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Abstract

In the standard model (SM), CP violation arises from an irreducible phase in the Cabibbo-
Kobayashi-Maskawa (CKM) matrix. A Dalitz plot analysis of the decay B0 → ρπ → π+π−π0

offers a unique way to determine the angle φ2 in the CKM unitarity triangle without discrete
ambiguities (for φ2 in the range between 0 and π), which cannot be obtained from analyses of
other modes sensitive to φ2 such as B → ππ or B → ρρ. The Dalitz plot analysis uses isospin
and takes into account a possible contamination from b → d penguin transitions. In addition,
using measurements of the related charged decay modes B+ → ρ+π0 and B+ → ρ0π+ provides
further improvement of the φ2 determination.

In this thesis, we present the result of time-dependent Dalitz plot analysis in B0 → π+π−π0

decays and a constraint on φ2. We use a 414 fb−1 data sample that contains 449×106BB̄ pairs
collected on the Υ(4S) resonance. The data were taken at the KEKB collider and collected
with the Belle detector.

By the Dalitz plot analysis, we constrain the relative sizes and phases of the complex

amplitudes of B0(B0) → ρ+π−, ρ−π+, and ρ0π0 decays, which are denoted by
(

A
)
+,

(

A
)
−, and

(

A
)
0, respectively. The amplitudes are related to φ2 through an isospin relation by

e+2iφ2 =
A+ +A− + 2A0

A+ +A− + 2A0
.

Combining our analysis with information on charged B decay modes, we perform a full Dalitz
and isospin analysis for the first time and obtain a constraint on the CKM angle φ2,

68◦ < φ2 < 95◦ ,

as the 68.3% confidence interval consistent with the standard model (SM). A large SM-
disfavored region also remains. This result is combined with the other measurements from
B → ππ and B → ρρ, and its consistency with the SM expectation is examined; we confirm
they are consistent with each other at a precision of ∼ 7◦.
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Chapter 1

Introduction

CP violation in the quark sector, now established as a part of the standard model (SM), is
one of the best probes to search for the physics beyond the SM, and B-factories are the most
exciting playground to investigate the physics of CP violation.

To establish a model that describes CP violation had been a forefront of the particle
physics. CP symmetry, which corresponds to the symmetry between matter and anti-matter,
had been believed to be conserved for a long time, until the first CP violation in K0 decays
was observed in 1964 [1]. In 1973, Kobayashi and Maskawa proposed a model that implements
the CP -violating effect into the SM as an irreducible phase in the quark mixing matrix, or
Cabibbo-Kobayashi-Maskawa (CKM) matrix [2, 3]. A profound prediction of this model is the
indication of the quarks of third generation, which were yet to be discovered. The b (bottom)
and t (top) quarks were discovered in 1977 [4] and 1995 [5, 6], respectively. These discoveries
suggested the CKM model was indeed the origin of CP violation. Two conclusive observations
coincidently came at the turn of the century: the observation of the direct CP violation in K0

decays (1999) [7, 8] and the observation of CP violation in B0 decays measured in B-factories
(2001) [9, 10]. The former killed the “Super-Weak” model, the only compelling alternative of
the CKM model, and the latter confirmed that the CKM picture describes the CP violation
in b-quark decays in a unified way as well as s-quark decays.

Now, with the CKM model established as a part of the SM, we have entered a new era
of the physics of CP violation; we use it as a probe sensitive to the physics beyond the SM,
or new physics. A reason why it is useful to detect the new physics effect is that there are
a large number of observables related to the CP violation, while the CKM model has only
four degrees of freedom to describe the CP violating structure of the SM; to examine whether
all the observables are universally described by the CKM picture is also a quest for the new
physics, since we expect to see deviations from the CKM expectations if there contributes the
new physics effect. Another reason is that the CP -violating observables tends to come from
higher-order contributions of the SM, such as box and loop diagrams, and thus some models
expect large manifestation of the new physics effect in the observables.

Observables related to CP violation are schematically described by the so called CKM
triangle, or the Unitarity Triangle (Figure 1.1). With the length of the base normalized to be
unity, the triangle is fully characterized by two degrees of freedom, e.g., two angles. Observables
correspond to the angles, lengths of the sides, or their products or linear combinations. The
three angles of the triangle, φ1, φ2, and φ3, are of special importance, since they manifest
themselves as CP -violating effects in the measurements. A variety of observables allows us
to check if a single triangle can consistently describe all of them, which is a crucial test of
the SM. A typical way of the consistency check is to compare direct measurements with the
indirect measurement, the expectation from the CKM picture based on other measurements.
For example, having independent measurements of the three angles, φmeas.

1 , φmeas.
2 , and φmeas.

3 ,
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Figure 1.1: CKM triangle and constraints on it from various measurement, as of the summer
of 2006, provided by CKMfitter group [11].

we can compare the direct measurement of φ2, φ
dir.
2 ≡ φmeas.

2 , with the expectation from the
CKM triangle ansatz, φind.

2 ≡ π − φmeas.
1 − φmeas.

3 .
In B0 meson decays1, large CP -violating effect can be observed in the time-dependent

decay rates, which was originally predicted by Carter, Bigi, and Sanda [12, 13, 14]. There are
two paths for B0 to decay to a final state f : a path where B0 directly decays to f , B0 → f , and
another where B0 once oscillates to B0 and then decays to f , B0 → B0 → f . The interference
between the two paths can modulate the time-dependent decay rate from exp(−t/τB0), where
t is the proper time for the decaying B0. The CP -violating effect can appