

)
J/ψ

c̄

V ∗
cb

Vcs

W

d̄
B

0
(

b

d̄

)
K

0 → KS
s

c̄

)
J/ψ

c

Vcb

V ∗
cs

(a) Tree Diagram.

W

t

d
B0

(
b̄

c̄

d

)
K0 → KS

s̄

c

)
J/ψ

V ∗
tb

Vts

W
t

d̄
B

0
(

b

c

d̄

)
K

0 → KS
s

c̄

)
J/ψ

Vtb

V ∗
ts

(b) (Strong) Penguin diagram. In the case of electroweak
penguin contributions, the gluons are replaced by a Z of a
γ.

Figure 2.5: Diagrams for B → J/ψKS decays.

2.4.4 CP violation in B0 → π+π� decays

The diagrams of B0 → π+π− decays are shown in Figure 2.6. The amplitude for the tree diagram shown in
Figure 2.6(a), is

Atree(B0 → π+π−) ≡ 〈
π+π− ∣∣Htree

∣∣B0
〉

= V ∗
ubVudAtree, (2.72)

where Atree is the amplitude apart from the explicitly shown CKM matrix elements. On the other hand, the
amplitude for the penguin diagrams shown in Figure 2.6(b), is expressed as

Apenguin(B0 → π+π−) ≡ 〈
π+π− ∣∣Hpenguin

∣∣B0
〉

=
∑

q=u,c,t

V ∗
qbVqdA

q
penguin

= V ∗
ubVud(A

u
penguin − Atpenguin) + V ∗

cbVcd(A
c
penguin −Atpenguin) (2.73)

where Aqpenguin(q = u, c, t) are the amplitudes apart from the explicitly shown CKM matrix elements, and we
use the unitarity condition,

∑
q=u,c,t V

∗
qbVqd = 0. In this case, the contribution from the penguin diagrams is not

negligible, because both V ∗
ubVud and V ∗

tbVtd are approximately the same order of O(λ3) according to the Wolfenstein
parameterization.

If we could ignore the penguin contribution and consider the tree diagram only, we got

“A(B0 → π+π−)” ≡ V ∗
ubVudAtree (2.74)

and
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“A(B0 → π+π−)” ≡ VubV
∗
udAtree, (2.75)

because the π+π− state is CP even, then we obtained λf defined in Equation 2.53 for B0 → π+π− decays as

“λπ+π−” = +
A(B0 → π+π−)
A(B0 → π+π−)

·
(
q

p

)
(2.76)

� VubV
∗
ud

V ∗
ubVud

· V
∗
tbVtd
VtbV

∗
td

(2.77)

= exp (+2iφ2) , (2.78)

and the time-dependent decay rates and the CP violation asymmetry as

“Γ(B0(t) → π+π−)” = exp(−Γt)|A(π+π−)|2 [1 + sin(2φ2) sin(∆mdt)] , (2.79)
“Γ(B0(t) → π+π−)” = exp(−Γt)|A(π+π−)|2 [1 − sin(2φ2) sin(∆mdt)] , (2.80)

and
“ACP (t;π+π−)” = sin(2φ2) sin(∆mdt), (2.81)

respectively. In actual case,

|A(B0 → π+π−)| �= |A(B0 → π+π−)| (2.82)
and

ρ(π+π−) �= 1 (2.83)

due to the concurrent of two facts:

• The final state, which happens to be CP even, is made up with a combination of the isospin states with of
I = 1 and I = 2, which can conceivably posses significantly different strong phase shifts.

• As already described, the penguin contribution is not negligible (penguin pollution), which affects the final
state with an isospin of I = 1 only.

The time-dependent CP -violating asymmetry in B0 → π+π− decays is

ACP (t;π+π−) = Aππ cos(∆mdt) + Sππ sin(∆mdt), (2.84)

where Aππ and Sππ are defined as

Aππ =
|λπ+π− |2 − 1
|λπ+π− |2 + 1

(2.85)

and
Sππ =

2 Im(λπ+π− )
|λπ+π− |2 + 1

, (2.86)

respectively. Here λπ+π− is defined as

λπ+π− ≡ q

p
· A(B0 → π+π−)
A(B0 → π+π−)

, (2.87)

and |λπ+π− | = |A(B0 → π+π−)/A(B0 → π+π−)|.

2.4.5 Extract φ2 information from the CP violation parameters in B 0 → π+π�

decays

In this section, we discuss the method to extract the φ2 information from the observable parameters, Aππ and
Sππ in the CP -violating asymmetry of B0 → π+π− decays. M. Gronau et al. propose the method to subtract
the penguin pollution using the branching fractions of B0 → π+π−, B+ → π+π0, B0 → π0π0 and their charge-
conjugate decays [35–37]. However, the method is difficult because B0 → π0π0 decays are not observed yet. In
this section, we discuss based on the model-dependent method [38,39]. The amplitude of B0 → π+π− decay is
obtained from Equations 2.72 and 2.73, and is parameterized as

A(B0 → π+π−) = V ∗
ubVud(Atree +Aupenguin −Atpenguin) + V ∗

cbVcd(A
c
penguin −Atpenguin)

≡ −(VcdV ∗
cb) · [|T | exp(iδT ) exp(iφ3) + |P | exp(iδP )] , (2.88)
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Figure 2.6: Diagrams for B0 → π+π− decays.

where |T |(δT ) and |P |(δP ) are the amplitudes (strong phase) of the contributions with and without the weak phase
of φ3, respectively. The former is dominated by the tree diagram, and the latter is dominated by the penguin
diagrams. The amplitude of B0 → π+π− are parameterized with same way as

A(B0 → π+π−) = −(V ∗
cdVcb) · [|T | exp(iδT ) exp(−iφ3) + |P | exp(iδP )] . (2.89)

Hence, λπ+π− is obtained as

λπ+π− =
V ∗
tbVtd
VtbV ∗

td

· V
∗
cdVcb
VcdV ∗

cb

· exp(−2iφ3)
1 + |P/T | exp[i(δ + φ3)]
1 + |P/T | exp[i(δ − φ3)]

(2.90)

= exp(2iφ2)
1 + |P/T | exp[i(δ + φ3)]
1 + |P/T | exp[i(δ − φ3)]

, (2.91)

where δ ≡ δP − δT , and φ2 = π − φ1 − φ3 is assumed. Therefore, Aππ and Sππ are parameterized as

Aππ =
2|P/T | sin(φ1 + φ2) sin δ

Rππ
(2.92)

and

Sππ =
sin 2φ2 + 2|P/T | sin(φ1 − φ2) cos δ − |P/T |2 sin 2φ1

Rππ
, (2.93)

respectively, where
Rππ = 1 − 2|P/T | cos δ cos(φ1 + φ2) + |P/T |2. (2.94)

Here, we take −180◦ ≤ δ ≤ 180◦. When Aππ is positive and 0◦ < φ1 + φ2 < 180◦, δ is negative.
Because φ1 can be determined using B → J/ψKS decays, if we know a value of |P/T |, we can extract φ2 from

Aππ and Sππ. Recent theoretical estimates prefer |P/T | ∼ 0.3 [38, 40, 41]. In this paper, we use |P/T | predicted
by M. Gronau et al. [38]:

|P/T | = 0.28± 0.06, (2.95)

where |P | is estimated from the B+ → K0π+ decay rate assuming the SU (3) flavor symmetry, and |T | is estimated
from B → π�ν decay rate with factorization [40].

2.4.6 CP violation in B0 → K+π� decays

In this section, we discuss the possibility that B0 → K+π− decays, which contribute to the background of
B0 → π+π− reconstruction, have a CP -violating asymmetry. Since the final state, K±π∓, is not the CP eigen-
state, the mixing-induced CP violation like in B 0 → J/ψK0 decays does not exist in this decay channel. However,
another sort of CP violation called direct CP violation can exist in B 0 → K+π− decays. Figure 2.7 shows the dia-
grams contributing to the B0 → K+π− decays. The contributions from the tree diagrams are suppressed by CKM
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matrix elements of O(λ4) according to the Wolfenstein parameterization, while that from the penguin contribution
is O(λ2). The decay amplitudes of B0 → K+π− and B0 → K−π+ decays are written as

A(B0 → K+π−) = aT exp[i(+φT + δT )] + aP exp[i(+φP + δP )] (2.96)

and
A(B0 → K−π+) = aT exp[i(−φT + δT )] + aP exp[i(−φP + δP )], (2.97)

where aT (aP ), φT (φP ) and δT (δP ) are the amplitude, the weak phase and the strong phase of the tree (penguin)
diagram, respectively. Note that the weak phase changes the sign under the CP transformation, while the strong
phase does not. The CP -violating asymmetry of the decay rate is obtained as

AKπ ≡ |A(B0 → K−π+)|2 − |A(B0 → K+π−)|2
|A(B0 → K−π+)|2 + |A(B0 → K+π−)|2

=
2|aT ||aP | sin∆δ sin ∆φ

|aT |2 + |aP |2 + 2|aT ||aP | cos ∆δ cos ∆φ
, (2.98)

where ∆δ ≡ δT − δP , and ∆φ ≡ φT − φP . Therefore, CP -violating asymmetry is produced, if both ∆δ and ∆φ
have non-zero values. O(|aT |) � O(|aP |) is required for feasible CP asymmetry.

In the CP -violation measurement inB0 → π+π− decays, sum of the time-dependent decay rates ofB0 → K+π−

and B0 → K−π+ decays is the important quantities, because both K+π− and K−π+ states can be recognized as
the π+π− state if the kaon mis-identified as a pion are.

The time-dependent decay rate for a pure B0 state at the time t = 0 to decay into K+π− or K−π+ is obtained
using Equation 2.40 as:

Γ(t,K+π− +K−π+)

=
1
2

exp(−Γt)
[
(1 + cos(∆mdt))|A(B0 → K+π−)|2 + (1 − cos(∆mdt))|A(B0 → K−π+)|2] , (2.99)

where the approximations of ∆Γ = 0 and |q/p| = 1 are applied. The time-dependent decay rate for a pure B0

state at the time t = 0 to decay into k+π− or K−π+ are also obtained as:

Γ(t,K+π− +K−π+)

=
1
2

exp(−Γt)
[
(1 + cos(∆mdt))|A(B0 → K−π+)|2 + (1 − cos(∆mdt))|A(B0 → K+π−)|2] . (2.100)

The time-dependent asymmetry of these decay rates is obtained as:

AKπ(t) ≡ Γ(t,K+π− +K−π+) − Γ(t,K+π− +K−π+)
Γ(t,K+π− +K−π+) + Γ(t,K+π− +K−π+)

=
(|A(B0 → K−π+)|2 − |A(B0 → K+π−)|2) cos(∆mdt)

|A(B0 → K−π+)|2 + |A(B0 → K+π−)|2 = AKπ cos(∆mdt). (2.101)

2.5 CP violation measurement in the asymmetric B-factory

In this section, we describe the concept of the measurement of the time-dependent CP -violating asymmetry in a
B-factory experiment.

In the B-Factory, B mesons are produced from b̄b resonance state of Υ(4S), because the Υ(4S) is the lowest
bound state that can be decay into a BB pair. Υ(4S) decays into a coherent B0-B0 state with a C-odd configu-
ration. Subsequently the time-evolution of the produced B mesons take place preserving the C-odd configuration.
According to the Bose statistics, if one of the mesons is B0 at a certain time, the other one cannot be B0 then
should be B0, because the state must be odd under the exchange of two mesons. Let us consider the decay rate of
B mesons in this system. We label each of the B mesons with its momentum. B1 and B2 have the momentum of
k and −k, respectively. At the time t = 0, when Υ(4S) decays into B mesons pair, the state of B1-B2 system is
expressed as

|B1B2(t = 0)〉 =
1√
2

(∣∣B0
1

〉∣∣B0
2

〉− ∣∣B0
1

〉∣∣B0
2

〉)
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Figure 2.7: Diagrams for B0 → K+π− decays.

where B0
1 (B0

2) denotes B1 (B2) is B0 and B0
1 (B0

2) denotes B1 (B2) is B0, and the state is chosen to be anti-
symmetric because of the C-odd state of the system. Assuming ∆Γ = 0, a state with B1 at the time t = t1 and
B2 at time t = t2 can be expressed according to Equations 2.40 and 2.41 as

|B1B2(t1, t2)〉 =
1√
2

exp
[
−Γ

2
(t1 + t2)

]
·
[
i sin

(
∆md(t2 − t1)

2

)
·
(
p

q

∣∣B0
1B

0
2

〉− p

q

∣∣B0
1B

0
2

〉)
+ cos

(
∆md(t2 − t1)

2

)
· (∣∣B0

1B
0
2

〉− ∣∣B0
1B

0
2

〉)]
.

The decay rates are computed for the case in which one of the B meson , B1, decays into a flavor-specific state,
X, such as the semi-leptonic decays, while the other one, B2, decays into a flavor-nonspecific state, fCP , such as
J/ψKS , π+π−, and so on: i.e. B0 (B0) can decay into X (X) while B0 → X (B0 → X) decay is forbidden.
B0 → fCP and B0 → fCP are allowed. Using the definitions of A(X) ≡ 〈X ∣∣B0

〉
=
〈
X
∣∣B0

〉
, A(fCP ) ≡ 〈fCP ∣∣B0

〉
,

and λf = (q/p) · (〈fCP ∣∣B0
〉
/
〈
fCP

∣∣B0
〉
), the decay rates are calculated as

G−(t1, t2) ≡ |〈(X)1(fCP )2 |B1B2(t1, t2)〉|2

=
1
4

exp [−Γ(t1 + t2)] |A(X)|2|A(fCP )|2 {(1 + |λf |2) + (1 − |λf |2) cos [∆md(t2 − t1)]

−2 Im(λf ) sin [∆md(t2 − t1)]} (2.102)
and

G+(t1, t2) ≡ |〈(X)1(fCP )2 |B1B2(t1, t2)〉|2

=
1
4

exp [−Γ(t1 + t2)] |A(X)|2|A(fCP )|2|p/q|2 {(1 + |λf |2) − (1 − |λf |2) cos [∆md(t2 − t1)]

+2 Im(λf ) sin [∆md(t2 − t1)]} . (2.103)

For the fCP = π+π− case, the approximation of |p/q| � 1 and the notations defined as Equations 2.85 and 2.86
simplify Equations 2.102 and 2.103:

G±(t1, t2) ∝ exp[−Γ(t1 + t2)] {1 ± Aππ cos[∆md(t2 − t1)] ± Sππ sin[∆md(t2 − t1)]} . (2.104)

Let t2 be the time when one of two B-meson decays into π+π− state, which is the CP eigenstate, and t1 be
the time when another B meson decays into the flavor-specific state. We label the B meson decaying into the CP
eigenstate as BCP and the remaining B meson as Btag, hereafter. A duration measurement from the Btag decay
to the BCP decay, defined as ∆t ≡ t2 − t1, provides Aππ and Sππ instead of the measurements of t1 and t2 as
follows.

Because we care neither the individual decay time t1 nor t2, we have to integrate Equation 2.104 with respect
to t1 and t2 under the constraint ∆t = t2 − t1. Using t1 ≥ 0 and t2 ≥ 0,∫ ∫

dt1dt2G±(t1, t2)δ(t2 − t1 − ∆t) ∝ exp(−Γ|∆t|) [1 ±Aππ cos(∆md∆t) ± Sππ sin(∆md∆t)] . (2.105)
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It is worth mentioning what happens if we swap B1 and B2 in Equations 2.102 and 2.103. In this case B1 decays
into a CP eigenstate and B2 decays into a flavor specific state, and therefore the definition of ∆t is flipped as
∆t = t1 − t2. Thus, we get the exactly same function as Equation 2.105.

We obtain a ∆t distribution function from Equation 2.105 as

f(∆t; q,Aππ,Sππ) =
1

4τB0
exp

(
−|∆t|
τB0

)
{1 + q [Aππ cos(∆md∆t) + Sππ sin(∆md∆t)]} (2.106)

where τB0 ≡ 1/Γ is a lifetime of B0 meson and q = +1 (q = −1) for the case that Btag is specified as B0 (B0).
This function is normalized as∑

q=±1

∫
d(∆t) f(∆t; q,Aππ,Sππ) = 1. (2.107)

Figure 2.9(a) shows the proper-time distributions for q = 1 and q = −1, respectively, where the both inputs of
Aππ and Sππ are +0.7.

To summarize, in the B0B0 system produced from the Υ(4S) decay, we can extract the parameters of CP -
violating asymmetry by measuring the proper-time difference, ∆t, and identifying the flavor of Btag.

We describe the experimental procedure to determine the parameters of CP -violating asymmetry in an asym-
metric B-factory. Figure 2.8 shows the conceptual drawing of the experimental procedure. In the B-factory, the
accelerator produces a B0B0 meson pair via the Υ(4S) resonance. One of the B meson, BCP , is fully reconstructed
using the flavor-nonspecific decay mode, such as B0 → π+π−, and its decay position is reconstructed using the
daughter tracks. The decay position of Btag is obtained from remaining tracks.

Because Υ(4S) is boosted in the laboratory frame in the asymmetric beam-energy collision, and the B0 mesons
pair is produced almost at rest in the Υ(4S) rest frame, the proper-time difference is obtained as

∆t =
∆z

c · (βγ)Υ(4S)
, (2.108)

where ∆z is the distance of decay positions of BCP and Btag in beam direction and (βγ)Υ(4S) is the Lorentz
boost factor of Υ(4S), which is obtained from the accelerator parameters. Since B meson lifetimes is about 1.5 ps
and (βγ)Υ(4S) is set to be about 0.5, B mesons run about 200 µm before their decay, which is sizable length to
be measured by the silicon strip detector. Because of the finite resolution of ∆z measurement, the CP -violating
asymmetry in ∆t distribution is smeared, as shown in Figure 2.9(b). Thus, an appropriate understanding of the
resolution is one of the essential components to measure the parameters of CP -violating asymmetry.

It is necessary to determine the flavor of Btag. This process is called flavor tagging. The presence of the
following particles can be used to tag the flavor of the B mesons: leptons from b → c�−ν̄, leptons from cascade
decays b → c → �+sν, fast pions which reflects the charge of virtual W in b → c W , slow pions from D∗± whose
charge reflects a charge of c, and Kaons and Λ from cascade decays of b → c → s. Using the probability of the
incorrectly assignment of the Btag flavor , wtag (called wrong tag fraction), the observed ∆t distribution becomes

f(∆t; q,Aππ,Sππ) =
1

4τB0
exp

(
−|∆t|
τB0

)
{1 + q(1 − wtag) [Aππ cos(∆md∆t) + Sππ sin(∆md∆t)]}

+
1

4τB0
exp

(
−|∆t|
τB0

)
{1 − qwtag [Aππ cos(∆md∆t) + Sππ sin(∆md∆t)]}

=
1

4τB0
exp

(
−|∆t|
τB0

)
{1 + q(1 − 2wtag) [Aππ cos(∆md∆t) + Sππ sin(∆md∆t)]} ,(2.109)

as shown in Figure 2.9(c). Thus, it is important to estimate wtag correctly for the determination of the parameters
of CP -violating asymmetry.

Figure 2.9(d) shows the expected ∆t distributions for the input values of Aππ = +0.7 and Sππ = +0.7 where the
detector resolution and the wrong tag fraction are realistically taken into accounted. We determine the parameters
of CP -violating asymmetry from the asymmetric ∆t distribution by the unbinned-maximum-likelihood-fit method.

2.6 Experimental Constraints on the Unitarity Triangle

Here we review the current experimental constraints on the unitarity triangle. Those measurements define the
preferable area for φ2 by specifying the apex of (ρ̄, η̄) in Figure 2.3(b).

The elements in the first row of the CKM matrix are accessible in the so-called direct (tree-level) processes,
i.e. in weak decays of hadrons containing the corresponding quarks. |Vud| and |Vus| are known with accuracies of
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better than 1%. |Vcb| is determined with an accuracy of 5%, and |Vcd| and |Vcs| are known with about 10-20%
errors. Hence, the λ and A in Wolfenstein parameterization are rather well determined experimentally [42]:

λ = |Vus| = 0.2196± 0.0026 (2.110)
and

A =
|Vcb|
|Vus|2 = 0.85± 0.04, (2.111)

respectively. On the other hand, |Vub| has an uncertainty of about 30%. |Vtd|, which is determined from the B0-B0

mixing, also has the large uncertainty. This implies the existence of rather significant uncertainty in ρ and η.
To determine the shape of the triangle, one can aim for measurements of the two sides and three angles. Using

Wolfenstein parameterization and Equations 2.23 and 2.24, the two side of the unitarity triangle are expressed as

Rb ≡
√
ρ̄2 + η̄2 =

1
λ

(
1 − λ2

2

) |Vub|
|Vcb| (2.112)

and
Rt ≡

√
(1 − ρ̄)2 + η̄2 � 1

Aλ3
|VtdV ∗

tb|. (2.113)

|VtdV ∗
tb| is accessible through B0-B0 mixing by the measurement of mass difference, ∆md, assuming that the

dominant contribution to the mass difference arises from the matrix element between a B0 and B0 of an operator
that corresponds to a box diagram, with W bosons and top quarks as sides. The theoretical prediction by the
standard model is

|VtdV ∗
tb|
(
∝
√

∆md

)
= 0.0079± 0.0015, (2.114)

where the uncertainty comes primary from that in the hadronic matrix elements. In the ratio of Bs to Bd mass
difference, many common factors (such as the QCD correction and dependence on the top quark mass) cancel and
gives another determination of Rt through a measurement of B0

s -Bs0 mixing,

R2
t = f

mBs

mBd

∆ms

∆md

1 − λ2(1 − 2ρ̄)
λ2

, (2.115)

where f is the ratio of the hadronic matrix element for Bs to Bd. Presently, only a lower limit on ∆ms is obtained,
and thus it gives upper limit of Rt.

Another constraint is given by K0-K0 mixing parameter, εK . The constraint arising in the ρ̄-η̄ plane forms
hyperbola, depending on the hadronic matrix elements.

φ1 is directly measured using the time-dependent CP asymmetry in b→ cc̄s decays. The present results from
B-factory experiments, Belle [8] and BABAR [9], when averaged yield

sin 2φ1 = 0.78± 0.08. (2.116)

Figure 2.10 shows the above constraints on the position of apex, (ρ̄, η̄), of the unitarity triangle.
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Chapter 3

Experimental apparatus

In this chapter, the experimental apparatus used in the analysis is described. The analysis is based on the B-
factory experiment at the High Energy Accelerator Research Organization (KEK), in Japan employing the KEKB
electron-positron accelerator and the Belle detector.

KEKB produce a huge amount of B mesons with the highest luminosity in the world as of July 2002. We
describe the detail of KEKB in Section 3.1. The Belle detector, which is the multipurpose particle detector
complex attached to KEKB, described in Section 3.2. In the section, the trigger system to operate the detector,
the data acquisition system to record the data and the offline computing facility to analyze the recorded data are
also described in detail.

3.1 The KEKB accelerator

KEKB [43] is an asymmetric electron-positron collider designed to produce a large number of B mesons. The
energy of electrons and positrons are 8.0 GeV and 3.5 GeV, respectively. The energy in the center-of-mass system
(cms) is 10.58 GeV, which corresponds to the Υ(4S) resonance. The produced Υ(4S) is in motion with Lorentz
boost factor, (βγ)Υ(4S) equal to 0.425 and decays into neutral or charged B mesons pair. The flight length of B
mesons in laboratory frame is about 200 µm, because their lifetimes are about 1.6 ps. The design luminosity of
KEKB is 1034 cm−2s−1, which corresponds to about 108 Υ(4S)s a year.

The configuration of the KEKB accelerator is illustrated in Figure 3.1. KEKB consists of two storage rings,
the High Energy Ring (HER) for electrons and the Low Energy Ring (LER) for positrons. HER and LER are
about 3 km long in circumference. Electrons are generated by an electron gun and are then accelerated up to
8.0 GeV in an injector linear accelerator (linac) that is about 600 m long over all. Then the electron beam is
directory injected into HER. Electrons are also injected to a tungsten target at the intermediate position of linac,
and electron-positron pairs are produced there. Positrons are separated and accelerated up 3.5 GeV to in the
rest path of the linac. Then positron beam is injected into LER. HER and LER cross at the one point, called
the interaction point (IP). Electrons and positrons collide at IP with a finite angle of ±11 mrad. The finite angle
crossing minimizes the bending of beam and reduces the synchrotron radiation to the Belle detector.

KEKB construction was completed in November 1998 and commissioning started in December 1998. In July
2002, KEKB archived the peak luminosity of 7.348× 1033 cm−2s−1 with 1365 mA LER and 918 mA HER beam
current, where the design values are 2.6 A for LER and 1.1 A for HER. KEKB delivered an integrated luminosity
of 89.62 fb−1 to Belle by July 2002.

3.2 The Belle Detector

The Belle detector [44, 45] is designed to measure the B-meson decay vertices with a sufficient resolution for the
measurement of the time-dependent decay ratio, and to identify particles for the flavor determination of B mesons.
The Belle detector consists of the several components as shown in Figure 3.2. The acceptance region is asymmetric
because of the asymmetric beam energies.

Charged-particle reconstruction is provided by a wire drift chamber, called Central Drift Chamber (CDC) [46,
47], operated under a 1.5 T super-conducting solenoid. B meson decay points are measured by a Silicon Vertex
Detector (SVD) [48,49] that is just outside the beryllium beam pipe. The charged-particle identification is provided
by the dE/dx measurement in CDC, and information from the Aerogel Čerenkov Counter (ACC) [50,51] and the

20
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Figure 3.1: The KEKB accelerator

Time of flight counter (TOF) [52]. The set of trigger modules, Thin Trigger Scintillation Counter (TSC), is at-
tached to TOF. Photon detection and Electron identification are carried out using the Electromagnetic Calorimeter
(ECL) [53–55] made of thallium doped CsI crystals. Resistive plate counters for KL meson detection and muon
identification (KLM) [56] are interspersed within the magnet-flux return iron of the solenoid that also works as an
absorber. Particles moving very close to the beam direction are detected by the BGO Extreme Forward Calorime-
ter (EFC) [57, 58] placed on the surface of the cryostats for final focusing magnets in the forward and backward
regions. The characteristics and performance of each subcomponents is summarized are Table 3.1.

The Belle detector construction was completed in December 1998. After calibration with 100K cosmic ray
events, it was rolled into the interaction point and started recording the e+e− collision data in May 1999.

The coordinate system of the Belle detector is defined as follows:

x : horizontal outward to the KEKB ring,
y : vertical upward,
z : opposite of the positron beam direction,

r :
√
x2 + y2,

θ : polar angle measured from +z direction,
φ : azimuthal angle around z axis.

3.2.1 Beam Pipe

To achieve the precise determination of decay points in SVD, it is required to minimize the thickness of the beam
pipe at the interaction region, because the multiple Coulomb scattering at the material inside the first layer of
SVD is the limiting factor on the decay vertex resolution. Therefore, the beam pipe wall is made of beryllium.

Because the beam-induced heating reaches a few hundred watts, the beam pipe is also required to have an
active cooling system and a mechanism for shielding the SVD from the heat. The structure of the beam pipe is
shown in Figure 3.3. The beam pipe consists of two cylinders with different radii, r = 20.0 mm and 23.0 mm. The
thickness of each cylinder is 0.5 mm. The gap within two cylinders is filled with helium gas for cooling.

3.2.2 Silicon Vertex Detector

The main task of Silicon Vertex Detector (SVD) is to reconstruct the decay points of two primary B masons to
observe the time-dependent CP asymmetries. It requires the measurement of the distance of two decay vertices
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Table 3.1: Summary of the subcomponents of the Belle detector.

Component
Type Configuration

Readout channel Performance/Note

Beam Pipe
Beryllium
double-wall

Inner radius = 20 mm,
Thickness = 0.5(Be)/2.5(He)/0.5(Be) mm

Helium gas chilled

SVD

Double sided
silicon strip

300 µm thickness, 3 layers: r = 30.0 ∼ 60.5 mm,
Strip pitch: 25(p)/50(n) µm

40.96K ch(θ),
40.96K ch(r-φ) ∆z resolution ∼ 200 µm in R.M.S.

CDC

Small-cell
Drift chamber

Anode: 50 layers, Cathode: 3 layers,
r = 83 ∼ 863 mm, z = −77 ∼ 160 cm

8.4K ch(Anode),
1.8K ch(Cathode)

σr−φ = 130 µm, σz = 200 ∼ 1400 µm,
σpt/pt = (0.29⊕ 0.20 · pt[GeV/c])%, σdE/dx = 7%

ACC
Silica aerogel
Čerenkov counter

∼120×120×120 mm3 block: 960 barrel and
228 forward end-cap, Fine Mesh PMT readout

1788 ch π±/K± separation: 1.2 < p < 3.5 GeV/c

TSC
Scintillation
counter

64 φ segments, r = 1175 mm, 3 m long, attached to TOF

64 ch

TOF
Scintillation
counter

128 φ segments, r = 1201 mm, 3 m long

128×2 ch σt = 100 ps, π±/K± separation: p < 1.2 GeV/c

ECL

CsI(Tl) Towered structure, ∼55×55×300 mm3 block,
r = 125 ∼ 162 cm(barrel), z = −102, 196 cm(endcap)

6624 ch(Barrel),
1152 ch(Forward),
960 ch(Backward)

σE/E = (1.34⊕ 0.066 ·E−1 ⊕ 0.81 ·E−1/4)%,
σposition = 0.27 + 3.4 ·E−1/2 + 1.8 ·E−1/4 mm (E in GeV)

Magnet
Super-conducting
solenoid

Inner radius = 1, 700 mm

B = 1.5 T

KLM

Glass resistive
plate counters

14 layers: 50 mm Fe + 40 mm gap,
2 RPCs(θ strips and φ strips) in each gap

16K ch(θ),
16K ch(r) ∆θ = ∆φ = 30 mrad for KL, σt = a few ps

EFC
Bi4Ge3O12 32 segments in φ, 5 segments in θ, Photodiode readout

5 ch(θ), 32 ch(φ) Energy Resolution (R.M.S.) = 7.3%(8 GeV),
= 5.8%(3.5 GeV)
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along z-axis with a good precision comparing to the B meson lifetimes: ∼ 200 µm. In addition, SVD is useful to
identify and to measure the decay vertices of D and τ particles.

SVD consists of three layers of Double sided Silicon Strip Detector (DSSD) surrounding the beam pipe. SVD
has 102 DSSDs in total, having a total 81,920 readout channels. Figure 3.4 shows the structure of SVD. The
radial positions of layers are at r = 300, 455 and 605 mm, which have 8, 10, 14 sensor modules (full-ladder) in φ
direction, respectively. The polar-angle coverage is 23◦ < θ < 139◦ corresponding to 86% of the full solid angle.
The each full-ladder consists of two half-ladders and a support rib. The half-ladders consist of DSSDs, ceramic-
hybrid preamplifier circuit cards, heat sink made of boron-nitride and copper heat pipe filled with water vapor.
Two kinds of half-ladders, short and long, are used to construct the full-ladder. A short half-ladder has a single
DSSD, while a long half-ladder has two DSSDs where strips on the n-side (p-side) of one DSSD are wire-bonded
to strips on the p-side (n-side) of the other DSSDs to keep a good signal-to-noise(s/N) ratio. Full-ladders in the
innermost layer consist of two short half-ladders, while those in middle layer consist of one short half-ladder and
one long half-ladder. Full-ladders in outermost layer consist of two long half-ladders. The support ribs are made
of boron-nitride reinforced by CFRP (Carbon Fiber Reinforced Plastics). The total amount of material is 0.5 %
radiation length per layer.

The DSSDs were fabricated by Hamamatsu Photonics (HPK S6936) and were originally designed for the
DELPHI microvertex detector [59]. The sensor size is 57.5× 33.5 mm2 and the thickness is 300µm. Figure 3.5(a)
shows the schematic structure of DSSD. The one side (n-side) of DSSD has n+-strips oriented perpendicular to
the beam direction to measure z coordinate of tracks and the other side (p-side) has the p+-strip along the beam
direction in order to measure the position of the track in r-φ plane. The strip pitches of p-side and n-side are
25 µm and 42 µm, respectively. The bias voltage of 80 V is supplied to the n-side, and then the p side is grounded.
The n+-strips are interleaved by the p+ implants (p-stop) in order to separate the consecutive strips electrically.
Figure 3.5(b) shows the readout scheme of DSSD. On the p-side, every second strips are connected to one readout
channel, an aluminum electrode with AC coupling using high-resistive poly silicon. The remaining half strips
are floating, which are biased but not connected to the preamplifiers, and are capacitively dividing the adjacent
channels that are connected to the preamplifiers. On the n-side, adjacent strips are connected to one readout
channel with AC coupling which gives an effective strip pitch of 84 µm. In order to make the same direction of
readout channels of the n+-side strips as that of the p-side, Double Metal Layer (DML) structure is adopted.

Each hybrid card has five VA1 chips [60], which are 128 ch amplifier LSI chips developed at CERN, to readout
the signals from DSSDs. The VA1 chip has an excellent noise performance of 200e− + 8e−/pF in equivalent noise
charge at a shaping time of 1.0 µs [61]. The VA1 chip has also reasonably good radiation tolerance up to a dose
of 200 krad. In summer 200, the original VA1s with 1.2-µm technology were replaced with new VA1s processed
with 0.8-µm technology that has improved radiation tolerance up to a dose of 1 Mrad [62]. The multiplexed
signal outputs from VA1s are transferred to Fast Analog-to-Digital Converters (FADCs) located about 30 m away
from SVD by repeater modules located at the endcap regions of the Belle detector [63]. The transferred signals
are digitized by FADCs, then the common-mode noise subtraction, data sparsification, and data formatting are
performed online by Digital Signal Processors (DSPs) in the FADC modules.

The electrical noise of the half ladders are measured to be ∼ 400e−, ∼ 1000e− and ∼ 1100e− for the p-side
channels in short half ladders, the n-side channels in short half ladders, and the channels in long half ladders,
respectively. The S/N ratio for Minimum-Ionizing Particles (MIPs) is greater than 17. The intrinsic position
resolution of DSSD, which is evaluated by the distance between the SVD hits in the middle layer and tracks
reconstructed from SVD hits in the innermost and the outermost layers using the curvature information from CDC,
is ∼ 10 µm for p-side and ∼ 15 µm for n-side [64]. The probability that a track reconstructed by CDC within the
SVD acceptance 1 has associated with SVD hits in at least two layers 2 is measured to be higher than 97%. The
resolution of impact parameter to the interaction point for tracks is measured using the tracks from γγ → e+e−,
γγ → 2ρ0 → 2(π+π−) and e+e− → µ+µ− events in beam collision and the cosmic ray events. The obtained impact
parameter resolution, that depends on the momentum and polar angular of tracks, is shown in Figure 3.6, and
well represented by the following formula: (19⊕ 50/pβ sin2/3 θ) µm in r-φ plane and (36⊕ 42/pβ sin2/5 θ) µm in z
direction3.

3.2.3 Central Drift Chamber

The task of Central Drift Chamber (CDC) is the detection of charged particles and the measurement of the
momentum of the tracks determined from the curvature of the charged tracks in the magnetic field of 1.5 T. CDC
also measures the energy loss (dE/dx), and this dE/dx information is useful for the particle identification in the

1Tracks from KS → π+π− decays are excluded because K S can be out side of innermost layer of SVD.
2Furthermore, it is also required at least one SVD hits to have both z and r-φ information.
3The unit of the momentum is GeV/c
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Figure 3.6: The impact parameter resolution of SVD.

momentum region of p < 0.8 GeV/c and p > 2 GeV/c, because the amount of dE/dx depends on the β = v/c
according to Bethe-Bloch formula.

Figure 3.7 shows the structure of CDC. The inner and the outer radii are 83 and 874 mm, respectively, and the
polar-angle coverage is 15◦ < θ < 150◦. CDC is a cylindrical wire drift chamber that contains 50 layers of anode
wire and three cathode strip layers. The anode layers consist of 32 axial-wire layers and 18 stereo-wire layers. The
axial wires are configured to be parallel to z-axis, while the stereo wires are slanted approximately ±50 mrad, and
provide the z coordinate measurements of tracks. Thus, CDC reconstructs the 3-dimensional particle trajectories.
The chamber has a total 8,400 drift cells, which have are the rectangle structure of 16∼20(φ)×15∼17(r)µm2, and
each cell consists of 1 sense wire surrounded by 8 field wires. The sense wires are made of gold plated tungsten of
30 µm in diameter. The field wires are made of aluminum of 126 µm in diameter. The total numbers of the sense
wires are 5,280 and 3,120 for axial and stereo, respectively, while the total number of the field wires is 33,344.
The high voltage of 2.35 kV (typical) is supplied to the sense wires while the electric field on the surface of the
field wires is kept below 20 kV/cm. A mixture of He (50%) and C2H6 (50%), which has a ∼ 640 m radiation
length, is filled in the chamber. The use of the helium minimizes the multiple Coulomb-scattering contribution
to the momentum resolution. The drift velocity is about 4 cm/µm. A charged particle traversing in the chamber
produces ionized gas of ∼ 100 cm−1. A charge avalanche is caused by the ionized gas and it drifts to the sense
wire with a finite drift time, then a signal is read out. At the inner most radius, three cathode strip layers are
installed to provide the z position measurements of tracks for the trigger system [65,66].

The charged-particle tracking is performed in three steps. At first, the track finding is performed by recognizing
hit patterns. High transverse-momentum tracks are found in r-φ plane using axial wire hits, and then reconstructed
3-dimensionally by associating with stereo wire hits. Low transverse-momentum tracks are found with axial wire
hits, stereo wire hits and SVD hit pattern information. At second stage, the trajectory of charged tracks are
calculated using the Kalman Filter technique [67, 68] taking into account a non-uniformity of magnetic field,
dE/dx and multiple scattering. SVD hits are associated with the reconstructed tracks with the same technique,
and the trajectory is recalculated using CDC and SVD information to improve the momentum resolution. At last,
the redundant tracks are removed by comparing track parameters each others.

The performance of CDC is evaluated with cosmic-ray tracks that pass thorough the interaction region.4 The
spatial resolution of CDC is measured to be ∼130 µm. Figure 3.8(a) shows the spatial resolution as a function of the
drift distance. The resolution of transverse momentum is measured as shown in Figure 3.8(b). It is parameterized
as 0.20 · pt ⊕ 0.29/β % where pt is the transverse momentum measured in GeV/c. The resolution of pt is also
measured using e+e− → µ+µ− process as 1.64± 0.04 % in the pt range from 4.0 to 5.2 GeV/c.

The truncated-mean method is employed to estimate the most probable energy loss. The largest 20% of
measured dE/dx value for each track is excluded, and the dE/dx value for each track is obtained by taking
average of the remaining 80 % data, to avoid occasional large fluctuations in Landau tail of the dE/dx distributions.

4The cosmic rays are recognized by the tracking system as two tracks coming from the interaction region.
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Figure 3.9(a) is a scatter plot of the measured dE/dx and the particle momentum for tracks in the beam collision
data. Population of pions, kaons, protons and electrons can be clearly seen. The K/π separation more than 3σ
is provided in the momentum range up to 0.8 GeV/c and above 2GeV/c. The e/π separation greater than 3σ is
also provided in the momentum range from 0.3 to 3GeV/c. The dE/dx resolution for pions in the momentum
range from 0.4 to 0.6GeV/c are measured to be 7.6% using KS → π+π− decays as shown Figure 3.9(b), while the
dE/dx resolution for electrons and muons are measured to be ∼ 6 % using Bhabha and e+e− → µ+µ− process,
respectively.
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Figure 3.8: Performance of the CDC.

3.2.4 Aerogel Čerenkov Counter

The Aerogel Čerenkov Counter (ACC) provides the fine particle identification in the momentum range from 1.2
to 3.5 GeV/c. The ability of the good π/K separation in this momentum range is crucial to improve the S/N
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ratio for the reconstruction of B0 → π+π− Decays. When a particle passes thorough the silica aerogel radiator,
the Čerenkov light is emitted if the following condition is satisfied:

m < p ·
√
n2 − 1,

where m the p are particle mass and momentum, and n is a refractive index of the radiator. By tuning the
refractive index for the target particle momentum range, light particles such as pions emit the Čerenkov light in
ACC, while heavier particles such as kaons do not, which is the basic concept of the particle identification by
ACC. Silica aerogel used as a radiator is a low density and has a low refractive index between compressed gas and
liquid materials, because it is a colloidal form of (SiO2)n with more than 95% porosity. Figure 3.10 shows the side
view of ACC. The barrel part consists of 960 counter modules, segmented into 60 cells in the φ direction. The
forward endcap part consists of 228 counter modules, arranged in five concentric layers. The refractive index of
aerogel ranges 1.010-1.028 for the barrel part depending on the polar angular regions, because the particles passing
thorough the lower polar angle region has the large momentum. The refractive index in the endcap part is set to
be 1.030 to provide the good π/K separation in the momentum range below 2.0 GeV/c for flavor tagging, because
it is hard to produce the aerogel with the lower refractive index than 1.010. Figure 3.11 shows the structure of
typical ACC modules for the barrel and the endcap parts. Because the ACC is operated under a magnetic field of
1.5 T, Fine-Mesh Photo-Multiplier Tubes (FM-PMTs) [69], with diameter of either 2, 2.5 or 3 in., are used to detect
Čerenkov light. One or two FM-PMTs are attached to one counter module. The numbers of readout channels
are 1560 in the barrel part and 228 in the endcap part. The performance of the counter module are measured
using π− and proton beams at KEK Proton Synchrotron [70] as shown in Figure 3.12(a). Figure 3.12(b) shows the
measured pulse-height distribution in the barrel part for electrons from Bhabha processes and kaon candidates in
hadronic events, which are identified by using information from TOF and dE/dx measured with CDC [50]. The
figure demonstrates a clear separation between the light-velocity particles and the particle below threshold . The
figure also shows the good agreement between data and Monte Carlo expectations [71].

3.2.5 Time of Flight Counter and Trigger Scintillation Counter

The Time of Flight Counter (TOF) provides is another device for the particle identification. For a flight path of
1.2 m, TOF with ∼ 100 ps time resolution provides the π/K separation effective for the particle momentum range.
To identify the particle, each particle mass (m) is measured as follows:

m = p ·
√

(T/L)2 − 1,

where L is the flight path length and T is the flight time. A coincidence between the Trigger Scintillation
Counters (TSCs) and TOF Counters provides the clean event timing to the Belle trigger system. The TOF/TSC



3.2. THE BELLE DETECTOR 29

B (1.5Tesla) 3" FM-PMT
2.5" FM-PMT

2" FM-PMT

17
°

127 ° 34 °

Endcap ACC

1622 (BACC)n=1.028
60mod.

n=1.020
240mod.

n=1.015
240mod.

n=1.013
60mod.

n=1.010
360mod.

Barrel ACC

n=1.030
228mod.

TOF/TSC

CDC

Figure 3.10: Arrangement of the ACC.

Aerogel

Goretex

Finemesh PMT

Finemesh PMT

120 mm

120 mm

Aluminum container 
                          (0.2mm thick)

(a) Barrel ACC Module

Aerogel

Goretex Reflector

CFRP(0.5mm thick)

Air light guide

FM-Phototube

Base & Amplifier

(CFRP)

(b) Endcap ACC Module

Figure 3.11: Schematic drawing of a typical ACC counter module.



30 CHAPTER 3. EXPERIMENTAL APPARATUS

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000

3.5 GeV/c p

3.5 GeV/c π

ADC ch

(a) Pulse-height spectra for 3.5 GeV pions and protons
obtained by a single counter module of ACC, of which
silica aerogel radiator has refractive index of 1.015, in
a magnetic field of 1.5 T.

Pulse Height (p.e.)

Beam Data

Monte Carlo

Bhabha e+/e-

Kaons
(selected by ToF and dE/dx)

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25 30 35 40 45 50

(b) Pulse-height spectra observed the barrel part for

electrons and kaons identified by CDC dE/dx and
TOF information. The Monte Carlo expectations
are superimposed.

Figure 3.12: Performance of ACC

system also provides the fast trigger signal to SVD. The TOF/TSC system comprises of 64 TOF/TSC modules.
The structure of TOF/TSC modules consists of two TOF counters and a TSC as shown in Figure 3.13. The TOF
counters and TSCs are made of plastic scintillation counters and FM-PMTs for readout. The TOF counters has
sensitive region of ∼ 2.5 m long and covers the polar angle range of 34◦ < θ < 121◦ where the TOF counters
and TSCs are located at r = 122.0 cm and r = 117.5 cm, respectively. TOF is calibrated with e+e− → µ+µ−

events [52]. Figure 3.14(a) shows the measured time resolution for forward, backward PMTs and the weighted
average of both ends, as a function of the track position in the beam direction. The resolution for weighted average
time is required to be �100 ps. Figure 3.14(b) shows the mass distributions from TOF measurements, for particles
momenta below 1.2 GeV/c, in hadronic events with the Monte Carlo expectation by assuming the time resolution
of 100 ps [72]. Peaks corresponding to pions, kaons and protons are significantly separated and the experimental
data and Monte Carlo expectation are in good agreement.

3.2.6 Electromagnetic Calorimeter

The Electromagnetic Calorimeter (ECL) is designed to detect the electromagnetic shower produced by photons and
electrons. The electromagnetic shower, which can be associated with the charged track reconstructed in CDC, is
recognized as the electrons. The remaining showers are regarded as the neutral particles, i.e. photons. The electron
identification by the ECL is essential for the efficient flavor identification of B mesons and for the reconstruction
of J/Ψ in CP eigenstates such as B0 → J/ΨKS . Therefore, the good energy resolution is required for the hadron
rejection in the election identification. The detail of the electron identification is described in Section 3.4.2. It
is important to detect high-energy photons up to ∼ 4 GeV to reconstruct the interesting rare decays, such as
B → K∗γ, B0 → π0π0 and so on. On the other hand, it is also required to have the good sensitivity for low energy
photons (�500MeV ), since the most of photons comes from π0 in the cascade B-meson decays.

The overall configuration of ECL is shown in Figure 3.15. ECL consists of 8736 thallium doped cesium iodide
(CsI(Tl)) crystals assembled into a tower structure. The barrel crystals are located at r = 1.15 m, while the
forward and backward endcap crystals are located at z = +1.96 m and z = −1.02 m, respectively. The polar
angular coverage is 17◦ < θ < 150◦ corresponding to 91% of full solid angle. The numbers of crystals in barrel,
forward endcap and backward endcap are 6626, 1152, and 960, respectively. Each CsI(Tl) crystal is 30 cm long
corresponding to 16.2X0, where X0 represents the radiation length. Each crystal is projected to the interaction
point with a small tilt angle of 1.9◦ in both θ and φ directions to prevent any photons to escape trough the gaps
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between crystals. Each crystal is readout by 2 10 × 20 mm2 photodiodes, which are glued to the rear surface of
the crystal via 1 mm thick acrylate for the protection of the crystal.

The photon reconstruction is initiated by finding the ECL cluster. At first, the seed crystals, which have the
highest energy deposit than any neighbor crystals are searched. The energy sum in 3×3 crystal matrices (E9) and
in 5× 5 crystal matrices (E25) around the seed crystals are calculated, where the crystals with the energy deposit
of less than 500 KeV are excluded from the sum. To reject the cluster due to the charged particle, the crystal
surface of the cluster must not be associated with any charged particle trajectory. The clusters with E25 greater
than 500 MeV are identified as photons. The clusters with E25 greater than of 20 MeV and E9/E25 > 0.75 are
also identified as photons.

Prototype CsI crystals are tested at the tagged photon beam at Budker Institute of Nuclear Physics (BINP),
Russia [53, 73, 74]. Figure 3.16(a) shows the average position resolution as a function of the measured cluster
energy. The measured position resolution is expressed as (0.27 + 3.4 · E−1/2 + 1.8 · E−1/4) mm, where E is the
measured cluster energy in GeV. Figure 3.16(b) shows the energy resolution as a function of the incident photon
energy. The energy resolution is measured as (1.34⊕ 0.066 ·E−1 ⊕ 0.81 ·E−1/4)% where E is the incident photon
energy. The absolute energy calibration is carried out using Bhabha and e+e− → γγ events. Figure 3.17 shows the
measured energy resolution for Bhabha events. The obtained energy resolutions are 1.70 % for barrel, and 1.74 %
for the forward endcap and 2.85 % for the forward and backward endcap, respectively.
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Figure 3.15: Overall structure of the ECL

3.2.7 Super-conducting Solenoid

A superconducting solenoid provides a magnetic field of 1.5 T in a cylindrical volume of 3.4 m in diameter and 4.4 m
in length for the charged-particle tracking. The main coil is made of the niobium-titanium/copper superconductor
with pure aluminum stabilizer. The coil is chilled by liquid helium and has inductance of 3.6 H. The nominal
current is 4,400 A. The return path of the magnetic field is provided with the iron yoke that also works as the
absorber material for the detection of muons and KL mesons. An absolute calibration of the field strength with a
precision better than 1 Gauss is provided by the NMR probe.

3.2.8 K� and Muon Detector

The KL and Muon Detector (KLM) [56] is located outside the solenoid and designed to detect muons in the
momentum range of > 0.6 GeV/c and KL mesons. The muon identification is important to reconstruct of J/ψ
mesons and the flavor tagging, as same as the electron identification. The detection of KL mesons is important
to reconstruct B0 → J/ψKL decays. Although KLM does not measure the energy of KL, B0 → J/ψKL decays
are reconstructed with adequate S/N ratio by requiring the kinematical constraints assuming two-body decays.
KLM consists of barrel, forward endcap and backward endcap regions. The structure of each part is a repetition
of 47 mm thick iron plate and 44 mm thick slot in which a Resistive Plate Counter (RPC) [75] super-layer module
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is installed. There are 15 super-layers in the barrel and 14 layers in the each endcap. The barrel is divided
azimuthally into octants and the endcap divided into quadrants.

The RPC super-layer module consists of two RPC layers as shown in Figure 3.18(a). A RPC consists of two
highly resistive glass electrodes (� 1010 Ω · cm) with the gap of 2mm in which the gas made of 30 % argon, 8 %
butane-silver5 and 62 % freon6 is filled. High voltage of +4.7 KV, +4.5 KV and −3.5 kV is supplied to the cathodes
of barrel RPCs, the cathodes of endcap RPCs and the anode of all RPCs, respectively. The avalanche is induced
by an incident charged particle in the gas. It results in a local discharge of the plate. Because of high resistivity
of the plate and the quenching effect of the iso-butane and freon, the discharge is localized and readout as a signal
with a good position resolution by pickup strips made of copper. Since strips of two RPC layers in a super-layer
module are perpendicular to each other, the super-layer module can measure the position of charged particles in
2-dimensionally.

The barrel part consists of 240 super-layer modules that are rectangle in shape with external thickness, width,
and length of 33 mm, 1542 ∼ 2697 mm7 and 2207 mm, respectively. Two barrel super-layer modules are aligned
along the beam direction in one slot. Each endcap part consists of 112 super-layer modules as shown in Fig-
ure 3.18(b). The KLM covers the polar-angle region of 20◦ < θ < 155◦. The signals from RPCs are fast (∼20 ns)
and are transferred to the trigger system.

The muon detection efficiency is measured by cosmic-ray muons, where the momenta are measured by CDC
with a magnetic field of 1.5 T, as shown in Figure 3.19(a). The low momentum muons below 0.5 GeV/c do not
reach the KLM. The method of muon identification is described in Section 3.4.3.

In order to identify KL mesons, all charged tracks measured in CDC are extrapolated to KLM. The clusters
within 15 degrees from extrapolated charged tracks are excluded, and the remaining KLM clusters are identified
as KLs. The direction of the KL meson is determined by the center-of-gravity of the hits in the cluster. Fig-
ure 3.19(a) shows the difference between the neutral cluster and the direction of the missing momentum in the
beam-collision data. Although a large deviation due to undetected neutrinos and the particle missing due to the
detector acceptance, the peak corresponding to KL candidates is significantly observed.
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5A mixture of ∼70 % n-butane (C4H10) and ∼30 % iso-butane (C4H10).
6CH2FCF3 (HFC-134a)
7The width is varies depending on the radial position of the module.
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Figure 3.19: Performance of KLM

3.2.9 Extreme Forward Calorimeter

Extreme Forward Calorimeter (EFC) [57, 58] extends the polar angle coverage for the electromagnetic shower in
order to improve the experimental sensitivity to some physics processes such as B → τν. EFC can also be used as
a tagging device for two-photon physics. EFC covers the angular range from 6.4◦ to 11.5◦ in forward direction and
163.3◦ to 171.2◦ in the backward direction. Since EFC is placed in the very high radiation-level area around the
beam pipe near the interaction point, EFC consists of a crystal calorimeters made of a BGO (Bi4Ge3O12) [76–78]
that satisfies the requirement for the radiation hardness. Both forward and backward EFC consists of the BGO
crystals segmented into 5 regions in the θ direction and 32 regions in φ direction. Typical cross-section of a crystal
is about 2 × 2 cm2 with 12 (10.5) radiation lengths for forward (backward), which have the energy resolution of
7.3% (5.8%) in RMS for forward (backward). EFC also work as a beam mask to reduce the backgrounds for CDC.
In addition, EFC provides a fast online feedback about the luminosity and the beam condition like background
rates to KEKB operation system.

3.2.10 Trigger System

The trigger system is required to reduce the beam-background rate within the tolerance of the data acquisition
system, 500 Hz maximum, while the efficiency for physics events of interest is kept high. Expected trigger rates
for various processes with a luminosity of 1034 cm−2s−1 are listed in Table 3.2. Total trigger rate for physics
processes is estimated as about 100 Hz. On the other hand, high beam backgrounds are expected because of
the high beam current. Based on simulation studies, we expect about 100 Hz beam-related backgrounds that are
dominated by spent electrons and positrons, which go out the beam orbit due to the bremsstrahlung and the beam
background from the interactions between the electron/positron beam and the residual gas molecules in the beam
chamber. The trigger system required to be robust against unexpectedly high beam background rates because
beam backgrounds are very sensitive to accelerator conditions, and difficult to estimate reliably.

The trigger system in Belle experiment consists of the Level-1 (L1) hardware trigger [79, 80] and the Level-3
(L3) software trigger [81]. Figure 3.20 shows the schematic view of the L1 hardware trigger system. It consists
of the sub-detector trigger systems and the central trigger system called the Global Decision Logic (GDL). The
sub-detector trigger systems are based on two categories: track triggers and energy triggers. CDC and TSC are
used to yield trigger signals for charged particles8. CDC provides r-φ and r-z track trigger signals. The ECL
trigger system provides triggers based on the total energy deposit and the cluster counting of crystal hits. These
two categories allow sufficient redundancy. The KLM trigger gives additional information on muons and the EFC

8Note that the TSC trigger provide the fast Level-0 (L0) trigger signal to the SVD readout system with a latency of 0.85µs.
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triggers are used for tagging two-photon process events as well as Bhabha events. The sub-detector triggers process
event signals in parallel and provide trigger information to GDL, where all information is combined to characterize
an event type and make decision to initiate the data acquisition within 2.2 µs from beam crossing. Typical L1
trigger rate is about 250 Hz with a luminosity of about 6.5×1033 cm−2s−1 [82]. Typical L1 trigger rate normalized
by the beam current is 110 Hz/A. The L3 software trigger is implemented in the online computer farm. In the
L3 trigger, the beam background is rejected using the information of roughly reconstructed charged tracks. The
reduction rate of L3 trigger is 38%, while the efficiency for the hadronic events is 99% [81].

Table 3.2: Expected trigger rates for various processes with a luminosity of L = 1034 cm−2s−1. θlab is the azimuthal
angle of the final state particle in the laboratory frame. pt is the transverse momentum of the final state particle.

Process Rate (Hz) note
e+e− → Υ(4S) 12
continuum: e+e− → qq̄(q = u, d, s, c) 28
e+e− → �+�−(� = µ, τ ) 16
Bhabha: e+e− → e+e−(θlab > 17) 4.4 (pre-scaled by factor 1/100)
e+e− → γγ(θlab > 17) 0.24 (pre-scaled by factor 1/100)
2 photon processes: γγ → anything(θlab > 17, pt > 0.1 GeV) ∼ 15
total ∼ 96
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3.2.11 Data Acquisition System

The required performance for the Data Acquisition System (DAQ) is to work at the 500 Hz trigger rate with a dead-
time fraction of less than 10%, under the high luminosity operation of KEKB. In order to achieve this requirement,
the distributed-parallel system is devised. The global scheme of the system is shown in Figure 3.21 [83,84].

The entire system is segmented into seven subsystems running in parallel, and each handles the data from
the associated sub-detector. The data from subsystems are combined into a single event record by the event
builder [85], which converts detector-by-detector parallel data streams to an event-by-event data river. The event
builder output is transferred to an online computer farm, where the event filtering by Level-3 trigger is done after
the fast event reconstruction. The data are then sent to a mass storage system located at the computer center,
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2 km apart from the Belle detector, via optical fibers. The online computer farm also sends the sampled events to
data quality monitor, by which experimental shifters monitor the detector and DAQ condition. The all the Belle
DAQ components are controlled based on the Ethernet connections.

We adopt a charge-to-time (Q-to-T) technique to read out the analog signals from the sub-detectors except for
SVD and KLM. The Q-to-T modules convert the charge amount to the time interval. Then the time interval is
digitized by the time digitization module (TDC) which is controlled by VME and FASTBUS system [86]. KLM
provides the time-multiplexed signals on a single line. This KLM signals are recorded by TDC as the time pulses.
Because SVD has large number of channels, the SVD signals are digitized by the intelligent flash ADC modules,
which perform the data sparsification. Four CPU modules on a VME bus control the flash ADC modules and send
the digitized data to the event builder [63].

A typical data size of a hadronic event is measured to be about 30 kB, which corresponds to the maximum
data transfer rate of 15 MB/s. The typical dead time is about 4% at the trigger rate of 250 Hz. The overall error
rate of the data acquisition flow is measured to be less than 0.05%.
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Figure 3.21: Schematic view of the Belle DAQ system.

3.3 Off-line Computing

The collected data by the Belle detector is analyzed using the offline computer farm. The offline computer farm is
also used do the Monte Carlo simulation study. The required processing power of the offline computers amounts
to 15000 SPECint95s. Because this computational power cannot be achieved by a single CPU, we developed the
parallel processing scheme by multi-CPUs. We choose the Symmetric Multi Processor (SMP) architecture as a
platform. The total storage capability of the offline computer farm is ∼ 10 TB.

We developed our own data processing frameworks called BASF/FPDA (Belle AnalysiS Framework/Framework
for Parallel Data Analysis) [87, 88], which are especially suitable for both the production of the data summary
tape (DST) and the physics analysis. The recorded events are sequentially scanned by one process. Each bulk of
around 10 events is distributed to another process. The number of processes is equal to the number of embedded
CPUs on the SMP machine. The distributed bulks of the events are processed on CPUs in parallel, and then
returned to another process to be stored onto a tape, a hard disk, or the other storage media. The branching
output path for the HBOOK format [89] is also equipped. With the framework running on the offline computer
farm, the production speed of the DST is ∼ 1 fb−1 per day.

The processing framework also provides a scheme of the Monte Carlo events generation. The bulks of seeds of
a random numbers instead of events themselves are distributed to the generator processes running on CPUs. A
decay simulator is a program that generates particles tracing the decay chains according to the given manuscripts.
The initial state of the particle generation is typically chosen to be Υ(4S) or qq̄. The event generator used in
the Belle analysis is QQ98 originally developed by the CLEO group [90], and is modified by the Belle group [91].
GEANT [92] is used as a full detector simulation in the Belle. It was originally developed at CERN. The GEANT
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simulator takes the generated events by QQ98 and produces the hit records at each sub-detector associated to the
generated particles. The outputs from the full simulator are stored in the same format as the real data so that one
can use the same analysis programs for both real and simulated data samples.

3.4 Particle Identification

This section describes the particle identification methods. In general, we use a likelihood method to calculate the
probability for the particle, by combining the information from one or more sub-detectors. At first, the likelihood
for each discriminant is defined using the probability density functions (PDFs), Pn(i), where the subscript n refers
to the type of discriminant such as CDC dE/dx, TOF and so on, and i indicates the particle species, e, µ, π ,K
or p. Then the likelihood ratio combining these discriminants to distinguish the particle species i, from the others
is defined as:

L(i) ≡

∏
n

Pn(i)∏
n

Pn(i) +
∏
n

{
∑
j �=i

Pn(j)}
. (3.1)

While the likelihood ratio to distinguish the particle species i, from another species j is defined as:

L(i; j) ≡

∏
n

Pn(i)∏
n

Pn(i) +
∏
n

Pn(j)
. (3.2)

We describe the detail in the following subsections.

3.4.1 Kaon identification

In the reconstruction of B0 → π+π−, the separation of kaons from pions is very crucial to reduce the contamination
of B → Kπ decays. It is also important for the flavor tagging. To distinguish kaons from pions, we use the dE/dx
measured with CDC and information from TOF and ACC. Here we calculate the PDF likelihood in each component,
then obtain the likelihood ratio from Equation 3.1 in the flavor tagging [93].

The likelihood for the dE/dx measured with CDC is:

PdE/dx(i) =
exp(−χ2/2)√

2πσdE/dx

,

χ2 =
[
(dE/dx)mesured − (dE/dx)i

σdE/dx

]2

,

where i is the particle species (π, K), (dE/dx)mesured and (dE/dx)i are the measured dE/dx and the expected
value for the species i, respectively, and σdE/dx is an expected resolution of dE/dx.

The likelihood for TOF is:

PTOF(i) =
exp(−χ2/2)∏
k

√
2πσk,i

,

χ2 =
∑
k

(tkmeasured − tki )TEk
−1

(tkmeasured − tki )

where the subscript k expresses the k-th TOF hits, tmesured and ti are 2-dimensional vector containing the measured
times in the two PMTs at the each end of TOF counter, and expected value, respectively, E is the 2 × 2 error
matrix for (tmeasured − ti) and σk is the expected time resolution.

As described in Section 3.2.4, ACC is basically an on-off device, where the observed number of photons-electrons,
Np.e. is either zero for heavy particles such as kaons, or the finite number for pions according to small-number
statistics. In reality, even the distribution of Np.e. for kaons or protons peaks at zero, but the tail part is not
negligible as shown in Figure 3.12. This tail is considered to be caused by scintillation light from the reflector,
high energy δ-rays9 and the noise on readout electronics. To take into account this effect, the likelihood for ACC,
PACC(i), is parameterized using Np.e. [51]. PACC(i) for the particle species i is obtained from the distribution of

9An orbital electrons knocked on from the counter material by an incident particle.
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Np.e. in the Monte Carlo simulation. PACC(i) is defined with the dependence of the velocity of charge tracks for
each counter module.

The performance of the kaon identification is evaluated using D∗-tagged D0 → K−π+ decays. Figure 3.22(a)
shows the scatter plot of the obtained likelihood ratio vs. the track momenta for kaons and pions. The kaons
are successfully separated from the pions and vise versa. Figure 3.22(b) shows the kaon identification efficiency
and wrong identification fraction to pion as kaon for the selection of L(k;π) ≥ 0.6 as a function of the track
momentum. For the selection of L(k;π) ≥ 0.6, the average efficiency is 88.7 % and the average fraction of the pion
contamination is 8.53 %.

The likelihood ratio for the reconstruction of two-body decays of B mesons such as B0 → π+π−, Lhh(K;π), is
constructed by the dE/dx measured with CDC and ACC information only because the particles from the two-body
B meson decays have the high momenta above the sensitive momentum range of TOF. Thus,

P hhcombined(i) = PdE/dx(i) · PACC(i),

Lhh(K;π) =
P hhcombined(K)

P hhcombined(K) + Phhcombined(π)
.

Figure 3.23 shows the performance of the kaon identification by CDC and ACC measured using D∗-tagged
D0 → K−π+ decays, where the track momentum range is limited from 2.4 GeV/c to 2.85 GeV/c in the cms,
corresponding to the kinematic region of the two-body B meson decays. Figure 3.23(a) shows Lhh(K;π) is useful
discriminant for the reconstruction of the two-body B meson decays. Figure 3.23(b) and Figure 3.23(c) show
the efficiencies for pions and kaons as a function of the polar angle of the track in cases: Lhh(K;π) ≤ 0.4 and
Lhh(K;π) ≥ 0.6, respectively. Here the Monte Carlo expectations are also plotted. The experimental data agree
with the Monte Carlo expectation. The average efficiencies for the criterion: Lhh(K;π) ≤ 0.4 (Lhh(K;π) ≥ 0.6)
for pions and kaons are 86% (9.3%) and 5.8% (92%), respectively.
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Figure 3.22: Performance of the kaon identification by the CDC, the TOF and the ACC for the barrel region
measured using D∗ tagged D0 → K−π+ decays.

3.4.2 Electron Identification

For the electron identification, we use the information from ECL, CDC and ACC [55, 94]. The same likelihoods
for the dE/dx and the ACC hits as that for the K/π separation described in Section 3.4.1 are used. The three
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Figure 3.23: Performance of the kaon identification by CDC and ACC measured using D∗ tagged D0 → K−π+
decays, where the track momentum range is limited from 2.4 GeV/c to 2.85 GeV/c in the cms.

discriminants using the ECL information are also used to derive the likelihood ratio for electrons.
The most powerful discriminant for the electron identification is the E/p ratio of the energy (E) measured by

ECL and the momentum (p) measured by CDC. Since the mass of electrons is negligiblely small in the energy
range of the interest, and electrons deposit almost all energy in ECL, E/p ∼ 1 is expected for electrons. On the
other hand, for the pions and other hadrons deposit MIP energy in ECL, then their E/p became smaller than
one and the distribution of E/p broaden. Figure 3.24(a) shows the E/p distributions for the electrons in radiative
Bhabha events and pions from KS → π+π− decays. The difference between electrons and pions is significantly
large.

The position matching between the CDC tracks extrapolated to ECL and the ECL clusters contributes to the
electron identification. The position resolution for electron showers is smaller than that of hadronic showers. The
ECL cluster position is determined by the center-of-gravity of the ECL hits in the cluster. The matching χ2 is
defined as

χ2 ≡
(

∆φ
σ∆φ

)2

+
(

∆θ
σ∆θ

)2

,

where ∆φ and ∆θ are the difference between the cluster position and the extrapolated position of the track in
azimuth and polar angle directions, respectively, while σ∆φ and σ∆θ are the widths obtained by fitting the ∆φ and
∆θ distributions for electron to Gaussian. The distributions of matching χ2 for electrons and pions are shown in
Figure 3.24(b).

The difference of the shape between electromagnetic and magnetic showers is significant discriminant. The
shower shape in the transverse direction can be evaluated with the quantity: E9/E25, which is defined as the
ratio of E9 to E25 described in Section 3.2.6. The distributions of E9/E25 foe electrons and pions are shown in
Figure 3.24(c). Electrons exhibit a peak around 0.95 with relatively small low-side tail, while pions have more
events in the lower E9/E25 region.

The combined likelihood ratio to distinguish electrons from others, L(e), is constructed with these three ECL
discriminants and PdE/dx(i) and PACC(i) according to Equation 3.1. Figure 3.25(a) shows the efficiency with
L(e) ≥ 0.5 in radiative Bhabha events for the barrel region as a function of the track momentum. The average
efficiency grater than 90% is achieved. Figure 3.25(b) shows the fraction of pions identified as electron with the
selection: L(e) ≥ 0.5 measured using KS → π+π− decays. The fake ratio is kept less than 1 % for the momentum
region above 1.0 GeV/c.

3.4.3 Muon Identification

The muon identification is based on the fact that the range of muons in KLM is lager than those for the other
hadrons, due to the lack of the hadronic interaction. Muons penetrate more KLM RPC layers than the pions
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Figure 3.24: The distributions of electron identification discriminants by ECL for electrons and pions. The dis-
tributions for electrons (solid line) are obtained from the radiative Bhabha events. The distributions for pions
(broken line) are obtained from the KS → π+π− decays in hadronic events.
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Figure 3.25: The performance of electron identification with L(e) ≥ 0.5 . The data for positive tracks and negative
tracks are denoted by closed circles and opened squares, respectively.
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that are the dominant background source for the muon identification because of their similar mass. The muon
identification is valid for the tracks with momenta grater than 0.6 GeV/c, which can reach KLM.

The likelihood to identify muons is constructed with the number of the KLM layer penetrated by the track
Nhits and the distance of the KLM hit position from the track [95]. The charged tracks are extrapolated to KLM
region and the number of the KLM layers crossing the extrapolated track Ncrossing is calculated. The difference
∆N ≡ Ncrossing − Nhits is the most effective discriminant in the muon identification as shown in Figure 3.26(a).
The distribution of ∆N for muons has a peak at zero while that for pions is broad. Because muons are scattered
by KLM materials less than pions, the deviation of the KLM hits by muons from the extrapolated track trajectory
in muon hypothesis is smaller than that for pions. The reduced χ2 of the KLM hit positions is also provides the
clear discrimination as shown in Figure 3.26(b). The likelihood ratio is obtained by with these two discriminants
according to the Equation 3.1.

Figure 3.27 shows the muon identification performance as a function of the track momentum. The efficiency
for muons with the momenta of > 1GeV/c obtained from 2γ → µ+µ− processes is grater than 90% (80%) for the
likelihood Ratio greater than 0.1(0.9). The wrong-identification fraction to pions with the momenta of > 1GeV/c
obtained from KS → π+π− decays is less than 8% (2%) for the likelihood Ratio greater than 0.1(0.9) [96].
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Figure 3.26: The distributions of muon identification discriminants obtained from Monte Carlo simulation. The
solid lines and the broken lines represent the distributions for muons and pions, respectively.
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Figure 3.27: Performance of the muon identification as a function of the track momentum. The filled circles
represent the efficiency measured using 2γ → µ+µ− processes. The filled triangles represent the wrong identification
fractions to pions measured using KS → π+π− decays.



Chapter 4

Event Selection and Reconstruction

In this chapter, the procedure of the event selection and reconstruction of the physical quantities related to the
CP violation measurement is described. We select hadronic events from the data sample collected by the Belle
detector. We reconstruct B mesons from two charged tracks. We reduce the background based on the information
of the particle identification and kinematics. Because the B meson is produced via e+e− → Υ(4S) → BB, the
remaining tracks are the decay products of the accompanying B meson. The flavor of the B meson is determined
by the properties of these remaining tracks. The decay point of B meson is determined by the kinematical fit using
charged tracks.

4.1 Event Sample

The data sample used in this analysis is collected with the Belle detector from January 2000 to July 2002. The
integrated luminosity accumulated on the Υ(4S) resonance in this period is 78.16 fb−1, corresponding to 85.0±0.5
million BB pairs1. The data is also accumulated with the 50 MeV lower the resonance energy to investigate the
continuum background properties (off-resonance data). The integrated luminosity of this off-resonance data used
in this study is 8.83 fb−1. The branching fractions of the decays related to this analysis are listed in Table 4.1.
The expected numbers of the neutral B mesons decaying to π+π− and K±π∓ in this data sample are about 370
and 1500, respectively.

Table 4.1: Branching fractions of the decay modes related to this analysis [42].
mode Branching ratio

Υ(4S) → B0B0 48 ∼ 50%
B0/B0 → π+π− (4.4± 0.9)× 10−6

B0 → K+π− (1.74± 0.15)× 10−5

4.2 Hadronic Event Selection

The data sample contains several processes other than BB production such as continuum e+e− → qq̄(q = u, d, s, c)
processes, µ pair production, τ pair production, QED processes referring to Bhabha and radiative Bhabha processes
and two-photon processes. The cross sections for these processes are listed in Table 4.2.

The data sample also contains cosmic rays, spent electrons that go out the beam orbit due to the bremsstrahlung
and the beam background from the interactions between the electron/positron beam and the residual gas molecules
in the beam chamber.

To suppress these uninteresting events and select hadronic events dominated by the Υ(4S) production and the
continuum, we apply event selections as follows:

1. The number of the good charged track in an event is required to be more than two. The good charged track
is defined to satisfy |δr| < 2.0 cm, |δz| < 4.0 cm and pt > 0.1GeV/c where δr, δz and pt represents the
impact parameter to the nominal interaction point in the x-y plane and along the z-axis, and the transverse
momentum, respectively.

1Both B0B0 and B+B− are included.

44
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This requirement is effective to suppress the QED processes and the µ pair production. It also reduces the
cosmic lays and the beam background because the tracks from these events come from arbitrary points while
the tracks from hadronic events come from the nominal interaction point.

2. At least one good ECL cluster should be within the fiducial volume of −0.7 < cos θ < 0.9. The good ECL
cluster is defined as the cluster having the energy more than 100 MeV. This requirement reduces the QED
processes because the most clusters from QED processes have very shallow angles.

3. The total visible energy, Evis calculated from the good tracks assuming the pion mass and good photons in
an events has to satisfy

Evis ≥ 0.2
√
s,

where
√
s represents the cms energy. The good photon is defined as the good ECL cluster within the CDC

acceptance2 with no associated tracks from the CDC.

4. The energy sum of the good ECL clusters within the CDC acceptance, Esum, is required to satisfy

0.1 < Esum/
√
s < 0.8.

This requirement reduces the QED processes. In the QED processes, Esum/
√
s ∼ 1, because the final state

particles are only electrons and photons. If one of the electrons in the QED events falls in the gap of the
calorimeter, this QED events could satisfy the above requirement. To suppress this event, we apply an
additional requirement. An average ECL cluster energy is also required to be

E′
sum/(# of good ECL cluster) < 1.0 GeV,

where E′
sum is the energy sum of all good ECL clusters including the ones outside the CDC acceptance.

5. The momenta sum of the good tracks and good photons is required to be balanced in the z direction to
eliminate the beam background:

|Pz| < 0.5
√
s.

6. To reduce the beam background, the position of the primary vertex, that is formed by all good tracks, is
required to satisfy

|rvertex| < 1.5 cm and |zvertex| < 3.5 cm,

where rvertex and zvertex represent the positions of the primary vertex in the r-φ plane and the z-axis,
respectively.

7. The event is split into two hemispheres by a plane perpendicular to the event thrust axis. The invariant mass
of tracks in each hemisphere is calculated assuming a pion mass. This invariant mass is basically equivalent
to the invariant mass of τ in τ pair production processes. In the event, we regard the larger invariant mass
as heavy jet mass, Mjet. The events are required to satisfy

Mjet > 1.8 GeV/c2 or
{
E′

sum/
√
s > 0.18

Mjet/Evis > 0.25.

The efficiency of the hadronic event selection is estimated using Monte Carlo simulation. The selection retains
99.1% of BB events and 79.5% of the continuum processes while reducing the contamination of the non-hadronic
components to be less than 5% [97]. The remaining non-hadronic components mainly consist of e+e− → τ+τ−

events where both τ s decay to 3-prongs, and the large q2 two-photon events.

217◦ < θ < 150◦
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Table 4.2: Cross sections for various processes in e+e− collisions at the cms energy equals to 10.58 GeV [44]. θlab

is the azimuthal angle of the final state particle in the laboratory frame. pt is the transverse momentum of the
final state particle.

Process cross section (nb)
e+e− → Υ(4S) 1.2
continuum: e+e− → qq̄(q = u, d, s, c) 2.8
e+e− → �+�−(� = µ, τ ) 1.6
Bhabha: e+e− → e+e−(θlab > 17◦) 44.
2 photon processes: γγ → anything(θlab > 17◦, pt > 0.1 GeV) ∼ 15

4.3 B0 → π+π− Reconstruction

4.3.1 Reconstruction of B0

B0 mesons decaying to two charged pions are fully reconstructed from two tracks. The tracks are required to come
from the Interaction Point (IP) [98]:

dr < 0.1 cm and |dz| < 4.0 cm,

where dr and dz represent the impact parameters of the tracks to the IP in the x-y plane and along the z-axis,
respectively.

Tracks which are positively identified as electrons are excluded. The similar rejection on muons or protons
are not applied, because the Monte Carlo studies show that there is no gain in significance. The kaon tracks are
suppressed using the likelihood ratio, Lhh(K;π), constructed by dE/dx measured by CDC and ACC, which is
described in Section 3.4.1. The pion tracks are required to have Lhh(K;π) < 0.4.

To select B0 meson candidates, two kinematical quantities, the Beam-energy Constrained Mass (Mbc) and the
Energy difference (∆E), are defined as follows:

Mbc =
√

(E∗
beam)2 − (p∗B)2,

∆E = E∗
B −E∗

beam,

where E∗
beam is the beam energy in the Υ(4S) rest frame, E∗

B and p∗B are the energy and momentum of reconstructed
B0 in the Υ(4S) rest frame. E∗

beam is calibrated run-by-run using B0 → D(∗)+π− decays and B+ → D(∗)0π+

decays [99].
The signal events are localized at (Mbc,∆E) = (5.28, 0.0) as shown in Figure 4.1(a). The events that satisfy

Mbc > 5.2 GeV/c2 and −0.3 < ∆E < 0.5 GeV are selected, which also includes the sideband region for the
background study. The reconstruction efficiency of the B0 → π+π− is estimated about 75 % by Monte Carlo.

The major sources of the background in B0 → π+π− are the continuum events and B0 → K+π− decays where
kaons are misidentified as pions. The continuum background is suppressed using the event shape parameters as
described in Section 4.3.2.

Figure 4.1(b) shows the (Mbc,∆E) distribution for the B0 → K+π− decays contributing to the background.
The ∆E peak position is shifted by −0.045 GeV because of a pion mass assignment to the kaon track. The
treatment of the contamination from B0 → K+π− decays is described in Section 4.3.3.

The contributions from the B0 meson decays other than B0 → π+π−,K+π− decays and B+ meson decays,
shown in Figure 4.1(c) and Figure 4.1(d), respectively, can be separated kinematically, because the ∆E of these
components is less than −0.1 GeV.

A Monte Carlo simulation shows non-hadronic components do not form the B0 → π+π− candidates.
Figure 4.2 shows the event display of a B0 → π+π− candidate in the real data.

4.3.2 Continuum Background Suppression

The continuum events are suppressed using the difference in event topologies of the continuum events and BB
events. In the cms, BB is produced at rest and the two B decay axes are uncorrelated. Thus, the event shape of
BB events is spherical. On the other hand, two light quarks in the continuum events are produced back-to-back
with hadronizing along a single axis. Therefore, the event shape of the continuum events is jet-like.
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Figure 4.1: The ∆E vs. Mbc for B0 → π+π− candidate from B0 → π+π− decays, B0 → K+π− decays, the B0

meson decays other than these two decay modes and B+ meson decays in Monte Carlo. All the candidates are
required to satisfy the continuum suppression requirement described in Section 5.2.4. The box shows signal region
described in Section 4.3.3.
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Figure 4.2: The event display of a B0 → π+π− candidate in the real data.
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The Fox-Wolfram moment [100] is used to quantify the event shape. The n-th Fox-Wolfram moment is defined
as

Hn ≡
∑
i,j

|p∗i ||p∗j |Pn(cos θij), (4.1)

where Pn(x) is the n-th Legendre polynomial, p∗i and p∗j is the cms momenta of i-th and j-th particles, respectively,
and θ∗ij represents the angle between the decay axes of the i-th and j-th particles3, and the sum is over all particles
in the final state. The normalized second Fox-Wolfram moment defined as R2 ≡ H2/H0 is ∼ 1 for jet-like events
and ∼ 0 for spherical events.

In this analysis, the Improved Fox-Wolfram moment [101] is used. Equation 4.1 is divided into three compo-
nents.

Hn = Hss
n +Hso

n +Hoo
n (4.2)

Hss
n ≡

∑
i,j

|p∗i ||p∗j |Pn(cos θij) (4.3)

Hso
n ≡

∑
j,k

|p∗j ||p∗k|Pn(cos θjk) (4.4)

Hoo
n ≡

∑
k,l

|p∗k||p∗l |Pn(cos θkl) (4.5)

where i and j are taken over the daughter particles of the reconstructed B mesons and k and l are taken over the
remaining particles. We compose a six variable Fisher discriminant [102] as

S ≡
∑
n=2,4

αn

(
Hso
n

Hso
0

)
+

4∑
n=1

βn

(
Hoo
n

Hoo
0

)
(4.6)

where the αn and βn are Fisher coefficients. The αn and βn are determined as shown in Table 4.3 by the Monte
Carlo in order to maximize the separation of the continuum events and BB events. The reason why Hss

n is not
used in the Fisher discriminant is that Hss

n is strongly correlated with Mbc and ∆E. H so
1 and Hso

3 are also not
used because they have strong correlations with Mbc.

The flight direction of reconstructed B meson with respect to the beam axis in the Υ(4S) rest frame, cos θB ,
is useful to separate the continuum events. Because the spin and parity of Υ(4S) are JP = 1−, the distribution of
cos θB in the BB events is proportional to (1 − cos2 θB) while that of the continuum events is uniform.

These two discriminants, the event shape and the flight direction, are combined into a single likelihood ratio.
The probability density function (PDF) of the improved Fox-Wolfram moment for BB events, Pshape(S;BB),
and that for continuum events, Pshape(S; qq̄), which are parameterized using the bifurcated Gaussian functions,
are derived from the Monte Carlo simulation as shown in Figure 4.3(a). The PDF of cos θB for BB events,
Pf.d.(cos θB ;BB), which is parameterized as an second order polynomial function, and that for continuum events,
Pf.d.(cos θB ; qq̄), which is constant, are also derived from the Monte Carlo simulation as shown in Figure 4.3(b).
The combined likelihood ratio, LR, is defined as follows:

L(i) ≡ Pshape(S; i) · Pf.d.(cos θB ; i) (i = BB, qq̄),

LR ≡ L(BB)
L(BB) + L(qq̄)

.

LR gives the clear separation as shown in Figure 4.3(c), in which the histograms show the LR distributions for
the B0 → π+π− signal events and the continuum background events. If we require that LR be greater than 0.825,
95% of continuum background events are removed while retaining 53% of the signal events, and the expected S/N
ratio is 0.4. This criterion maximizes the S/

√
S +N ratio assuming a branching fraction of B0 → π+π− = 5×10−6

and the efficiency of continuum events obtained using the sideband region. The reconstruction efficiency including
this criterion is 31% for the B0 → π+π− signal. In this analysis, the selection criteria with LR are determined
with respect to each region of the flavor tagging quality. All the candidates are divided into six regions by the
event-by-event dilution factor due to the flavor tagging, r, which is described in Section 4.4. The LR distributions

3i.e. cos θ∗i,j = (�∗i · �∗
j )/(|�∗i ||�∗j |)
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are different for each r regions as shown in Figure 4.4. The selection criteria of LR requirements are determined
to maximize the Figure-Of-Merits (FOM), which is defined as

FOM = S(ππ)/
√
S(ππ) +N (Kπ) +N (qq̄),

where S(ππ), N (Kπ) and N (qq̄) represent the numbers of the B0 → π+π− signal events, B0 → K+π− background
events and continuum background events, respectively. Because S/N ratios differ between in the higher LR region
and in the lower LR region, the candidates are separated into 12 LR-r regions summarized in Table 4.4 and
treated separately. In the following sections, six regions of LR > 0.825 (LR ≤ 0.825) are referred to as higher LR
regions (lower LR regions).

Table 4.3: The coefficients of the improved Fox-Wolfram moment obtained from Monte Carlo.
term coefficient term coefficient

β1 -1.42886
α2 -3.84061 β2 0.0815516

β3 1.58844
α4 -0.820487 β4 1.50104

Table 4.4: 12 LR-r regions.
r LR

0.000 < r ≤ 0.250 (1) 0.525 < LR ≤ 0.825 (7) 0.825 < LR ≤ 1.000
0.250 < r ≤ 0.500 (2) 0.525 < LR ≤ 0.825 (8) 0.825 < LR ≤ 1.000
0.500 < r ≤ 0.625 (3) 0.425 < LR ≤ 0.825 (9) 0.825 < LR ≤ 1.000
0.625 < r ≤ 0.750 (4) 0.425 < LR ≤ 0.825 (10) 0.825 < LR ≤ 1.000
0.750 < r ≤ 0.875 (5) 0.425 < LR ≤ 0.825 (11) 0.825 < LR ≤ 1.000
0.875 < r ≤ 1.000 (6) 0.325 < LR ≤ 0.825 (12) 0.825 < LR ≤ 1.000

 S

(a) The improved Fox-Wolfram mo-
ment.

 |cosθB|

(b) The flight direction of recon-
structed B meson.

LR

(c) The likelihood Ratio.

Figure 4.3: The discriminants for continuum background suppression. The solid and dashed lines represent the
PDF for signal derived from the Monte Carlo and the PDF for continuum background derived from the real data
in the sideband region. The open and filled circles are the data obtained from the B+ → D0(→ K−π+)π+ decays
and off-resonance data, respectively. The PDFs obtained from Monte Carlo show the good agreement with the
data.
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Figure 4.4: The likelihood ratio distributions of for six flavor tagging quality regions. The solid and dashed line
histograms show the LR distributions of the signal and continuum background events, respectively. Also shown
are the figure-of-merits curves. The vertical lines indicate the minimum LR required.
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4.3.3 Yield extraction

The signal candidates are required that their flavors are determined and their decay vertices of B mesons are
measured.4 The efficiencies of the flavor determination and the vertex measurement are estimated to be 99.8%
and 88%, respectively. The remaining candidates consist of the B0 → π+π− signals, B0 → K+π− events due to
imperfect particle identification and the continuum background. The signal yield in the higher LR regions is
extracted from the Mbc and ∆E distributions using a binned maximum likelihood fit method. The signal yield
in the lower LR regions is estimated from the yield in the higher LR regions scaled by a factor estimated using
Monte Carlo.

The shapes of Mbc and ∆E distributions for signal events and for B0 → K+π− background events are modeled
by a single Gaussian5. Because the Mbc width is dominated by the beam energy spread, and it is independent of
the decay chains of B meson. A Monte Carlo study shows the Mbc distributions of B0 → π+π−, B0 → K+π− and
B+ → D

0
π+ can be modeled as a common single Gaussian:

PBBMbc
(Mbc) = G(Mbc;µBBMbc

, σBBMbc
), (4.7)

µBBMbc
= 5279.1± 1.1 MeV/c2,

σBBMbc
= 2.62± 0.04 MeV/c2,

where the peak position, µBBMbc
, and the width, σBBMbc

, are obtained from B+ → D
0
π+ decay data (Table 4.5).

The ∆E distribution of signal, P ππ
∆E(∆E), and that for B0 → K+π− background, P ππ∆E(∆E), are parameterized

using a single Gaussian as follows:

P ππ∆E(∆E) = G(∆E;µππ∆E, σ
ππ
∆E), (4.8)

µππ∆E = −0.3± 0.3 MeV,
σππ∆E = 18.8± 0.7 MeV,

PKπ∆E (∆E) = G(∆E;µKπ∆E, σ
Kπ
∆E), (4.9)

µKπ∆E = −44.3± 0.8 MeV,
σKπ∆E = 22.6± 0.5 MeV.

µππ∆E is also determined using B+ → D
0
π+ decay data. Since we calculate the energy of final state charged particle

using a pion mass assumption, µKπ∆E is shifted. This shift is determined by Monte Carlo. σππ∆E and σKπ∆E are
determined using inclusive D0 → K−π+ decays requiring the D daughter particles to have a momentum range
similar to B0 → π+π− candidate particles (from 1.5 GeV/c to 4.5 GeV/c). Comparison between the D mass width
in Monte Carlo events and data are used to scale the B0 → π+π− and B0 → K+π− ∆E widths in Monte Carlo.

The signal region is defined as 5.271 GeV/c2 < Mbc < 5.278 GeV/c2 and |∆E| < 0.057 GeV, corresponding
to ±3σ from the central values, as shown in Figure 4.5. The number of candidates in the signal region is 760 of
which the 275 (485) events are in higher (lower) LR regions.

It is confirmed that the Mbc and ∆E distributions of continuum background for the signal region are identical
to those for the sideband region using the off-resonance data. It is also confirmed that the Mbc and the ∆E shapes
of continuum background are independent of the particle identification requirements using the real data. Thus, to
increase statistics, the Mbc and the ∆E shapes of continuum background are determined using the B0 → π+π−

candidates in the mass sideband region, which are selected without particle identification requirements.
The Mbc distribution of continuum background components, P qq̄Mbc

(Mbc), is modeled by the ARGUS kinematical
threshold function [103,104] as follows:

P qq̄Mbc
(Mbc;α) = (x/E∗

beam)
√

1 − (x/E∗
beam)2 exp

[
α · (1 − (x/E∗

beam)2)
]

(4.10)

where E∗
beam is the beam energy in the Υ(4S) rest frame 6 .The parameter α is determined as −18.5 ± 1.1 using

the candidate in the ∆E sideband region, which is shown in Figure 4.5.
The ∆E distribution of continuum background component, P qq̄

∆E(∆E) is parameterized as a first-order Cheby-
shev polynomial function:

P qq̄∆E(∆E; c1) = 1.0 + c1 · (2∆E − ∆Emax − ∆Emin)/(∆Emax − ∆Emin) (4.11)

4The detail of the flavor determination and the vertex measurements are described in Section 4.4 and 4.5.
5In this paper, Gaussian is referred to as G(x;µ, σ) where G(x;µ, σ) = 1/

√
2πσ exp[−(x− µ)2/2σ2].

6The beam energy in this function is fixed at 5290.0 MeV
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where ∆Emax = 0.5 GeV(∆Emin = −0.3 GeV) is the upper (lower) boundary of the fit region and c1 is a parameter
to represents the slope of the distribution. The parameter c1 is determined as −0.17± 0.01 using the candidates
in the Mbc sideband region indicated in Figure 4.5.

Figure 4.6(a) shows the Mbc distributions in ∆E signal region. The yields of BB components, N (BB) is
obtained as 154.0 +16.0

−15.2 by fitting to the function as follows:

PMbc(Mbc) = N (BB) ·PBBMbc
(Mbc) +NMbc(qq̄) · P qq̄

Mbc
(Mbc), (4.12)

where the fit result is superimposed in Figure 4.6(a).
Figure 4.6(b) shows the ∆E distributions inMbc signal region. The numbers ofB0 → π+π− (N ′(B0 → π+π−)),

B0 → K+π− (N ′(B0 → K+π−)), and continuum events (N ′(qq̄)) in the −0.3 < ∆E < 0.5 GeV region are obtained
by fitting the following function to the data:

P∆E(∆E) = N ′(B0 → π+π−) ·P ππ∆E(∆E) +N ′(B0 → K+π−) · PKπ∆E (∆E) +N ′(qq̄) · P qq̄
∆E(∆E). (4.13)

The results are given in Table 4.7. The sum ofN ′(B0 → π+π−) andN ′(B0 → K+π−) is consistent with the N (BB)
obtained from theMbc distribution. The number ofB0 → π+π− (N (B0 → π+π−)), B0 → K+π−(N (B0 → K+π−)),
and continuum events (N (qq̄)) in the signal box, which are obtained from fit results, are listed in Table 4.7.
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Figure 4.5: Definition of the signal region and ∆E and Mbc sideband regions.

Table 4.5: The parameters of Mbc distributions for B0 → π+π−, B0 → K+π− and B+ → D
0
π+. µMbc and σMbc

represent the peak position and width of the single Gaussian, respectively.
Mode µMbc (MeV) σMbc (MeV)

B0 → π+π− (Monte Carlo) 5278.6± 0.1 2.77± 0.07
B0 → K+π− (Monte Carlo) 5278.7± 0.1 2.80± 0.05

B+ → D
0
π+ (Monte Carlo) 5278.6± 0.1 2.75± 0.03

(Real data) 5279.1± 0.1 2.62± 0.04

4.4 Flavor Tagging

In order to measure the CP asymmetry, it is necessary to determine the flavor of the B meson (Btag) accompanying
to the B meson reconstructed from π+π−. The flavor of Btag is identified with the information of remaining tracks
which are not used in B0 → π+π− reconstruction. The processes utilized in the flavor tagging are listed in
Table 4.8. The efficiency of the flavor tagging, εtag, is not 100% because of the decay processes with very little
flavor information such as b → cc̄s, the inefficiency of particle identification and so on. The wrong tag fraction,
wtag, which is the probability to assign the wrong flavor, is not zero because of the mis-identification of the particles
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Table 4.6: The parameters of ∆E distributions for B0 → π+π−, B0 → K+π− and B+ → D
0
π+. µ∆E and σ∆E

represent the peak position and width of the single Gaussian, respectively.
Mode µ∆E (MeV) σ∆E (MeV)

B0 → π+π− (Monte Carlo) 2.4± 0.6 16.4± 0.6
B0 → K+π− (Monte Carlo) −41.8± 0.5 19.7± 0.5

B+ → D
0
π+ (Monte Carlo) 2.7± 0.2 13.8± 0.2

(Real data) −0.3± 0.3 16.1± 0.3
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Table 4.7: The yield of B0 → π+π− signal, B0 → K+π− background and continuum background obtained with
the ∆E distribution.

N ′(B0 → π+π−) N ′(B0 → K+π−) N ′(qq̄)

−0.3 GeV < ∆E < 0.5 GeV 105.2 +15.5
−14.8 56.2 +14.6

−13.8 854.6 +38.8
−37.8

N (B0 → π+π−) N (B0 → K+π−) N (qq̄)

signal region −0.057 GeV < ∆E < 0.057 GeV 104.9 +15.5
−14.8 39.8 +10.3

−9.8 120.5 +5.5
−5.3
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and so on. A non-zero value of wtag results in a dilution of the observed asymmetry. For example, if the true
numbers of B0 and B0 are n(B0) and n(B0), the corresponding true asymmetry is

Atrue
CP ≡ n(B0) − n(B0)

n(B0) + n(B0)
.

With realistic flavor tagging, the observed numbers of B0 and B0 are

n′(B0) = εtag · [(1 − wtag) · n(B0) + wtag · n(B0)]
and

n′(B0) = εtag · [wtag · n(B0) + (1 − wtag) · n(B0)].

Thus, the corresponding observed asymmetry is

Aobs
CP ≡ n′(B0) − n′(B0)

n′(B0) + n′(B0)
= (1 − 2wtag) · Atrue

CP ,

where the dilution factor is (1 − 2wtag). Since the statistical error of the measured asymmetry is inversely pro-
portional to √

εtag, the number of events required to observe the asymmetry for a certain statistical significance is
proportional to εefftag ≡ εtag · (1 − 2wtag)2, which is called the effective tagging efficiency. The performance of the
flavor tagging is evaluated by εefftag.

The two parameters, q and r, are defined in event by event basis to represent the tagging information. The
parameter q corresponds to the sign of the b-quark charge, where q = +1 for b̄ and hence B0/B+, and q = −1
for b and B0/B−. The parameter r is an event-by-event flavor-tagging dilution factor that ranges from r = 0 for
no flavor discrimination to r = 1 for unambiguous flavor assignment. q and r are determined for each event using
the look-up table method constructed with a large statistics Monte Carlo. Thus, q and r for the certain event are
given by

q · r ≡ N (B0) −N (B0)
N (B0) +N (B0)

,

where N (B0) and N (B0) are the numbers of B0s and B0s in the Monte Carlo sample, which have the same track
properties as the event. When r is well constructed, the parameter r is related to wtag as follows:

r = 1 − 2wtag. (4.14)

The events are categorized into six bins in r, and wltag is determined using the real data for each r bin, where the
subscript l is the index of the r bin.

Table 4.8: The processes used in the flavor tagging.
Process Track information

Semi-Leptonic decay:
{
b→ c�−ν̄�
b̄→ c̄�+ν�

The charge of the primary lepton with high momentum.

Cascade charm decay:
{
b→ cX → s(→ K−/Λ)X
b̄→ c̄X → s̄(→ K+/Λ)X

The charge of the kaons. The flavor of Λs.

Cascade semi-leptonic decay:
{
b→ cX → s�+ν�X
b̄→ c̄X → s̄�−ν̄�X

The charge of the secondary lepton with low momentum.

π production:
{
B0/B− → D(∗)+/D(∗)0 + π−X
B0/B+ → D(∗)−/D(∗)0 + π+X

The charge of the pion with high momentum.

D∗ production:
{
B0/B− → D∗+X,D∗+ → D0π+

B0/B+ → D∗−X,D∗− → D0π− The charge of the pion with low momentum (so-called slow-pion

4.4.1 Flavor Tagging Method

The flavor tagging is proceeded in two stages. In the first stage (track-level flavor tagging), the flavor tagging
parameters, qi and ri, where the subscript i represents that they are obtained from the i-th track, are calculated
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from each daughter track of Btag independently. In the second stage (event-level flavor tagging), the results from
track-level flavor tagging are combined to determine q and r of the event. Figure 4.7 shows the schematic view of
the flavor tagging algorithm.

At the track-level flavor tagging stage, each track from Btag is classified into one of four categories: leptons,
kaons, Λ baryons, and slow pions. qi and ri are obtained with the look-up table method using several flavor-tagging
discriminants defined for each category, such as the track momentum. The tracks do not satisfy |δr| < 2.0 cm and
|δz| < 10.0 cm are not used, where δr and δz are the impact parameters to the nominal interaction point in the
r-φ and z directions, respectively. The daughter tracks from KS candidates are not used. The daughter tracks
from the Λ baryons, which are reconstructed with Λ → pπ decays, are put into Λ baryon category together. The
tracks identified as the photon-converted electrons 7 are not treated as the electron candidates nor the slow pion
candidates.

In the lepton category, the flavor-tagging parameters are extracted using the charge of the high momentum
leptons from the semi-leptonic B decays and the medium momentum leptons from the cascaded semi-leptonic D
decays. The lepton category consists of the two sub-categories: electron-like category and muon-like category. The
tracks with p∗� > 0.4 GeV/c, where p∗� is the cms momentum, are assigned to the electron category if the likelihood
ratio to distinguish electrons from kaon is greater than 0.8. The tracks of which p∗� is greater than 0.8 GeV/c
are assigned to the muon category if the likelihood ratio to distinguish muons from kaons is lager than 0.95. The
charge of the track Q�, p∗� , the likelihood ratio in particle identification, LPID, and the polar angle of track, cos θlab
are used as the discriminants. The kinematical variables, the recoil mass, Mrecoil and the missing cms momentum,
p∗missing are also taken into account because they are useful to distinguish the semi-leptonic decays, where Mrecoil

is defined as the invariant mass formed by all Btag tracks except the lepton.
The look-up table of the multi-dimensional likelihood with these six variables is constructed from the Monte

Carlo for each sub-category. The number of bins for Q�, p∗� , LPID, cos θlab, p∗missing and Mrecoil are 2, 11, 4, 6, 6
and 10, respectively. Thus, total number of bins in the look-up table is 31680. The flavor tagging parameters,
which are stored for each bin, are calculated as:

qi · ri ≡ N (B0;Q�, p∗� , LPID, cos θlab, p∗missing,Mrecoil) −N (B0;Q�, p∗� , LPID, cos θlab, p∗missing,Mrecoil)

N (B0;Q�, p∗� , LPID, cos θlab, p∗missing,Mrecoil) +N (B0;Q�, p∗� , LPID, cos θlab, p∗missing,Mrecoil)
.(4.15)

where N (B0;Q�, p∗� , LPID, cos θlab, p∗missing,Mrecoil) and N (B0;Q�, p∗� , LPID, cos θlab, p∗missing,Mrecoil) are the num-
bers of B0 and B0 events of the bin into which the track is classified. The look-up tables of other track categories
are constructed in the similar ways. When the multiple tracks are classified into the lepton category, the parameters
of the track that gives the largest ri value are passed to the event-level flavor tagging stage.

The slow pion category is intended to distinguish the charge of the D∗ from Btag decays. The tracks with cms
momenta, p∗π is less than 0.25 GeV/c are assigned to the slow pion category if its likelihood ratio to distinguish
kaons from pions is less than 0.9. To distinguish the slow pions from the pions with low momenta from the decays
other than the D∗ decay, the angle between the direction of the track and the thrust axis of the Btag decay tracks,
cos θthrust are used as a discriminants because the direction of the slow pion from D∗ decays follows the direction
of the D∗. The electrons from photon conversion and π0 Dalitz decays are also the contamination of this category.
Because these low momentum tracks cannot reach ECL, the likelihood ratio to distinguish pions from electrons by
the dE/dx measurement is used as the discriminant. The discriminants in the slow pion category are the charge,
momentum in the laboratory frame, a polar angle, cos θthrust and likelihood ratio for π/e separation. The flavor
tagging parameters, qi and ri are calculated with these five discriminants using the look-up table method similar
to the lepton category. When the multiple tracks are classified into the slow pion category, the parameters of the
track that gives the largest ri value are passed to the event-level flavor tagging stage.

In the Λ baryon category, the Λ candidates are selected with the loose requirements of secondary vertex
reconstruction. The discriminants in this category are the flavor of the Λ, the invariant mass of the reconstructed
Λ, the angle between the Λ momentum vector and the direction of the Λ decay vertex point from the nominal
interaction point, the position difference of the two daughter tracks at the Λ decay vertex in z direction, and
whether or not the events contains KS candidates. The reason for using the existence of KS candidates as the
discriminant is that KS carries out the strangeness as same as Λs and Kaons. The asymmetry in the numbers of
the Λ candidates and Λ candidates due to the secondary protons produced in the detector is taken into account.

The tracks, which are not classified into the other categories, are assigned to the kaon category if its likelihood
ratio to distinguish proton from kaons is less than 0.7. The discriminants in this category are the charge, cms
momentum, likelihood ratio for K/π separation and polar angle of the track.

In the event-level flavor tagging stage, the results from four categories in track-level flavor tagging are combined
using the look-up table method also. While q · r from the lepton categories, and that from the slow pion category

7The photon-converted electrons are selected by the invariant mass selection of m e+e− < 0.1 GeV/c2.
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are determined, the results from the Λ baryon category and the kaon category are yet to be combined. The Λ
baryon category and the kaon category are correlated each other because both are intend to observe the sum of the
strangeness of Btag decays. Therefore, the results from the Λ baryon category and the kaon category are combined
as:

qK/Λ · rK/Λ ≡

∏
i

(1 + qi · ri) −
∏
i

(1 − qi · ri)∏
i

(1 + qi · ri) +
∏
i

(1 − qi · ri)
,

where the subscript i runs over the Λ candidates and the tracks in the kaon category.
q and r for the event are obtained by the look-up table with three discriminants, q� ·r�, qπs ·rπs and qK/Λ ·rK/Λ,

where the numbers of bins are 25, 19 and 35, respectively. The look-up tables are constructed using the independent
Monte Carlo sample from that used for the construction of look-up table in the track-level flavor tagging in order
to avoid any bias from a statistical correlation between the two stages. The efficiency that is defined as the fraction
of r > 0 events is 99.6% in Monte Carlo.

The events are classified into six groups of the flavor tagging quality according to r values: 0 < r ≤ 0.25,
0.25 < r ≤ 0.5, 0.5 < r ≤ 0.625, 0.625 < r ≤ 0.75, 0.75 < r ≤ 0.875 and 0.875 < r ≤ 1.
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Figure 4.7: The schematic view of the flavor tagging method.

4.4.2 Measurement of Incorrect flavor assignment Probability

The performance of the flavor tagging and the wrong tag fraction, wltag are evaluated using the real data [105,106].
The one B meson is reconstructed using the flavor specific decays, B0 → D∗−�+ν, B0 → D(∗)−π+, B0 → D∗−ρ+

and their charge conjugates, then the flavor tagging is performed to the other B meson. The overall efficiency of
the flavor tagging in the real data is 99.8%, which is consistent with the Monte Carlo. w ltag is obtained through the
time-dependent B0-B0 mixing oscillation using the fact that the observed mixing amplitude is diluted by a factor
(1 − 2wtag). The obtained results for each r region are listed in Table 4.9. The total effective efficiency obtained
by summing over the six r regions is calculated as 28.8± 0.6%.

In the B0 → π+π− reconstruction, the event shape requirement is introduced as described in Section 4.3.2 while
the look-up tables in the flavor tagging are constructed from the generic B0B0 Monte Carlo and wltag is measured
using the other B meson decays with the only loose event shape requirement. The event shape requirement might
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affect wltag in each r regions because our flavor tagging method uses variables related to the event shape such as
the missing momentum.

The effect of B0 → π+π− selection to wltag is investigated by comparing generic B0B0 and B0 → π+π− Monte
Carlo samples. Table 4.10 shows the results. Comparing the generic B0B0, the fractions of each r regions in
B0 → π+π− changed due to the π+π− event selection. Then, as a result, the effective tagging efficiency increases
in B0 → π+π−. On the other hand, the wltag in each r region remains the same within the statistical errors of
the Monte Carlo or errors of the measurements using the data. Therefore, the wltag measured by B0 → D∗−�+ν,
B0 → D(∗)−π+ and B0 → D∗−ρ+ are used in the CP violation measurement in B0 → π+π− decays. The possible
effect due to the B0 → π+π− event selections is considered as an additional error of wltag, listed in Table 4.9.

Table 4.9: The wltag for each r region measured with the B0 → D∗−�+ν, B0 → D(∗)−π+ and B0 → D∗−ρ+ decays
in real data. The total error of wltag is the quadratic sum of statistical error, systematic error and the possible
effect of the B0 → π+π− selection estimated from Monte Carlo(Table 4.10).

l r wltag(measured) wltag total error
1 0.000− 0.250 0.458 ±0.005(stat) ±0.003(syst) ±0.007
2 0.250− 0.500 0.336 ±0.008(stat) ±0.004(syst) ±0.010
3 0.500− 0.625 0.228 ±0.009(stat) +0.004

−0.006(syst) +0.011
−0.012

4 0.625− 0.750 0.160 ±0.007(stat) +0.005
−0.004(syst) ±0.014

5 0.750− 0.875 0.112 ±0.008(stat) ±0.004(syst) ±0.015
6 0.875− 1.000 0.020 +0.005

−0.004(stat) +0.005
−0.004(syst) +0.008

−0.007

Table 4.10: The comparison of event fractions and wltag for each r region for generic B0B0 Monte Carlo without
any selection and B0 → π+π− Monte Carlo events selected with the same selection in this analysis.

generic B0B0 Monte Carlo B0 → π+π− Monte Carlo
l r region fraction wltag fraction wltag difference of wltag
1 0.000− 0.250 0.420 0.472± 0.001 0.406± 0.002 0.471± 0.003 −0.001± 0.003
2 0.250− 0.500 0.151 0.313± 0.002 0.149± 0.001 0.313± 0.005 +0.000± 0.005
3 0.500− 0.625 0.101 0.205± 0.002 0.104± 0.001 0.204± 0.005 −0.001± 0.005
4 0.625− 0.750 0.114 0.141± 0.001 0.115± 0.001 0.131± 0.004 −0.010± 0.004
5 0.750− 0.875 0.087 0.095± 0.001 0.093± 0.001 0.084± 0.004 −0.011± 0.004
6 0.875− 1.000 0.125 0.027± 0.001 0.132± 0.001 0.025± 0.002 +0.002± 0.002

εeff 0.286±0.001 0.305±0.003

4.5 Reconstruction of Proper Time difference

In this section, we describe the reconstruction of the proper time difference:

∆t ≡ tCP − ttag, (4.16)

where tCP and ttag are the decay time of BCP and Btag, respectively. Because B mesons are produced nearly at
rest in the Υ(4S) rest frame and Υ(4S) is boosted along the z direction, the proper time difference is measured as

∆t =
zCP − ztag
(βγ)Υ(4S) · c , (4.17)

where zCP (ztag) is the decay vertex position of BCP (Btag) in the z direction and (βγ)Υ(4S) is the Lorentz boost
factor of Υ(4S). Thus, it is necessary to reconstruct the decay vertex positions of BCP and Btag and to calculate
the vertex difference in the z direction, ∆z ≡ zCP − ztag. In the time-dependent CP violation measurement,
it is crucial to understand the resolution of ∆t well. Therefore, the resolution of B decay vertexes should be
well understood. To eliminate poorly reconstructed vertices, we reject a small fraction (∼0.2%) of the events by
requiring |dt| < 70 ps (∼45τB0 ).

The decay vertices of BCP and Btag are reconstructed from the daughter charged tracks and the interaction
point profile, which is described in Section 4.5.1, using the kinematic fitting method [107–109]. Figure 4.8 shows
the conceptual drawing of the vertex reconstruction. The parameters of daughter tracks are re-fitted by requiring
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to go through a certain point which is consistent with the expected B meson decay point using the least χ2 method
with Lagrange multiplier technique (IP constraint). The error of the decay point is calculated from the error of
the track momentum and position, which are calibrated using cosmic ray tracks taking into account the difference
between the tracks in hadronic events and cosmic ray tracks [110,111].

z

LER

HER

e−

e+

22 mrad
∼ 100µm in x

beam size  ∼ 5µm in y    
∼ 3mm in z   

x

y

IP profile
B decay point

BCP

π+

π−

Btag

D

D daughters

∆z∼ 200µm

Figure 4.8: The conceptual drawing of the measurement of the proper time difference.

4.5.1 Reconstruction of B Decay Position

In this section, the measurement of interaction point profile (IP profile) and the estimation of the B meson decay
points are described. The IP profile is the over wrap region of the HER and LER beam bunches, as illustrated in
Figure 4.8. The IP profile is slanted due to the finite crossing angle. The accelerator condition varies injection by
injection of the beam. It also changes even during the same run. Therefore, if the number of events in the run is
greater than 10,000 events, the IP profile is calculated every 10,000 events. Otherwise, the IP profile is calculated
using all the events in the run. The interaction point in each event is obtained with the kinematical vertex fit using
all the tracks associated with SVD hits. The position and the width in z direction of the IP profile are obtained
by fitting the distributions of the primary vertices in the unit of event using the 3-dimensional Gaussian. Because
the resolution of the vertex fit is greater than the beam size in x and y directions, the width in x and y direction
of the IP profile is calculated from the beam size monitor. Typical width of the IP profile is ∼ 100µm, ∼ 5µm and
∼ 3mm in x , y and z direction, respectively.

The distribution of B meson decay points are expected to spread more widely than IP profile because the B
mesons have the cms momentum of ∼ 0.34 GeV. While this effect is negligible in z direction, in x and y direction
the flight length of B mesons are greater than the IP profile. The nominal flight length of B mesons in x and y
direction are estimated as 21 µm from Monte Carlo simulation. Therefore, the IP profile is smeared by this amount
in x and y directions.

4.5.2 Vertex Reconstruction of B��

The decay vertex of BCP is reconstructed from the daughter charged π tracks that are associated with at least
one SVD hit in r-φ plane and at least two SVD hits in the r-z plane. If neither one of two pions from B0 → π+π−

candidate is associated with SVD hits, this event is not used in CP analysis. We use the same resolution function
as that used for B → J/ψKS in the sin 2φ1 and lifetime measurements [112]. It is confirmed that the difference of
the vertex resolution between B0 → π+π− decays and B → J/ψKS decays is small enough using a Monte Carlo
simulation.
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Because of the IP profile constraint, it is possible to reconstruct the BCP vertex even with a single track. The
fraction of the single-track vertices is ∼ 10%. For the multiple-track vertices, the quality of the vertex fit is further
evaluated. We find using a Monte Carlo simulation that the vertex-fit χ2 is correlated with the B decay length
due to the tight IP constraint in the transverse plane. To avoid this correlation, we use the variable based on the
z information only:

ξzCP ≡ 1
2n

n∑
k

(
zafter
k − zbefore

k

εbefore
k

)2

,

where n is the number of tracks used in the kinematical vertex fit8, zbefore
k (zafter

k ) is the position of the each track
in z direction (at the closest approach to the origin) before (after) the vertex fit, and εbefore

k is the error of the
zbefore
k . We require ξzCP < 100 to eliminate poorly reconstructed vertices. We find that about 3% of the BCP

decay vertices are rejected in the data.
The event-by-event resolution function of the BCP vertex point in the z direction, RiCP (zCP ) is defined using

the measurement error of the vertex, σizCP
and ξizCP

. The function form of RiCP (δzCP ) is defined as:

RiCP (δzCP ;σizCP
, ξizCP

) ≡ G(δzCP ; 0, (s0CP + s1CP · ξizCP
) · σizCP

) (4.18)
and

RiCP (δzCP ;σizCP
) ≡ G(δzCP ; 0, ssigle · σizCP

) (4.19)

for the multiple-track vertices and the single-track vertices, respectively, where δzCP represents the residual of the
measured zCP from the true value. The parameters, s0CP , s1CP , f tail and ssingle, are determined by the B meson
lifetime measurement using hadronic B meson decays9 in the real data [113] as listed in Table 4.11.

Table 4.11: The parameters of the resolution of BCP vertex.
Parameters Values

s0CP 0.987 +
− 0.117

0.124

s1CP 0.094 ± 0.008
ssingle 0.972 ± 0.045

4.5.3 Vertex Reconstruction of Btag

The decay vertex of Btag is determined inclusively from tracks not assigned to BCP ; however, poorly reconstructed
tracks (with a longitudinal position error in excess of 500 µm, or without the associated SVD hits) as well as tracks
that are likely to come from KS decays (forming the KS mass with another track, or more than 500 µm away from
the BCP vertex in the r-φ plane) are not used. We repeat the vertex reconstruction by removing the track that
gives the largest contribution to the reduced χ2 (χ2/ndf) until the resulting χ2 satisfies χ2/ndf < 20 or only one
track is left. If, however, the track to be removed is a lepton with the cms momentum greater than 1.1 GeV/c, we
keep the lepton and remove the track with the second largest contribution. This is because the high-momentum
leptons are likely to come from primary semi-leptonic B decays. The presence of a secondary charm (b → c)
decay vertex in Btag results in a shift of the reconstructed vertex point toward charm flight direction and degrades
the vertex resolution (Non-Primary tracks effect). A Monte Carlo simulation study shows that the shift and the
resolution of the Btag decay vertex are ∼ 20 µm and ∼ 140 µm (rms), respectively, while the resolution of the fully
reconstructed B decay vertex is ∼ 75 µm (rms).

The fraction of the single-track vertices for Btag is ∼ 22%. For the multiple-track vertices, ξztag is defined in
the same way as ξzCP . We require ξztag < 100 to eliminate poorly reconstructed vertices. We find that about 1%
of the Btag decay vertices are rejected in the data.

The event-by-event resolution function of the Btag vertex in the z direction due to the detector resolution,
Rtag,detector

i(ztag) is parameterized in the same way as that for the BCP vertex:

Rδtag,detctor
i(ztag;σiztag , ξ

i
ztag) ≡ G(δztag; 0, (s0tag + s1tag · ξiztag) · σiztag) (4.20)

and
Rtag,detctor

i(δztag ;σiztag) ≡ G(δztag; 0, ssigle · σiztag) (4.21)

8For single-track vertices ξ cannot be defined.
9B0 → J/ψKS , B0 → J/ψK∗0(K∗0 → K−π+), B0 → D(∗)−π+, B0 → D∗−ρ+, B+ → J/ψK+ and B+ → D0π+
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for the multiple-track vertices and the single-track vertices, respectively, where δztag represents the difference of
the measured ztag from the true value. σiztag is the measurement error of ztag. The parameters, s0tag, s1tag, f tail

and ssingle, are determined by the B meson lifetime measurement using hadronic B meson decays as listed in
Table 4.12. ssingle is common to the BCP vertex.

The resolution due to the non-primary tracks effect: RiNP(δ′ztag) is studied in Monte Carlo by comparing the
generic Monte Carlo and the special Monte Carlo in which all secondary particles are forced to decay with zero
lifetimes at B meson decay points. We assume RiNP(ztag) consists of the prompt component, expressed by the
Dirac’s δ function, and the components which account for the smearing due to the lifetime functions defined as:

Ep(x, τ ) ≡
{

(1/τ ) · exp(−x/τ ) (x > 0)
0 (x ≤ 0) , (4.22)

En(x, τ ) ≡
{

0 (x > 0)
(1/τ ) · exp(+x/τ ) (x ≤ 0) . (4.23)

Thus, RiNP(δ′ztag) is parameterized as:

RiNP(δ′ztag;σiztag , ξztag)

≡ fNP
δ · δ(δ′ztag) + (1 − fNP

δ )[fNP
p ·Ep(δ′ztag; τNP,i

p ) + (1 − fNP
p ) ·En(δ′ztag; τNP,i

n )], (4.24)

where δ′ztag represents the difference of ztag due to non-primary tracks effect, and fNP
δ and fNP

p are the fraction
of the prompt component and the positive part in the lifetime component, respectively. fNP

p is determined by the
Monte Carlo sample while fNP

δ is obtained by the B0 meson lifetime measurement using the real data. Moreover,
the lifetime parameters τNP,i

p and τNP,i
n are defined in event by event as

τNP,i
p ≡ τNP,0

p + τNP,1
p · (s0tag + s1tag · ξiztag) · σiztag/(βγ)Υ(4S) (4.25)

τNP,i
n ≡ τNP,0

n + τNP,1
n · (s0tag + s1tag · ξiztag) · σiztag/(βγ)Υ(4S) (4.26)

for the case that both pion tracks satisfy the SVD hits requirement and

τNP,i
p ≡ τNP,0

p + τNP,1
p · ssigle · σiztag/(βγ)Υ(4S) (4.27)

τNP,i
n ≡ τNP,0

n + τNP,1
n · ssigle · σiztag/(βγ)Υ(4S) (4.28)

for the case that only one track satisfies the SVD hits requirement, where the parameters τNP,0
p , τNP,1

p , τNP,0
n and

τNP,1
n , which are listed in Table 4.12, are determined by Monte Carlo.

The overall resolution function of Btag vertex is defined as

Rtag
i(δztag;σiztag , ξzi

tag
) ≡ Rtag,detctor

i(δztag;σiztag , ξ
i
ztag) ⊗RNP

i(δztag ;σiztag , ξ
i
ztag) (4.29)

where the operator ⊗ expresses the convolution, i.e.

f(x) ⊗ g(x) ≡
∫ ∞

−∞
dx′ f(x′) · g(x− x′). (4.30)

Table 4.12: The parameters of the resolution of Btag vertex.
Parameters Values

multiple tracks single track

s0tag 0.778± 0.048
s1tag 0.044± 0.002

fNP
δ 0.555 +

− 0.041
0.043 0.701 +

− 0.039
0.042

fNP
p 0.955 ± 0.004 0.790 +

−
0.020
0.021

τNP,0
p −0.010 ± 0.011 ps 0.108 +

− 0.068
0.067 ps

τNP,1
p 0.927 +

−
0.025
0.024 1.321 +

−
0.099
0.094

τNP,0
n −0.194 +

− 0.078
0.077 ps −0.281 +

− 0.130
0.147 ps

τNP,1
n 1.990 +

− 0.182
0.169 1.583 +

− 0.213
0.184



Chapter 5

Determination of CP Asymmetry

The time-dependent CP asymmetry parameters, Aππ and Sππ are determined from the ∆t distribution for 760
B0 → π+π− candidate events using an unbinned maximum likelihood method. We estimate the statistical sig-
nificance with the Frequentist Approach established by J. Feldman and D. Cousins [114] which is described in
Section 6.1. We calculate the confidence region within the physical boundary and perform the hypothesis tests for
the null CP asymmetry.

5.1 Unbinned Maximum likelihood fit method

We obtaine a set ofN = 760 independently measured values ∆ti, where the subscript i indecatsecah of B0 → π+π−

candidates. We define the normalized probability density P (∆t;Aππ,Sππ) for ∆t as a function of Aππ and Sππ.
We construct the likelihood for the total N measurements as:

L(Aππ,Sππ) =
N∏
i

P (∆ti;Aππ,Sππ). (5.1)

In the analysis, we obtained the most probable values of Aππ and Sππ by minimizing

−2 lnL(Aππ,Sππ) = −2
N∑
i

ln [P (∆ti;Aππ,Sππ)] (5.2)

with MINUIT [115], which is a part of the numerical computing package distributed by CERN.
Since the quantity −2 lnL(Aππ,Sππ) behaves like χ2 in the large sample limit, the 1-standard-deviation positive

(negative) statistical errors, σAππ and σSππ as:

−2 lnL(Âππ + σAππ , Ŝππ + σSππ) = −2 lnL(Âππ, Ŝππ) + 1, (5.3)

where Âππ and Ŝππ are the central values of Aππ and Sππ , respectively. P (∆ti;Aππ,Sππ) depends on the mea-
surment error of the vertex, the quality of the flavor tagging and other quantities reflecting on the response of the
detector. The detail of the probability density is explained in Section 5.2.

5.2 Probability Density Function for Proper Time Difference

P i(∆t;Aππ,Sππ), is defined as the linear combination of four components, the B0 → π+π− signalP iππ(∆t;Aππ,Sππ),
the B0 → K+π− background P iKπ(∆t), the continuum background shape P iqq̄(∆t), and the outlier component
Pol(∆t) as:

P i(∆t;Aππ,Sππ) = (1 − fol) ·
[
f iππ ·P iππ(∆t;Aππ,Sππ) ⊗ Risig(∆t)

+fiKπ · P iKπ(∆t) ⊗ Risig(∆t) + fiqq̄ ·P iqq̄(∆t)
]
+ fol · Pol(∆t), (5.4)

where Risig(∆t) is a resolution function of ∆t for the B0 → π+π− and the B0 → K+π− events and fol is the fraction
of the outlier component while f iππ, f iKπ and f iqq̄ are the fractions of B0 → π+π− signal, B0 → K+π− background
and continuum background, respectively. The fiππ, f iKπ and f iqq̄ are defined event by event and normalized as:

f iππ + fiKπ + fiqq̄ = 1 (5.5)

62
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Because the event topology of B0 → π+π− decays and that of B0 → K+π− decays are nearly identical, we use
the common resolution function for both components. The outlier component, which is discussed in Section 5.2.2,
expresses a very long tail in the ∆t distribution, which cannot be expressed by the detector resolution.

5.2.1 Probability Density Function for signal

The probability density function of the B0 → π+π− signal for the i-th candidate is given by

P iππ(∆t; q, w
l
tag;Aππ,Sππ)

=
exp(−|∆t|/τB0)

4τB0

{
1 + q · (1 − 2wltag)

[
Aππ · cos(∆md · ∆t) + Sππ · sin(∆md · ∆t)

]}
(5.6)

where q is the flavor of tagging B meson obtained and wltag is the wrong tag fraction for the tagging quality region
to which the candidate belongs. The lifetime of B0 mesons (τB0 ) and the B0-B0 mixing parameter (∆md) are
fixed to the world averages [42]:

τB0 = 1.542± 0.016 ps (5.7)
and

∆md = 0.489± 0.008 � ps−1. (5.8)

5.2.2 Resolution function

The resolution function of ∆t for the B0 → π+π− signal Risig(δ∆t) consists of the detector resolution of the vertex
measurement Ridet(δ∆z), and the correction for the kinematical approximation that the B mesons are at rest in
the cms Rikine(δ∆t), where δ∆t and δ∆z represent the differences of the measured value and the true value for ∆t
and ∆z, respectively [113]. Thus,

Risig(δ∆t) ≡ Ridet(δ∆t) ⊗Rikine(δ∆t), (5.9)

where Ridet(δ∆t) ≡ Ridet(δ∆z)/(βγ)Υ(4S)c.
The detector resolution Ridet(δ∆z) is defined as a convolution of RiCP (δzCP ) and Rtag

i(δztag), which are de-
scribed in Sections 4.5.2 and 4.5.3:

Ridet(δ∆z) ≡ RiCP (δzCP ) ◦Rtag
i(−δztag), (5.10)

where the minus sign is caused that ∆z is defined as zCP − ztag. Here the operator ◦ expresses a succession of two
operation.1 Figure 5.1 shows the average detector resolution function of the 760 B0 → π+π− candidate. The ∆t
resolution due to the detector resolution of the vertex measurement is ∼ 1.4 ps (RMS).

The correction for the kinematical approximation Rikine(δ∆t) is calculated analytically as a function of the E∗
B

and θ∗B from the kinematics of the Υ(4S) two-body decay, where E∗
B and θ∗B are the energy and polar angle of the

reconstructed BCP candidate in the cms. The residual of the measured ∆t defined in Equation 4.17 from the true
value, ∆ttrue that is defined in Equation 4.16 can be given as:

δ∆t ≡ ∆t− ∆ttrue =
zCP − ztag
(βγ)Υ(4S) · c − (tCP − ttag)

=
tCP c · (βγ)CP − ttag(βγ)tag c ·

(βγ)Υ(4S) · c − (tCP − ttag)

=
(

(βγ)CP
(βγ)Υ(4S)

− 1
)
· tCP −

(
(βγ)tag

(βγ)Υ(4S)
− 1
)
· ttag, (5.11)

where (βγ)CP and (βγ)tag are the Lorentz boost factors of BCP and Btag , respectively. Moreover, (βγ)CP and
(βγ)tag are expressed as

(βγ)CP = (βγ)Υ(4S)

(
E∗
B

mB
+

|p∗B | cos θ∗B
βΥ(4S)mB

)
(5.12)

and

(βγ)tag = (βγ)Υ(4S)

(
E∗
B

mB
− |p∗B | cos θ∗B

βΥ(4S)mB

)
, (5.13)

1i.e. f(x, y) ⊗ (g(x) ◦ h(y)) = [f(x, y) ⊗ g(x)]⊗ h(y).
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where mB is the mass of B0 meson, |p∗B| = 0.34 GeV/c is the cms momentum of BCP , and βΥ(4S) = 0.391 is
the velocity of Υ(4S) in the unit of c. Because tCP and ttag distributions are given by the Ep(tCP ; τB0 ) and
Ep(ttag; τB0), respectively, the probability density to obtain δ∆t and ∆ttrue simultaneously is given by2:

P (δ∆t,∆ttrue) =
∫ ∞

0

dtCP
∫ ∞

0

dttagEp(tCP ; τB0)Ep(ttag; τB0 )δ(∆ttrue − (tCP − ttag))

×δ(δ∆t− {[(βγ)CP /(βγ)Υ(4S) − 1] · tCP − [(βγ)tag/(βγ)Υ(4S) − 1] · ttag}), (5.14)

and the probability density to obtain ∆ttrue is given by:

P (∆ttrue) =
∫ ∞

0

dtCP
∫ ∞

0

dttagEp(tCP ; τB0)Ep(ttag; τB0 )δ(∆ttrue − (tCP − ttag)). (5.15)

Rikine(δ∆t) is derived from Rikine(δ∆t) = P (δ∆t,∆ttrue)/P (∆ttrue) as:

Rikine(δ∆t) =


Ep

(
δ∆t−

[(
E∗

B

mB
− 1

)
∆ttrue + |p∗

B | cos θ∗B
βΥ(4S)mB

|∆ttrue|
]
;
∣∣∣ |p∗

B | cos θ∗B
βΥ(4S)mB

∣∣∣ τB0

)
(cos θ∗B > 0)

δ(δ∆t−
(
E∗

B

mB
− 1
)

∆ttrue) (cos θ∗B = 0)

En

(
δ∆t−

[(
E∗

B

mB
− 1

)
∆ttrue + |p∗

B | cos θ∗B
βΥ(4S)mB

|∆ttrue|
]
;
∣∣∣ |p∗

B | cos θ∗B
βΥ(4S)mB

∣∣∣ τB0

)
(cos θ∗B < 0)

.(5.16)

The signal probability density function with the kinematical correction is calculated as:

P iππ(∆t; q, w
l
tag;Aππ,Sππ) ⊗Rikine(∆t)

=
(

1 ± |p∗B| cos θ∗B
βΥ(4S)E

∗
B

)
· exp(−|∆t|/τ ′B0)

4τ ′B0

×
{

1 +
q · (1 − 2wltag)

1 + (x′d)2

[
(Aππ + x′dSππ) · cos(∆m′

d · ∆t) + (Sππ − x′dAππ) · sin(∆m′
d ·∆t)

]}
, (5.17)

where

τ ′B0 = τB0 · (E∗
B/mB ± |p∗B| cos θ∗B/βΥ(4S)mB), (5.18)

∆m′
d = ∆md/(E∗

B/mB ± |p∗B | cos θ∗B/βΥ(4S)mB), (5.19)
x′d = (|p∗B | cos θ∗B/βΥ(4S)E

∗
B) · ∆mdτB0 . (5.20)

Here, in the duplicated signs in the above equations, + is for ∆t ≥ 0 and − is for ∆t < 0.
There is a long tail in the ∆t distribution, which cannot be expressed by the detector resolution. This outlier

component, Pol(∆t), is represented by a single Gaussian with zero mean and the event-independent width, σol, as:

Pol(∆t) ≡ G(∆t; 0, σol). (5.21)

The fraction of outlier component, fol, and σol, are determined from the B0 lifetime measurement in the real data
as listed in Table 5.1. Different values are used for fol depending on whether both vertices are reconstructed with
multiple tracks or not.

Table 5.1: The parameters of the outliers.
Parameters Values

multiple tracks single track

σol 42.0 +
−

4.6
3.5 ps

fol (1.65 +
− 1.13

0.82) × 10−4 0.0269 +
− 0.0019

0.0018

5.2.3 Treatment of B0 → K+π� Background

The probability density function for the B0 → K+π− background is described as:

P iKπ(∆t; q, w
l
tag;AKπ) =

exp(−|∆t|/τB0)
4τB0

[
1 + q · (1 − 2wltag)AKπ · cos(∆md · ∆t)

]
. (5.22)

In the nominal fit, we assume that there is no CP asymmetry for the B0 → K+π− mode, i.e. AKπ is fixed to
be zero. The effect of the non-zero AKπ possibility is included in the systematic uncertainty.

2The definition of Ep(t; τ) is Equation 4.22.
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Figure 5.1: The average detector resolution of the 760 B0 → π+π− candidate.

5.2.4 Probability Density Function for Continuum Background

The probability density function for the continuum background is determined using the ∆E-Mbc sideband region.
It is modeled to be a linear combination of the lifetime function and the delta function, smeared by the sum of
two Gaussians as:

P iqq̄(∆t; q) ≡ 1 + q · δqq̄
2

×
{

(1 − fqq̄δ )
exp(−|∆t|/τqq̄)

2τqq̄
⊗
[
(1 − fqq̄tail) ·G(∆t;µqq̄τ , σ

qq̄

main) + fqq̄tail ·G(∆t;µqq̄τ , σ
qq̄

tail)
]

+fqq̄δ δ(∆t) ⊗
[
(1 − fqq̄tail) ·G(∆t;µqq̄δ , σ

qq̄

main) + fqq̄tail ·G(∆t;µqq̄δ , σ
qq̄

tail)
]}
, (5.23)

σqq̄main ≡ sqq̄main · σi∆t (5.24)

σqq̄tail ≡ sqq̄tail · s
qq̄

main · σi∆t (5.25)

where σi∆t is the measurement error of ∆t, and δqq̄ is the CP asymmetry of the background. The parameters, fqq̄δ ,
τqq̄ , µqq̄τ , µqq̄δ , fqq̄tail, s

qq̄

main and sqq̄tail are determined by the fit to the sideband data of (5.2 < Mbc < 5.26,−0.3 <
∆E < 0.5) and (5.26 < Mbc, 0.1 < ∆E < 0.5). In the nominal fit, δqq̄ is fixed to be zero and the difference of
the number of events observed between q = +1 and q = −1 in the sideband region is included by the systematic
uncertainty. The other parameters are determined depending on whether both vertices are reconstructed with
multiple tracks or not. If one of the vertices is reconstructed with a single track, fqq̄δ is fixed to be 1. Figure 5.2
shows the ∆t distributions for the sideband region and the fitted probability density functions are superimposed.
The obtained probability density function represents the background shape well.

Table 5.2: The ∆t shape parameters for the continuum background which are determined using the sideband data.
Parameters Values

multiple tracks single track

fqq̄δ 0.9857 +
− 0.0041

0.0055 1 (fixed)
τqq̄ 2.37 +

−
0.44
0.34

µqq̄τ 0.45 +
− 0.40

0.34

µqq̄δ −0.0547 ± 0.0055 −0.045 ± 0.013
fqq̄tail 0.179 +

− 0.019
0.017 0.160 +

− 0.021
0.019

sqq̄main 1.093 +
− 0.016

0.017 1.042 ± 0.021

sqq̄tail 2.228 +
−

0.077
0.075 2.53 +

−
0.12
0.11
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Figure 5.2: The ∆t distributions for the sideband region. The solid lines show the fit results.

5.2.5 Signal Probability

The probabilities that an event is the B0 → π+π− signal f iππ, the B0 → K+π− background f iKπ , and the continuum
background f iqq̄ are defined as a function of Mbc and ∆E, , and depend on the LR-r region (Table 4.4).

f iππ(Mbc,∆E, l) ≡ Fππ(Mbc,∆E) · glππ
Fππ(Mbc,∆E) · glππ + FKπ(Mbc,∆E) · glKπ + Fqq̄(Mbc,∆E) · glqq̄

, (5.26)

f iKπ(Mbc,∆E, l) ≡ FKπ(Mbc,∆E) · glKπ
Fππ(Mbc,∆E) · glππ + FKπ(Mbc,∆E) · glKπ + Fqq̄(Mbc,∆E) · glqq̄

(5.27)

and

f iqq̄(Mbc,∆E, l) ≡ Fqq̄(Mbc,∆E) · glqq̄
Fππ(Mbc,∆E)glππ + FKπ(Mbc,∆E) · glKπ + Fqq̄(Mbc,∆E) · glqq̄

, (5.28)

where l indicates that the event belongs to the l-th bin of 12 LR-r regions, and glππ, g
l
Kπ and glππ represent the

S/N ratio in each LR-r region, while Fππ(Mbc,∆E), FKπ(Mbc,∆E) and Fqq̄(Mbc,∆E) represent the Mbc and
∆E dependence in each component. Fππ(Mbc,∆E), FKπ(Mbc,∆E) and Fqq̄(Mbc,∆E) are defined as:

Fππ(Mbc,∆E) ≡ PBBMbc
(Mbc)P ππ∆E(∆E)/

∫∫
signal
region

d(Mbc)d(∆E) PBBMbc
(Mbc)P ππ∆E(∆E), (5.29)

Fππ(Mbc,∆E) ≡ PBBMbc
(Mbc)PKπ∆E (∆E)/

∫∫
signal
region

d(Mbc)d(∆E) PBBMbc
(Mbc)PKπ∆E (∆E) (5.30)

and
Fqq̄(Mbc,∆E) ≡ P qq̄Mbc

(Mbc;α)P qq̄∆E(∆E; c1)/
∫∫

signal
region

d(Mbc)d(∆E) P qq̄Mbc
(Mbc;α)P qq̄∆E(∆E; c1), (5.31)

where PBBMbc
(Mbc), P

qq̄
Mbc

(Mbc;α), P ππ
∆E(∆E), PKπ∆E (∆E) and P qq̄∆E(∆E; c1) are defined in Section 4.3.3. Because we

find c1, which is the slope parameter of the ∆E distribution of continuum background, depends on l, c1 is varied
bin-by-bin as shown in Table 5.3.

The fractions, glππ, g
l
Kπ and glππ, are defined as:

glππ ≡ nππ · f(l;ππ)
nππ · f(l;ππ) + nKπ · f(l;Kπ) + nqq̄ · f(l; qq̄)

, (5.32)

glKπ ≡ nKπ · f(l;Kπ)
nππ · f(l;ππ) + nKπ · f(l;Kπ) + nqq̄ · f(l; qq̄)

(5.33)

and
glqq̄ ≡ nqq̄ · f(l; qq̄)

nππ · f(l;ππ) + nKπ · f(l;Kπ) + nqq̄ · f(l; qq̄)
, (5.34)
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where f(l;ππ), f(l;Kπ) and f(l; qq̄) are the fractions in each LR-r regions for the B0 → π+π−, B0 → K+π−

and continuum background, respectively. The normalization factors for each component, nππ, nKπ and nqq̄, are
obtained from the S/N ratio.

f(l;ππ), f(l;Kπ) and f(l; qq̄) satisfy:

12∑
l=1

f(l;ππ) =
12∑
l=1

f(l;Kπ) =
12∑
l=1

f(l; qq̄) = 1. (5.35)

f(l;ππ) is determined from the signal Monte Carlo, and we assume f(l;Kπ) = f(l;ππ) because the LR and r
distributions for B0 → π+π− and B0 → K+π− are identical because of the similar event topologies. f(l; qq̄) is
estimated using the number of events in the sideband region of the real data.

We calculate nππ, nKπ and nqq̄ such that the S/N ratio for the higher LR regions (l = 7 ∼ 12) is consistent with
the ratio of the signal to the background in the real data, which is derived from the ∆E distribution (Section 4.3.3,
Table 4.7), i.e.

nππ ≡ N (B0 → π+π−)/
12∑
l=7

f(l;ππ), (5.36)

nKπ ≡ N (B0 → K+π−)/
12∑
l=7

f(l;Kπ) (5.37)

and

nqq̄ ≡ N (qq̄)/
12∑
l=7

f(l; qq̄). (5.38)

The obtained values of glππ, g
l
Kπ and glππ are listed in Table 5.4. By using obtained glππ, g

l
Kπ and glππ, the yields

of the B0 → π+π− events, B0 → K+π− and continuum background in 485 candidates in the lower LR region are
estimated to be 57± 8, 22± 6 and 406± 17, respectively, while the yields of the B0 → π+π− events, B0 → K+π−

and continuum background in 275 candidates in the higher LR region are 106+16
−15, 41+10

−9 and 128+5
−6, respectively.
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Figure 5.3: The ∆E distribution in the lower LR region. The open circles represent the data. The broken line,
the dash-dotted line, the dotted line and the solid-line histogram show the B0 → π+π−, B0 → K+π− background,
continuum background and the other B meson decays, respectively. The solid-line curve represents the sum of the
four components.

5.2.6 Result of Fit

We extract the central values of Aππ and Sππ from the ∆t distribution for the 760 final candidates (391 B0-
tagged and 369 B0-tagged candidates) that contain 163+24

−23 B
0 → π+π− signal events. In the fit, Aππ and Sππ

are the free parameters, and the other parameters are fixed. There are 86 fixed parameters, including 3 physics
parameters (τB0 , ∆md and AKπ), 6 wrong tag fractions (Table 4.9), 22 ∆t resolution function parameters (βΥ(4S),
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Table 5.3: The slope parameter of the ∆E distribution for continuum background depending on the LR-r region.
Lower LR regions Higher LR regions
l c1 l c1

1 −0.270 ± 0.017 7 −0.109 ± 0.031
2 −0.375 +

−
0.034
0.033 8 −0.266 +

−
0.063
0.062

3 −0.419 ± 0.036 9 −0.312 +
− 0.080

0.079

4 −0.478 +
− 0.035

0.034 10 −0.378 +
− 0.077

0.075

5 −0.541 +
−

0.047
0.045 11 −0.46 ± 0.11

6 −0.578 +
− 0.071

0.068 12 −0.24 ± 0.18

Table 5.4: The fractions of expected B0 → π+π−, B0 → K+π− and background events for 12 LR-r regions.
glKπ = (0.382+0.112

−0.109) × glππ.
Lower LR regions Higher LR regions

l glππ glqq̄ l glππ glqq̄

1 0.087 ± 0.034 0.880 ± 0.040 7 0.296 ± 0.077 0.591 ± 0.028
2 0.127 ± 0.049 0.824 ± 0.040 8 0.385 ± 0.094 0.468 ± 0.026
3 0.124 ± 0.036 0.829 ± 0.041 9 0.407 ± 0.134 0.438 ± 0.027
4 0.129 ± 0.050 0.822 ± 0.040 10 0.442 ± 0.110 0.389 ± 0.024
5 0.170 ± 0.060 0.765 ± 0.040 11 0.522 ± 0.081 0.279 ± 0.022
6 0.390 ± 0.098 0.461 ± 0.032 12 0.670 ± 0.129 0.074 ± 0.009

mB , Table 4.11, 4.12 and 5.1), 11 parameters for the ∆t shape of the continuum background (Table 5.2) and 44
parameters for signal and background probabilities (Equation 4.7, 4.8 and 4.9, α, Table 5.3 and 5.4). There are
the 9 event-by-event variables other than ∆t and q, including 5 kinematical variables (Mbc, ∆E, E∗

beam, |p∗B|, and
cos θ∗B ) and 4 vertex measurement qualities (σzCP , σztag , ξzCP and ξztag). The fit yields

Aππ = +0.77 + 0.20
− 0.23 (stat∗) (5.39)

and
Sππ = −1.23 + 0.24

− 0.15 (stat∗) (5.40)

where the statistical errors3 are calculated by scanning the contour of Equation 5.3 using MINOS [115]. The values
obtained reside outside of physical boundary. The correlation coefficient between Aππ and Sππ is calculated as
0.024. As described later, the statistical errors in the above equations are smaller than that expected from the
Monte Carlo simulation. We discuss the statistical power of our measurement at the Section 5.3. Figure 5.4(a)
shows the ∆t distributions for the all candidates and the fit results in both flavor assignments. The fitted curves
show the good agreement with the data. Figure 5.4(b) (Figure 5.4(c)) shows the ∆t distributions for the candidates
in the higher (lower) LR region and the fit results obtained by the fit to the entire candidate. The fitted curves
represent the ∆t distributions in both LR regions. ∆t distributions after subtracting the background for both
flavor assignments are shown in Figure 5.5(a), while the same plots for the higher (lower) LR region are also shown
in Figure 5.5(b) (Figure 5.5(c)). The difference of the signal yield between two flavor assignments is significantly
large. The asymmetries of the B0 → π+π− yield between q = +1 and q = −1 candidates are also shown in
Figure 5.4.

5.3 Statistical Uncertainties

As described in Section 5.2.6, we get the statistical error for Aππ (Sππ) of + 0.20
− 0.23 (+ 0.24

− 0.15) from the contour of the
likelihood functions. The expected values for Aππ (Sππ) obtained by the ensemble test using the Monte Carlo
pseudo-experiments is +0.24

−0.26 (+0.36
−0.32), where the Monte Carlo pseudo-experiments are carried out with input values

of Aππ = +0.53 and Sππ = −0.85, which correspond to the values at the physical boundary closest to our central
values. Here, the statistical errors of Aππ and Sππ estimated from the contour of the likelihood functions are
significantly smaller than the expectations from the Monte Carlo. Figure 5.6 shows comparison of the statistical

3The statistical errors for Aππ and Sππ calculated by scanning the contour of the likelihood functions are expressed as (stat ∗)
hereafter.
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Figure 5.4: ∆t distributions of the q = +1 candidates (top) and q = −1 candidates (below), respectively. Filled cir-
cles represent the data and solid line curves show the fitted PDFs. Hatched area show the B0 → π+π− components
of the PDFs while the dashed line curves represent the background components of the PDFs.
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Figure 5.5: ∆t distributions of the q = +1 candidates (open circles) and q = −1 candidates (filled triangles)
after subtracting the background (top) and the asymmetry of the B0 → π+π− yield between q = +1 and q = −1
candidates (bottom). In above plots, the solid (dashed) line curves show the results of the B0 → π+π− components
of PDFs for q = +1 (q = −1) candidates obtained by the fit. In below plots, the solid line curves show the resultant
CP asymmetry, while the dashed (dotted) line curves are the contribution from the cosine (sine) term.
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errors from fit to data to the expected values in Monte Carlo pseudo-experiments. These characteristics are
reproduced in the Monte Carlo pseudo-experiments, and the fraction of the events of which the error of Aππ (Sππ)
is smaller than the result in the real data is calculated as 1.1% (11.9%) in Monte Carlo pseudo-experiments.

Figure 5.7 shows the logarithmic likelihood values as functions of Aππ and Sππ normalized by the maximum
values of the likelihood. The obtained logarithmic likelihood curves are deviated from parabola functions. It
indicates the statistical error estimated from the contour of the likelihood, which is based on the Gaussian approx-
imation of the likelihood curve, is not appropriate. Therefore we estimate the statistical errors from the RMS. of
the distributions of Aππ and Sππ in the Monte Carlo pseudo-experiments. We obtain the statistical errors for Aππ
and Sππ as ±0.27 and ±0.41, respectively. Thus,

Aππ = +0.77 ± 0.27(stat) (5.41)
and

Sππ = −1.23 ± 0.41(stat). (5.42)

We describe an investigation of the source of the small errors in Section 5.5.

0

1000

2000

3000

4000

5000

-0.4 -0.3 -0.2 -0.1

(a) Negative error of Aππ

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0.1 0.2 0.3 0 .4

(b) Positive error of Aππ

0
250
500
750

1000
1250
1500
1750
2000
2250

-0.6 -0.4 -0.2

(c) Negative error of Sππ

0

500

1000

1500

2000

2500

0.1 0.2 0.3 0.4 0.5 0.6

(d) Positive error of Sππ

Figure 5.6: The distributions of statistical errors in Monte Carlo pseudo-experiments with input values of Aππ =
+0.53 and Sππ = −0.85. The arrows indicate the results of the fit to real data sample.
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5.4 Systematic Uncertainties

We estimate the systematic uncertainties by varying the parameters in the event reconstruction and the CP fitting
procedures. We consider the following sources contribute to the systematic error, as summarized in Table 5.5.
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1. Wrong tag fraction

The systematic uncertainty in the wrong tag fraction is estimated varying the wrong tag fraction for each r
region individually, and summing them up in quadrature. The systematic error due to the possible difference
between the q = +1 tag and the q = −1 tag is also estimated using the wrong tag fractions measured
separately for q = ±1 listed in Table 5.6.

2. Physics parameters

The B0 meson lifetime and the B0-B0 mixing parameter are fixed to the world averages (Equation 5.7 and
Equation 5.8). The systematic uncertainty is estimated by varying the values within their errors. In this
analysis, the direct CP asymmetry of B0 → K+π− decays, AKπ , is also fixed to be zero. Since the value of

AKπ = −0.07 ± 0.06 (5.43)

is obtained from the self-tagged B0 → K+π− sample with the 78 fb −1 data [116], the systematic error is
estimated by varying AKπ from −0.13 to +0.06.

3. Resolution of ∆t measurement.

The uncertainty in the signal ∆t resolution is estimated by varying each parameter individually by 1σ for
the parameter determined by the real data and 2σ for those determined by Monte Carlo, and summing them
up in quadrature.

4. Background ∆t shape

The systematic error in the ∆t shape of the continuum background is estimated by varying the parameters
in P iqq̄(∆t; q) (Equation 5.23) by their errors.

5. Background fraction

The event-by-event fractions of the signal, the B0 → K+π− background, and the continuum background are
determined by the (∆E,Mbc) shape, the yield of each component in the higher LR region and the event
fractions of 12 LR-r regions.

The systematic errors on the (∆E,Mbc) shape and the yield of each component in the higher LR region is
estimated by varying each parameter individually by 1σ for the parameter determined by the real data and
2σ for those determined by Monte Carlo, then summing them up in quadrature.

For the signal and the B0 → K+π− background, the event fractions of 12 LR-r regions are determined by
the Monte Carlo. The difference between the Monte Carlo and the real data is investigated using B → D(∗)π
decays. The systematic errors on the event fractions of 12 LR-r regions is estimated by varying the fractions
by this difference and adding the statistical errors of the B → D(∗)π real data in quadrature.

For the B0 → K+π− background, we estimate the number of background events in the signal region as
32±2 (15±2) in the higher (lower) LR region using the B0 → K+π− sample and the kaon mis-identification
probability that is estimated from the inclusive D∗-tagged D0 → K−π+ and φ → K+K− decays. This is
consistent with the number of events from a fit to the ∆E distribution. The number of background events
obtained from the kaon mis-identification probability changes the result for Aππ (Sππ) by +0.005

−0.0 (+0.0
−0.03). This

difference is included in the systematic error.

For the continuum background, the event fractions of 12 LR-r regions are determined by the data in the
mass sideband. The systematic error is estimated by varying the fractions by the statistical errors. The
PDF for the continuum assumes the equal fractions of the events in both q = +1 and q = −1 samples, i.e.
δqq̄ = 0 in Equation 5.23. The systematic error due to this assumption is estimated by varying δqq̄ from 0.5
by ±0.02, based on the measured background asymmetry of 1.26± 0.63 obtained by counting the sideband
data, described in Section 5.2.4.

6. Fit bias

We perform the CP fit to the signal events in the full Monte Carlo simulation based on the GEANT. The
differences among the input values and the fitted results of Aππ and Sππ are included in the systematic error.
The difference among the input values and the mean fitted values in the Monte Carlo pseudo-experiments
are also included in the systematic errors.
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7. Vertex reconstruction

We estimate the systematic uncertainty on the vertex reconstruction by varying the vertex quality require-
ments in the BCP and the Btag vertex reconstructions and the track requirements in the Btag reconstruction.
The difference of the fit results of Aππ and Sππ from the default values are included in the systematic error.
We change the cut value of the vertex quality, ξizCP

and ξizCP
, to 50 and 200, respectively, where the default

values are set to be 100. In the Btag vertex reconstruction, the track requirement on the error of position
in z is varied by 0.1 mm, where the default is < 0.5 mm, and the requirement on the distance from the
reconstructed decay vertex of BCP is varied by 0.1 mm, where the default is < 0.5 mm. We also estimate the
systematic uncertainty on the IP constraint in the vertex reconstruction by varying the expected B meson
flight length by +20 µm and −10 µm. We also repeat the analysis by introducing charge-dependent shifts
in the z direction for tracks artificially and include the resulting change in the systematic error. Here the
amount of the shift, which is ±3 µm (∓3µm) for the positive (negative) tracks, is determined from studies
with cosmic rays and with the two-photon e+e− → π+π−π+π− process.

The total systematic errors of Aππ and Sππ are ±0.08 and +0.08
−0.07, respectively,by adding all these contributions

in quadrature. The systematic error for Sππ is mainly from uncertainties in the background fraction and a possible
fit bias near the physical boundary. For Aππ , the background fraction and the vertex reconstruction are the two
leading components. The systematic errors for both Aππ and Sππ are smaller than the statistical errors.

Table 5.5: Summary table of the systematic uncertainties for Aππ and Sππ
Aππ Sππ

Source positive error negative error positive error negative error
Background fraction +0.058 −0.048 +0.044 −0.055
Vertex reconstruction +0.044 −0.054 +0.037 −0.012
Fit bias +0.016 −0.021 +0.052 −0.020
Wrong tag fraction +0.026 −0.021 +0.015 −0.016
Physics parameters +0.021 −0.014 +0.022 −0.022
Resolution function +0.019 −0.020 +0.010 −0.013
Background shape +0.003 −0.015 +0.007 −0.002
Total +0.084 −0.083 +0.083 −0.067

Table 5.6: The wrong tag fractions for q = +1 and q = −1. The errors are the statistical errors.
l r wltag

q = +1 q = −1 Difference

1 0.000 - 0.250 0.4625± 0.0072 0.4535± 0.0073 +0.009± 0.010
2 0.250 - 0.500 0.339± 0.011 0.333± 0.011 +0.006± 0.016
3 0.500 - 0.625 0.211± 0.012 0.246± 0.012 −0.035± 0.017
4 0.625 - 0.750 0.148± 0.010 0.173± 0.011 −0.025± 0.015
5 0.750 - 0.875 0.101± 0.011 0.122± 0.011 −0.021± 0.016
6 0.875 - 1.000 0.0200± 0.0064 0.0196± 0.0062 +0.0004± 0.0089

5.5 Validation Checks

We perform a number of checks in order to confirm the validity of our measurement:

1. Ensemble test

We check the validity of our fitting procedure using a large ensemble of Monte Carlo pseudo-experiments. We
generate Monte Carlo pseudo-experiments containing the same number of events as the candidates in the real
data. The events in Monte Carlo pseudo-experiment are based on the PDFs, the fractions of B0 → π+π−,
B0 → K+π− and continuum components and the wrong tag fractions obtained from the real data, which
are used in the unbinned-maximum likelihood fit. We check linearities of Aππ and Sππ obtained by the fit
with respect to the true values. Figure 5.8 shows the fit results of Aππ and Sππ as functions of the input
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values, and fit results using a linear function. The results indicate good linearity and an absence of any
bias. We generate the Monte Carlo pseudo-experiments with input values of Aππ = 0.53 and Sππ = −0.85,
which correspond to the point in the physical boundary closest to our measurement, and the comparison
with our measurement as shown in Figure 5.9. Figure 5.9(a) (5.9(b)), which is the distribution of Aππ (Sππ),
indicates the finite probability to obtain the fit results outside the physical boundary as our measurement.
The probabilities to obtain the fit result outside the physical boundary and to exceed the CP violation
are calculated as 14.8% and 59.8%, respectively, as shown in Table 5.7. Figure 5.9(c) is the distribution of
−2 ln(Lmax), where Lmax is the maximum value of the likelihood function. −2 ln(Lmax) of our measurement
is consistent with the Monte Carlo pseudo-experiments. The correlation coefficient of our measurement is
also consistent with the expectation as shown in Figure 5.9(d).

2. Test using the non-CP sample

We extract “Aππ” and “Sππ” values from the flavor-specific decay final states in the real data to verify the
procedures for the flavor tagging, the ∆t reconstruction, the resolution function and the fit procedure. Since
the flavor-specific decay modes are not expected to give the CP violation in this analysis, “Aππ” and “Sππ”
values should be zero. The obtained “Aππ” and “Sππ” using B → D(∗)−π+ and B → D∗−ρ+ decays are
consistent with zero, as shown in Table 5.8 and Figure 5.10(a). We also apply the same CP fitting procedure
to B0 → K+π− decays. For B0 → K+π− decays, “Sππ” should be zero, although “Aππ” may be the non-
zero value. The fit result of “Sππ” to B0 → K+π− decays is measured to be consistent with zero, as shown
in Table 5.8 and Figure 5.10(b). We can make the similar test using the B0 → π+π− and the B0 → K+π−

candidates by assuming all candidates have a flavor of q = +1 and the CP fit with fixing Aππ to be zero
(flavor blind fit). The obtained “Sππ”s are consistent with zero, as shown in Table 5.8. These results indicate
the absence of significant bias in out procedure to determine Aππ and Sππ. We also examine the event yield,
and the ∆t distribution for the events for each flavor assignment, q = +1 and q = −1, in the sideband region
and find no significant asymmetry as shown in Figure 5.10(c).

3. B0 lifetime and ∆md measurements

To confirm the decay vertices of B mesons are successfully reconstructed, we perform the lifetime mea-
surement using the same data sample. The lifetime of B0 mesons is measured to be 1.42+0.14

−0.12 ps using
760 B0 → π+π− candidates. The lifetime is also measured to be 1.46 ± 0.08 ps using 1371 B0 → K+π−

candidates. Both are consistent with the world average (Equation 5.7) and this indicates that our vertex
reconstruction in the two-body B-meson decays is correct and that the ∆t resolution is understood in good
shape.

We also perform the ∆md measurement using B0 → K+π− decays, which are the flavor-specific two-body
decays of B mesons. The measured value is ∆md = 0.55+0.05

−0.07 � ps−1, and consistent with the world average
(Equation 5.8). This assures that our flavor-tagging method and the wrong-tag fraction estimation are
correct.

4. Fit with the constraint to the physical boundary.

Since our nominal fit result is outside of the physical region, Aππ
2 + Sππ2 ≤ 1, we also perform the fit with

a constraint that restricts the fit results into the physical region. The obtained results with the constraint
are Aππ = +0.57 and Sππ = −0.82 on the boundary, which are consistent with the point on the boundary
closest to the nominal values (Aππ = +0.53, Sππ = −0.85). Note that there is the disadvantage of such a
fitting method because the errors returned from the fit are not Gaussian and are difficult to interpret when
the fit result is close to the physical boundary.

5. Comparison with Time-independent analysis

We check the measurement of Aππ using the time-independent fits to the ∆E distributions for B0 and B0

tags. Figure 5.11(a) and 5.11(b) show the ∆E distributions of the q = +1 and q = −1 candidates in the higher
LR region, respectively. The B0 → π+π− signal yields for q = +1 and q = −1 candidates are 61.2 ± 11.4
and 43.7± 10.1, respectively. We determine the yield of B0 → π+π− signals by fitting ∆E distribution in 24
regions corresponding to 12 LR-r regions for B0 and B0 tags, as listed in Table 5.9. For each r-bin, Al

ππ is
given by

Al
ππ ≡ 1

(1 − 2χd)(1 − 2wltag)
· [N l

ππ(q = 1) −N l
ππ(q = −1)]

[N l
ππ(q = 1) +N l

ππ(q = −1)]
, (5.44)



74 CHAPTER 5. DETERMINATION OF CP ASYMMETRY

where χd is a time integrated mixing probability of 0.181±0.004 [42], and N l
ππ(q = ±1) is B0 → π+π− yield

in r-region with flavor assignment of q = ±1. The weighted mean with the statistical errors of Al
ππ(l = 1 ∼ 6)

gives Aππ corrected for wltag and χd. We obtain Aππ = 0.55±0.37(stat) from the time-independent analysis,
which is consistent with the result from the fit of the ∆t distribution.

6. ∆E shapes for B0 → π+π− and B0 → K+π−

In calculation of the signal probabilities, which is described in Section 5.2.5, the ∆E distributions for
B0 → π+π− and B0 → K+π− are modeled by a single Gaussian function. Here we use the sum of two
Gaussians with the same mean values to model ∆E distributions for B0 → π+π− and B0 → K+π−. The
values of width of Gaussians are obtained using the same procedure in Section 4.3.3 while the fraction of sec-
ond Gaussian is obtained using a GEANT based Monte Carlo simulation as 0.17 for B 0 → π+π− or 0.13 for
B0 → K+π−. Figure 5.13(a) shows the fit of ∆E distribution in the higher LR region with a double Gaus-
sian parameterization. The CP fit with this double Gaussian parameterization gives Aππ = 0.75+0.20

−0.22(stat∗)
and Sππ = −1.21+0.23

−0.14(stat∗), which are consistent with the default fit results. We also apply a CP fit
with modeling the ∆E distribution for B0 → π+π− and B0 → K+π− by a single Gaussian and the sum
of two Gaussians, respectively, as shown in Figure 5.13(b). The results are Aππ = 0.77+0.20

−0.23(stat∗) and
Sππ = −1.22+0.23

−0.15(stat∗), and also consistent with the default fit results.

7. ∆t shape of continuum backgrounds.

For continuum backgrounds, we use the same ∆t shape for B0 and B0 tagged events in the probability density
function, as described in Section 5.2.4. Although the flavor asymmetry for the continuum background is small,
as shown in Figure 5.10(c), we check the effect to the CP fitting. We use the probability density function for
continuum background defined as Equation 5.23 as the default. Here we use different fqq̄δ and τqq̄ for each
flavor assignment, and obtain Aππ = 0.77+0.20

−0.23(stat∗) and Sππ = −1.23+0.24
−0.15(stat∗) with the background-yield

asymmetry of δqq̄ = 0. These fit results are same as the default fit results. The fit results with δbkg = +0.02
are Aππ = 0.77+0.21

−0.23(stat∗) and Sππ = −1.23+0.24
−0.15(stat∗), which are also consistent with the default.

8. Fit of subsamples with tighter event selection

We apply more stringent selection criteria for B0 → π+π− candidates and perform the CP fit. We do
not observe any systematic tendency when we vary the selection on LR, ∆E, r, vertex quality and kaon
probability as shown in Table 5.10. Restricting the ∆E range or applying much more restrictive kaon
probability requirements that reduce the B0 → K+π− background do not significantly change the result.

9. The difference between the error obtained from the fit to the data and that expected from the Monte Carlo
pseudo-experiments

We investigate the reason why the error of Sππ estimated from the likelihood function is smaller than the
expectation from Monte Carlo pseudo-experiments. In Monte Carlo pseudo-experiments, we find that the
logarithmic likelihood curve may deviates from a parabola function when the number of events is not large
and the true values of Sππ and Aππ are located close to a physical boundary. In such a case, a small number
of candidates can have a large influence on both the size of the error4 and the shape of the logarithmic
likelihood curve. The likelihood function for some candidates may become negative when the fit parameter
is beyond the physical boundary.

The observed features of the errors arise when there is an candidate that restricts the fit parameters in
or close to the physical region, while the fit to all the other candidates gives a maximum likelihood that
is located outside the physical region and is not allowed by the aforementioned restrictive candidate. For
example, in this fit the removal of such a restrictive candidate results in a Sππ value that is more negative
than Sππ = −1.23 (further from the physical boundary). In this case, the logarithmic likelihood curve is
deformed by an inclusion of the restrictive candidate, even if the curve before the inclusion is well described
by a parabola. The sizes of the errors also become small.

We investigate this type of single-event sensitivity and its relation to the size of the errors with Monte
Carlo pseudo-experiments. For each experiment, we repeat the fit by removing each candidate in turn. The
candidate that creates the largest difference in Sππ is tagged as the restrictive candidate and the change
produced by the removal of the restrictive candidate, ∆Sππ, is recorded. When we choose the point of
(Aππ, Sππ) = (+0.53, −0.85), which is closest to our central values, as the input values to the Monte Carlo
pseudo-experiments, we obtain the average values of ∆Sππ as a function of the positive error of Sππ shown
in Figure 5.14. The correlation between the size of the error and the single-event sensitivity is evident.

4In this context, “error” means the error estimated from the likelihood function.
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In our data, we have one candidate that has a large effect on the sizes of errors. The removal of this candidate
from the fit gives Sππ = −1.91+0.36

−0.33(stat∗) and Aππ = 0.64+0.19
−0.20(stat∗), where Sππ is shifted to the negative

direction (∆Sππ = −0.67) and the error increases with respect to the nominal fit results (Equation 5.40).
This candidate has qr = −0.92 which is close to unambiguous B flavor assignment and corresponds to a
very small wrong-tag probability. In addition, this candidate has ∆E = −0.01 GeV, and LR = 0.98, which
corresponds to small B0 → K+π− and continuum background probabilities. Thus, the dilution factor for this
candidate is close to the unity. Moreover, for this candidate, ∆t = −3.8 ps and, it gives sin(∆md∆t) � −1.
According to Equation 5.6 using the above conditions, this candidate has a negative likelihood value at
negative Sππ values beyond ∼ −1.5, where it truncates the logarithmic likelihood ratio curve as shown in
Figure 5.15. As a result, the negative error for the entire event sample is restricted by this single event. This
phenomenon is reproduced in the Monte Carlo pseudo-experiments. This type of single-candidate sensitivity
occurs in a few percent when the fit result is outside the physical region.

As shown in Figure 5.14, the observed single-event sensitivity ∆Sππ = −0.67 is consistent with the expectation
from the Monte Carlo pseudo-experiments if the positive error of Sππ is ∼ +0.24, which is the case for our
data. A similar study for input values of Sππ and Aππ that are well within the physically allowed region
indicates that this behavior occurs much less often.
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Figure 5.8: Mean values of the fit result vs. input values of Monte Carlo pseudo-experiments. The solid lines are
linear fit results.

Table 5.7: The fractions of Monte Carlo pseudo-experiments outside physical boundary and exceed the CP violation
we observe for various input values.

Input
√
Aππ

2 + Sππ2 The fractions outside physical
boundary we observe (%)

The fractions exceed the CP vi-
olation we observe (%)

0.00 1.8 0.07
0.00− 0.20 2.5 0.12
0.20− 0.40 4.7 0.3
0.40− 0.60 11.2 1.0
0.60− 0.80 24.3 3.1
0.80− 1.00 45.9 9.2

1.00 59.3 14.8
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Figure 5.9: Results of the Ensemble test with Monte Carlo pseudo-experiments with input values of the Aππ = 0.53
and Sππ = −0.85. The solid line arrow and the dashed line arrow indicate the input value of the Monte Carlo
pseudo-experiments and the result of the fit of the real data, respectively.
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Figure 5.10: The flavor asymmetry in the ∆t distributions for control samples.

Table 5.8: The CP fit results for non-CP samples. The errors are statistical error.
Decay mode # of events “Aππ” “Sππ”

B → D−π+ 5,229 +0.009 ± 0.035 +0.083 ± 0.052
B → D∗−π+ 5,016 −0.012 ± 0.036 +0.007 ± 0.055
B → D∗−ρ+ 5,076 −0.051 ± 0.042 +0.038 ± 0.064
(combined) 15,321 −0.015 ± 0.022 +0.045 ± 0.033

B0 → K+π− 1,371 −0.03 ± 0.11 +0.08 ± 0.16
B0 → K+π− (LR > 0.825) 585 −0.01 ± 0.12 +0.10 ± 0.18
B0 → K+π− (flavor blind) 1,371 +0.03 ± 0.16

B0 → π+π− (flavor blind) 760 −0.25 +
− 0.35

0.34

B0 → π+π− (flavor blind, LR > 0.825) 275 −0.10 +
− 0.38

0.37
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Figure 5.11: The ∆E distributions of the q = +1 candidates (a) and q = −1 candidates (b) in the higher LR and
Mbc signal region. The open circles are represents the data and the solid-line curves are represents the fitted results.
The open circles are represents the data and the solid-line curves are represents the fitted results. The broken line,
the dash-dotted line, the dotted line and the solid-line show the B0 → π+π−, B0 → K+π− background, continuum
background and the other B meson decays, respectively.

Table 5.9: The number of B0 → π+π− signal and B0 → K+π− background in higher LR region for each r-bin.
The errors by summation of l = 1 ∼ 6 are obtained by adding each error in quadrature.
l r B0 tagging B0 tagging B0-tag + B0-tag

B0 → π+π− B0 → K+π− B0 → π+π− B0 → K+π− B0 → π+π− B0 → K+π−

1 0.000-0.250 25.3 +
−

8.0
7.3 11.9 +

−
7.7
6.9 22.0 +

−
7.5
6.8 4.2 +

−
6.4
0.0 47.3 +

−
11.0
6.8 16.1 +

−
10.0
6.9

2 0.250-0.500 7.5 +
− 4.7

4.0 0.5 +
− 3.9

0.0 7.6 +
− 4.7

4.0 7.5 +
− 4.6

3.9 15.1 +
− 6.6

5.7 8.0 +
− 6.0

3.9

3 0.500-0.625 1.1 +
−

3.0
0.0 0.0 +

−
2.4
0.0 3.6 +

−
3.2
2.5 0.0 +

−
2.1
0.0 4.7 +

−
4.4
2.5 0.0 +

−
3.2
0.0

4 0.625-0.750 10.2 +
−

4.5
3.8 0.9 +

−
3.3
0.0 4.4 +

−
3.5
2.8 4.4 +

−
3.6
2.9 14.6 +

−
5.7
4.7 5.3 +

−
4.9
2.9

5 0.750-0.875 4.7 +
− 3.2

2.6 3.1 +
− 3.5

2.8 0.0 +
− 1.6

0.0 8.9 +
− 3.9

3.2 4.7 +
− 3.6

2.6 12.0 +
− 5.6

4.5

6 0.875-1.000 11.6 +
−

4.6
3.9 11.3 +

−
4.7
3.9 6.1 +

−
3.2
2.6 3.6 +

−
3.0
2.2 17.7 +

−
5.6
4.7 14.9 +

−
5.6
4.5

sum of l = 1 ∼ 6 60.4 +
− 12.1

10.3 27.7 +
− 8.3

8.4 43.7 +
− 10.7

9.1 28.6 +
− 10.2

6.2 104.1 +
− 16.2

14.0 56.3 +
− 13.2

10.4
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Figure 5.12: The validation checks for the vertex reconstruction and the flavor tagging
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(a) B0 → π+π− and B0 → K+π− components
are modeled by the sum of double Gaussian.
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Figure 5.13: Fit of ∆E distribution. The open circles and the solid-line curves represent the data and the fitted
results, respectively. The broken line, the dash-dotted line, the dotted line and the solid-line histogram show the
B0 → π+π−, B0 → K+π− background, continuum background and the other B meson decays, respectively.
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Table 5.10: CP fit of sub samples with tighter event selection

Category criteria # of
candidates

Aππ Sππ
Continuum suppression LR > 0.825 275 +0.84 +

− 0.22
0.25(stat∗) −1.19 +

− 0.27
0.18(stat∗)

LR > 0.925 131 +0.69 +
− 0.26

0.30(stat∗) −1.24 +
− 0.30

0.19(stat∗)

∆t region |∆t| < 15 ps 755 +0.77 +
− 0.20

0.23(stat∗) −1.25 +
− 0.24

0.15(stat∗)
|∆t| < 5 ps 736 +0.76 +

−
0.20
0.22(stat∗) −1.27 +

−
0.26
0.17(stat∗)

Vertex reconstruction quality ξ < 50 741 +0.77 +
− 0.21

0.23(stat∗) −1.22 +
− 0.25

0.16(stat∗)
ξ < 10 564 +0.91 +

−
0.20
0.23(stat∗) −1.09 +

−
0.32
0.23(stat∗)

∆E signal region |∆E| < 1σ 298 +0.82 +
− 0.21

0.25(stat∗) −1.18 +
− 0.29

0.19(stat∗)
|∆E| < 2σ 540 +0.81 +

−
0.20
0.22(stat∗) −1.21 +

−
0.25
0.16(stat∗)

Flavor tagging quality |r| > 0.75 97 +1.02 +
−

0.19
0.25(stat∗) −1.24 +

−
0.27
0.16(stat∗)

|r| > 0.875 44 +0.91 +
− 0.24

0.31(stat∗) −1.18 +
− 0.32

0.19(stat∗)

Kaon identification Lhh(K;π) < 0.20 596 +0.74 +
−

0.20
0.23(stat∗) −1.11 +

−
0.26
0.17(stat∗)

Lhh(K;π) < 0.15 556 +0.59 +
− 0.22

0.24(stat∗) −1.14 +
− 0.23

0.14(stat∗)
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Figure 5.14: Single-event sensitivity vs. the positive error on Sππ. The dashed lines indicate the observed ∆Sππ
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candidates except the candidate (see text).



Chapter 6

Discussions and Conclusion

6.1 Statistical Significance

In this section, we evaluate the statistical significance of our CP violation measurement [117]. First, we describe
the method to obtain the confidence interval. We then derive the confidence intervals for Aππ and Sππ separately.
We also derive the confidence region in the Aππ-Sππ space.

6.1.1 Confidence interval

The confidence interval (or in the multi-parameter case, confidence region) is constructed such that it includes
the true value of the parameter with a probability greater than or equal to the specified value, which is called
the coverage probability. Consider a probability density function p(x|µ) where x represents the outcome of the
experiment and µ is the unknown true value of the parameter for which we want construct a confidence interval.
We can find a set of values x1(µ, α) and x2(µ, α) for the pre-specified probability (1 − α) and every values of µ
such that

P (x1 < x < x2;µ) ≡
∫ x2

x1

dx p(x|µ) = 1 − α. (6.1)

This is illustrated in Figure 6.1(a). A horizontal line segment [x1(µ, α), x2(µ, α)] is drawn for the representative
value of µ. The union of such intervals for all values of µ, designated in the figure as D(α), is referred to as the
confidence belt. Upon performing an experiment to measure x and obtaining a value xexp, one draws a vertical
line through xexp, as shown in Figure 6.1(b). The confidence interval for µ is the set of all values of µ on the
intersection of the vertical line and the confidence belt. Such confidence interval is said to have a confidence level
(CL) equal to (1 − α).

Note that the construction of the confidence interval is equivalent to considering a test of the hypothesis that
parameter’s true value is µ. One then excluded all values of µ where hypothesis would be rejected at a significance
level less than α. The remaining values constitute the confidence interval at a confidence level (1−α). For a certain
value of µ, we can calculate the confidence level to reject the hypothesis that the true value of the parameter is
equal to µ, CL(µ), from the confidence interval. CL(µ) is determined so that µ locates just outside the confidence
interval with the confidence level of CL(µ).

Equation 6.1 has the ambiguity in the determination of x1 and x2. In this analysis, the integral interval is
determined with the method based on the likelihood ratio ordering principle, which is proposed by G. Feldman
and R. Cousins [114]. A test statistic based on the likelihood ratio is defined as:

λ(x;µ) =
p(x|µ)

p(x|µbest)
(6.2)

where µbest is the value of the parameter which, out of all allowed values, maximizes p(x|µ). The upper and lower
boundaries in Equation 6.1 are determined by the condition:

λ(x1;µ) = λ(x2;µ). (6.3)

Thus, when the experimental value is obtained as xexp, the confidence level to reject the hypothesis that the true
value of the parameter is equal to µ is calculated as:

CL(µ) =
∫
λ(x;µ)≤λ(xexp;µ)

dx p(x|µ). (6.4)
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Equation 6.2 and Equation 6.4 can be extended for the multi-parameter case. The confidence region in the
multi-parameter case is obtained from the contour of CL(µ).
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Figure 6.1: Conceptual drawing of confidence intervals

6.1.2 Confidence intervals for A��and S��measurements

In this section, we treat Aππ to be independent of Sππ and vice versa. This assumption is reasonable because the
correlation between Aππ and Sππ is small as described in Section 5.2.6. The Monte Carlo pseudo-experiments are
also based on this assumption. The distribution for Aππ is independent of the input value of Sππin Monte Carlo
pseudo-experiments, and vise versa. We obtain the probability density function for Aππ, p(xAππ |µAππ) and that
for Sππp(xSππ |µSππ) from the distribution of CP fit result in Monte Carlo pseudo-experiments with various input
values, where µAππ (µSππ) represents the true value of Aππ (Sππ), and xAππ (xSππ ) represents the measured value
of Aππ (Sππ). We find the distributions of fit results of Aππ and Sππ agree with the sum of the two Gaussians,
and the widths of the distributions depend on the input values of Monte Carlo pseudo-experiments. Thus, we
parameterize the probability density functions as follows.

p(xAππ |µAππ) = gAππ ·G(xAππ ; b1Aππ
, σ1
Aππ

) + (1 − gAππ) ·G(xAππ ; b2Aππ
, σ2
Aππ

) (6.5)

gAππ = g0
Aππ

+ g2
Aππ

· (µAππ)2 (6.6)

b1Aππ
= b1,0Aππ

+ b1,1Aππ
· (µAππ) (6.7)

σ1
Aππ

= σ1,0
Aππ

+ σ1,2
Aππ

· (µAππ)2 (6.8)

b2Aππ
= b2,0Aππ

+ b2,1Aππ
· (µAππ) + b2,2Aππ

· (µAππ)2 + b2,3Aππ
· (µAππ)3 (6.9)

σ2
Aππ

= σ2,0
Aππ

+ σ2,2
Aππ

· (µAππ)2 (6.10)

p(xSππ |µSππ) = gSππ ·G(xSππ ; b1Sππ
, σ1
Sππ

) + (1 − gSππ) ·G(xSππ ; b2Sππ
, σ2
Sππ

) (6.11)

gSππ = g0
Sππ

+ g2
Sππ

· (µSππ )2 (6.12)

b1Sππ
= b1,0Sππ

+ b1,1Sππ
· (µSππ ) (6.13)

σ1
Sππ

= σ1,0
Sππ

+ σ1,2
Sππ

· (µSππ )2 (6.14)

b2Sππ
= b2,0Sππ

+ b2,1Sππ
· (µSππ ) + b2,2Sππ

· (µSππ )2 + b2,3Sππ
· (µSππ )3 (6.15)

σ2
Sππ

= σ2,0
Sππ

+ σ2,2
Sππ

· (µSππ )2 (6.16)

There are 12 parameters, indicated by the underline in above equations, for each of Aππ and Sππ . The param-
eters are determined by an unbinned maximum likelihood fit of the distribution of CP -fit result in Monte Carlo
pseudo-experiments with various input values, as listed in Table 6.1. Figures 6.2 and 6.3 demonstrate that the
parameterization is reasonable.
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The confidence belts obtained from this probability density functions are shown in Figure 6.4, where the vertical
lines corresponding to the measured values of Aππ and Sππ in the real data are superimposed. The confidence
intervals are derived from obtained confidence belts as:

+0.31 < Aππ < +1.00 (90%CL), (6.17)
+0.22 < Aππ < +1.00 (95%CL), (6.18)
−1.00 < Sππ < −0.56 (90%CL) (6.19)

and
−1.00 < Sππ < −0.43 (95%CL). (6.20)

The confidence levels to rule out the null asymmetry are calculated as:

CL(µAππ = 0) = 0.9925 (6.21)

and
CL(µSππ = 0) = 0.9969, (6.22)

which correspond to 2.7σ and 3.0σ significance, respectively.

Table 6.1: The Parameters of p(xAππ |µAππ) and p(xSππ |µSππ)
p(xAππ |µAππ) parameters fit result p(xSππ |µSππ) parameters fit result

g0
Aππ

0.959 +
−

0.019
0.029 g0

Sππ
0.924 +

−
0.013
0.014

g2
Aππ

−0.226 +
−

0.035
0.031 g2

Sππ
−0.178 ± 0.022

b1,0Aππ
−0.00199 +

− 0.00089
0.00091 b1,0Sππ

0.0053 ± 0.0012

b1,1Aππ
0.9961 ± 0.0020 b1,1

Sππ
0.9914 ± 0.0025

σ1,0
Aππ

0.2817 +
− 0.0017

0.0021 σ1,0
Sππ

0.3803 +
− 0.0021

0.0023

σ1,2
Aππ

−0.0471 ± 0.0037 σ1,2
Sππ

−0.0515 ± 0.0045

b2,0Aππ
0.013 +

− 0.012
0.011 b2,0Sππ

0.031 ± 0.011

b2,1Aππ
1.067 ± 0.023 b2,1Sππ

1.233 ± 0.028

b2,2Aππ
−0.010 +

− 0.014
0.015 b2,2Sππ

−0.025 ± 0.015

b2,3Aππ
0.101 +

− 0.029
0.028 b2,3Sππ

0.049 +
− 0.034

0.033

σ2,0
Aππ

0.374 +
−

0.013
0.014 σ2,0

Sππ
0.571 +

−
0.013
0.012

σ2,2
Aππ

−0.008 +
−

0.015
0.014 σ2,2

Sππ
−0.020 ± 0.015

6.1.3 2-dimensional confidence region for A��and S��measurements

In Section 6.1.2, we treat Aππ and Sππ independently. Although the correlation between Aππ and Sππ is small, the
physical boundary of Aππ depends on the value of Sππ and vice versa. Strictly speaking, it is better to consider the
confidence interval (region) 2-dimensionally. The probability density function p(xAππ , xSππ |µAππ , µSππ) is obtained
from the distribution of CP -fit result in the Monte Carlo pseudo-experiments with various input values just like
in Section 6.1.2. We find that the distribution of the fit result of (Aππ,Sππ) agree with the sum of the two
2-dimensional Gaussians and that the width of the distribution depend on the input values of the Monte Carlo
pseudo-experiments. Thus, we parameterize the probability density function as follows.

p(xAππ , xSππ |µAππ , µSππ) = g ·G(xAππ ; b1Aππ
, σ1
Aππ

) ·G(xSππ ; b1Sππ
, σ1
Sππ

) (6.23)

+(1 − g) ·G(xAππ ; b2Aππ
, σ2
Aππ

) ·G(xSππ ; b2Sππ
, σ2
Sππ

)

g = g0 + g2A · (µAππ)2 + g2S · (µSππ)2 (6.24)

b1Aππ
= b1,0Aππ

+ b1,1AAππ
· (µAππ) + b1,1SAππ

· (µSππ) (6.25)

b1Sππ
= b1,0Sππ

+ b1,1ASππ
· (µAππ) + b1,1SSππ

· (µSππ ) (6.26)

σ1
Aππ

= σ1,0
Aππ

+ σ1,2A
Aππ

· (µAππ)2 + σ1,2S
Aππ

· (µSππ )2 (6.27)
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Figure 6.2: The distribution of the Aππ fit results for Monte Carlo pseudo-experiments with the input values of
µAππ = −1, 0 and +1 (plus points) and the parameterized probability density function p(xAππ |µAππ) (solid-line
curve). The dashed-line curves are indicate the second Gaussian components of the p(xAππ |µAππ).
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(c) µSππ = +1

Figure 6.3: The distribution of the Sππ fit results for Monte Carlo pseudo-experiments with the input values of
µSππ = −1, 0 and +1 (plus points) and the parameterized probability density function p(xSππ |µSππ) (solid-line
curve). The dashed-line curves are indicate the second Gaussian components of the p(xSππ |µSππ).
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Figure 6.4: The confidence belts. The horizontal axis shows the experimental value and the vertical axis shows the
true parameter. Purple, red, green and blue curves represent the boundary of the confidence belt with confidence
level equal to 0.683, 0.955, 0.9973 and 0.99994, respectively. The thick black vertical line shows the central value
our experimental values of Aππ and Sππ in the real data.

σ1
Sππ

= σ1,0
Sππ

+ σ1,2A
Sππ

· (µAππ)2 + σ1,2S
Sππ

· (µSππ)2 (6.28)

b2Aππ
= b2,0Aππ

+ b2,1AAππ
· (µAππ) + b2,1SAππ

· (µSππ) (6.29)

b2Sππ
= b2,0Sππ

+ b2,1ASππ
· (µAππ) + b2,1SSππ

· (µSππ ) (6.30)

σ2
Aππ

= σ2,0
Aππ

+ σ2,2A
Aππ

· (µAππ)2 + σ2,2S
Aππ

· (µSππ )2 (6.31)

σ2
Sππ

= σ2,0
Sππ

+ σ2,2A
Sππ

· (µAππ)2 + σ2,2S
Sππ

· (µSππ)2 (6.32)

The number of the parameters, indicated by the underline in above equations, is 27. The parameters are
determined by an unbinned maximum likelihood fit to the distribution of the CP -fit result in the Monte Carlo
pseudo-experiments with various input values, as listed in Table 6.2. Figure 6.5 demonstrates that this parame-
terization for the probability density functions represents the Monte Carlo pseudo-experiments well.

Figure 6.6 shows the obtained confidence region with confidence levels of 0.683, 0.955, 0.9973 and 0.99994,
which correspond to 1σ, 2σ, 3σ and 4σ regions, respectively. The null-asymmetry hypothesis that (µAππ , µSππ) is
equal to = (0, 0) is ruled out with the confidence level of

CL(µAππ = 0, µSππ = 0) = 0.9993, (6.33)

which corresponds to 3.40σ significance. If the source of CP violation is only the B0-B0 mixing, (Sππ,Aππ) =
(− sin 2φ1, 0) [118]. This hypothesis is ruled out with the confidence level of

CL(µAππ = 0, µSππ = − sin 2φ1) = 0.981, (6.34)

which corresponds to 2.34σ significance, where sin 2φ1 = 0.719 [119].

6.2 Comparison with the Other Measurement

In this section, we review the measurement of the CP -violating asymmetry in B0 → π+π− decays at the other
experiment.The BABAR collaboration [120] reports the measurement of time-dependent CP -violating asymmetry
in B0 → π+π− decays using a data sample of 88 million Υ(4S) → BB decays collected between 1999 and 2002 with
the BABAR detector at the PEP-II asymmetric-energy B-Factory at Stanford Linear Accelerator Center (SLAC),
USA. Their results [121] are:

Cππ = −0.30 ± 0.25(stat) ± 0.04(syst) (6.35)
and

Sππ = +0.02 ± 0.34(stat) ± 0.05(syst), (6.36)
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Figure 6.5: The distribution of the (Aππ,Sππ) fit results for Monte Carlo pseudo-experiments (i), the pa-
rameterized probability density function p(xAππ , xSππ |µAππ , µSππ) (ii) and their projections onto Aππ (iii) and
Sππ (iv). In projection histograms, the plus points, the solid line and the dashed line show the data in
Monte Carlo pseudo-experiments, the p(xAππ , xSππ |µAππ , µSππ) and the second Gaussian components of the
p(xAππ , xSππ |µAππ , µSππ),respectively.
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Table 6.2: The parameters of p(xAππ , xSππ |µAππ , µSππ)
Parameters Fit result Parameters Fit result Parameters Fit result

g0 0.9515 +
−

0.0022
0.0023 g2A −0.2009 ± 0.0048 g2S −0.1669 ± 0.0046

b1,0Aππ
−0.00037 ± 0.00021 b1,1A

Aππ
0.99507 +

− 0.00048
0.00049 b1,1SAππ

−0.00315 ± 0.00044

b1,0Sππ
0.00807 ± 0.00028 b1,1A

Sππ
−0.00173 ± 0.00059 b1,1S

Sππ
0.99209 +

− 0.00070
0.00071

σ1,0
Aππ

0.28149 ± 0.00032 σ1,2A
Aππ

−0.045765 +
−

0.00078
0.00079 σ1,2S

Aππ
−0.013986 ± 0.00072

σ1,0
Sππ

0.38371 +
−

0.00051
0.00052 σ1,2A

Sππ
−0.0373 ± 0.0011 σ1,2S

Sππ
−0.0449 ± 0.0012

b2,0Aππ
0.00022 ± 0.00098 b2,1A

Aππ
1.1494 ± 0.0024 b2,1S

Aππ
0.0180 ± 0.0018

b2,0Sππ
0.0101 ± 0.0014 b2,1A

Sππ
0.0140 ± 0.0023 b2,1S

Sππ
1.3239 ± 0.0042

σ2,0
Aππ

0.3625 +
−

0.0020
0.0019 σ2,2A

Aππ
0.0091 ± 0.0029 σ2,2S

Aππ
−0.0198 ± 0.0029

σ2,0
Sππ

0.5866 ± 0.0031 σ2,2A
Sππ

−0.0621 ± 0.0042 σ2,2S
Sππ

−0.0232 ± 0.0045
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Figure 6.6: Confidence region for (Aππ,Sππ)
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where Cππ in their notation corresponds to −Aππ in our notation.
Discrepancies between our measurement and their measurement are 1.2σ and 2.3σ for Aππ and Sππ, respectively.

In order to compare the results 2-dimensionally, we construct the confidence region of their results with the same
method as described in Section 6.1 assuming the Gaussian probability density function as shown in Figure 6.7(a).
Figure 6.7(b) shows the comparison of the confidence regions between our results and BABAR results. The central
values measured by BABAR group is included by the confidence regions corresponding to 3σ significance constructed
from our results. The 2σ confidence region in our (their) results and the 1σ confidence region in their (our) results
are over-wrapped. Therefore, the discrepancy between two experiments is within the statistical fluctuation.
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Figure 6.7: Confidence region for BABAR results assuming Gaussian probability density function.

6.3 Constraint on CKM phase φ2

In this section, we extract the information of φ2 from our measured values of Aππ and Sππ. As described in
Section 2.4.5, we can extract the value of φ2 from Aππ and Sππ , if we know the φ1 and |P/T |, which is the ratio
of the amplitudes of the penguin diagram and the tree diagram. φ1 is measured with a sufficient precision by
B-factory experiments as

φ1 = 23.5+2.4
−2.2 deg, (6.37)

which is obtained from the average of the recent values of sin 2φ1 from Belle [119] and BABAR [122]. On the other
hand, |P/T | is estimated by the model-dependent way by M. Gronau et al. [38] as

|P/T | = 0.28± 0.06,

which contains the theoretical uncertainty. Equations 2.92, 2.93 and 2.94 gives φ2 information from the values of
Aππ and Sππ . Using these equations, we convert the confidence region in the Sππ-Aππ plane obtained in Section 6.1
into the φ2-δ plane, where δ is, roughly speaking, the strong-phase difference between the penguin diagram and
the tree diagram. Figure 6.8 shows the regions for φ2 and δ corresponding to the 68.3%, 95.5% and 99.73%
confidence levels with given |P/T | and φ1 values. Figure 6.8(c) shows the confidence regions with φ1 = 23.5◦ and
|P/T | = 0.28. By comparing the Figure 6.8(a) and 6.8(f), we can see the φ1 dependence at the fixed |P/T | = 0.28.
We also investigate |P/T | dependence by varying |P/T | from 0.18 to 0.48 at the fixed φ1 = 23.5◦, as shown in
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Figure 6.8(b), 6.8(d) and 6.8(e). The φ1 dependence and |P/T | dependence of the 95.5% CL confidence region is
small. The values of φ2 and δ corresponding to the 95.5% CL confidence region for Aππ and Sππ are obtained as

77◦ ≤ φ2 ≤ 151◦

and
−175◦ ≤ δ ≤ −11◦,

respectively, for the conditions, 21.3 ≤ φ1 ≤ 25.9◦ and 0.18 < |P/T | < 0.48.
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Figure 6.8: Confidence regions in φ2-δ plane with confidence levels of 68.3%, 95.5% and 99.73%. Dash-dotted lines
indicate φ2 = π − φ1, which corresponds to φ3 = 0.

6.4 Conclusion

We have measured the CP -violating asymmetry in B0 → π+π− decays using the 78 fb−1 data sample collected at
the Υ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e− collider. We reconstruct 760
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B0 → π+π− candidates associated with the flavor information and the proper-time difference of the B0B0 pair.
We perform unbinned-maximum-likelihood on the proper-time difference distribution and obtain the parameters
of CP -violating asymmetry in the Standard Model as

Aππ = +0.77 ± 0.27(stat) ± 0.08(syst)
and

Sππ = −1.23 ± 0.41(stat) +0.08
−0.07(syst),

where the statistical uncertainties are determined from the Monte Carlo pseudo-experiments.
We have evaluated the statistical significance with the frequentist-approach method proposed by Feldman and

Cousins, and obtain the confidence region in Sππ-Aππ plane. Our measurement rules out the CP -conserving case,
Aππ = Sππ = 0, at a 99.93% confidence level. The difference between the mesurement by BABAR [121] and ours is
within the statistical fluctuation.

The result for Sππ indicates that the mixing-induced CP violation is large, and the Aππ term indicates the
existence of the direct CP violation in the B meson decay.

Constraints within the Standard Model on the CKM angle φ2 and the hadronic phase difference between the
tree (T ) and penguin (P ) amplitudes are obtained for |P/T | values that are theoretically favored . We find an
allowed region of φ2 that is constrained on the unitarity triangle from other measurements.



Appendix A

Reconstruction of control samples.

In this section, we described on the event selection and reconstruction of the decay modes used as the control
sample in the analysis.

We use the B0 → K+π− event sample for the validity check of CP measurement. B0 → K+π− decays are
reconstructed as same way other than the requirement for the particle identification and ∆E. The pion tracks are
required to have Lhh(K;π) < 0.4 and the Kaon tracks are required to have Lhh(K;π) > 0.6. The B0 → K+π−

events are selected by requiring −0.1121 < ∆E < 0.0235 GeV.
We also use the B → D∗−π+, B → D−π+ and B → D∗−ρ+ event sample [123]. The D∗− candidates are re-

constructed using the decay cascade, D∗− → D0π−, D0 → K+π−,K+π−π0,K+π−π−π+. The D− candidates are
reconstructed using K+π−π−. B mesons are selected using (∆E,Mbc). We introduce the kinematical constraints
to reduce the contamination from the continuum background. The continuum background is suppressed by the
requirement for the normalized second Fox-Wolfram moment, which is described in Section 4.3.2, the thrust angle
θthrust. The selection criteria are listed in Table A.1 and A.2.

Table A.1: Selection criteria for B → D∗−π+, B → D−π+ and B → D∗−ρ+ modes.
B decay mode D decay mode M (D) ∆M ≡ m(D∗−) −m(D0) R2 θthrust

B0 → D−π+ D− → K+π−π− < 2.5σ — < 0.5 < 0.995

B0 → D∗−π+
D0 → K+π− < 10σ < 5 MeV/c2 — —
D0 → K+π−π−π0z < 3.5σ < 3 MeV/c2 — < 0.98
D0 → K+π−π−π+ < 4σ < 4 MeV/c2 < 0.6 —

B0 → D∗−ρ+
D0 → K+π− < 7σ < 4 MeV/c2 < 0.6 < 0.95
D0 → K+π−π−π0 < 3.5σ < 12 MeV/c2 < 0.7 < 0.98
D0 → K+π−π−π+ < 3.5σ < 3 MeV/c2 — < 0.92

Table A.2: Signal box for each decay mode.
Decay mode ∆E range (GeV) Mbc range (GeV/c2)
B0 → D−π+ −0.045 < ∆E < 0.045 5.270 < Mbc < 5.290
B0 → D∗−π+ −0.07 < ∆E < 0.07 5.270 < Mbc < 5.290
B0 → D∗−ρ+ −0.05 < ∆E < 0.08 5.270 < Mbc < 5.290
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Appendix B

Measurement of the incorrect
flavor-assignment probability

The wrong tag fractions for each tagging quality region, w ltag, are determined directly from the data for the six r
intervals using exclusively reconstructed, self-tagged B0 → D∗−�+ν, D−π+, D∗−π+, and D∗−ρ+ decays. These
samples are also used as control samples in the validation of result.

We evaluate the wrong tag fractions by reconstructing flavor-specific decays on one side, and tagging the b-flavor
for the other side with the flavor-tagging algorithm described in Section 4.4.1 [123].

Since we know the flavors of both of B mesons in this case, we can observe the time evolution of the neutral
B meson pair with the opposite flavor (OF) and the same flavor (SF), which originates from B0-B0 mixing. The
observed OF-SF asymmetry is expressed as:

Amix =
NOF −NSF
NOF +NSF

= (1 − 2wltag) cos(∆md∆t), (B.1)

where ∆md is the mass-difference of the two B meson mass eigenstates and wltag is the wrong tag fraction. Thus
we can obtain the wltag by measuring the amplitude of the OF-SF asymmetry.

The vertex position of the reconstructed B meson is obtained as follows. First, we obtain D vertex by vertex
fit using charged K and π tracks and calculate D momentum. Then, we obtain B vertex using the pseudo-D track
and remaining charged tracks (� or π). The vertex position of tagging-side B meson is obtained using the same
algorithm as CP eigenstate candidates described in Section 4.5.3.

We fit the ∆t distribution of the SF and OF events to obtain the wrong-tag fraction, fixing ∆md to the world
average value. The PDF used for this measurement is similar to that used for the measurement of Aππ fixing Sππ
to be 0. The parameters of resolution function and background shape are determined separately for modes used
in this measurement.

Figure B.2 shows the measured asymmetries as a function of ∆t with fit curves for the six tagging quality
regions. The measured wrong-tag fractions (wltag) are summarized in Table 4.9. It is confirmed that The flavor
tagging algorithm categorize the events properly, as shown in Figure B.1.
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Figure B.1: The wrong tag fraction for each tagging quality region.
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Figure B.2: Asymmetries as a function of ∆t with fit curves for the six r regions..



Appendix C

Detarmination of the parameters in the
∆t resolution function

As described in Section 4.5.2, 4.5.3 and 5.2.2, the parameters of the detector resolution of the vertex measurement
(other than the parameters related to non-primary track effect) and the outlier components are determined by the
B meson lifetime measurement using hadronic B meson decays including B0 → J/ψKS , B0 → J/ψK∗0(K∗0 →
K−π+), B0 → D(∗)−π+, B0 → D∗−ρ+, B+ → J/ψK+ and B+ → D0π+. The lifetimes of neutral and charged
B mesons, τB0 and τB+ , and the resolution parameters are extracted simultaneously using unbinned maximum
likelihood fit to the ∆t distribution obtained from 78 fb−1data sample [123]. The probability density function for
signal events P (∆t), expressed as

P (∆t) = (1 − fol) ·
[

1
2τB

exp
(
−|∆t|
τB

)
⊗Risig(∆t)

]
+ fol ·Pol(∆t).

Figure C.1(a) and C.1(b) show the lifetime fit results for neutral and charged B meson decays, respectively. The
B meson lifetimes are τB0 = 1.551± 0.0018(stat) and τB+ = 1.658± 0.0016(stat). Both results are consistent with
the world averages, τB0 = 1.542± 0.0016 and τB+ = 1.674± 0.0018 [42].

1

10

10 2

10 3

-20 -15 -10 -5 0 5 10 15 20

∆t (ps)∆t (ps)∆t (ps)∆t (ps)

en
tr

ie
s 

/ 0
.8

ps Data
Fit
BG
OL

(a) Neutral B

1

10

10 2

10 3

10 4

-20 -15 -10 -5 0 5 10 15 20

∆t (ps)∆t (ps)∆t (ps)∆t (ps)

en
tr

ie
s 

/ 0
.8

ps Data
Fit
BG
OL

(b) Charged B

Figure C.1: The ∆t distribution for the hadronic B decays in 78 fb−1sample. The open circles and solid lines show
the data and the fit results, respectively. The dashed lines show the contributions from the background events.
The dotted lines show the outlier components.
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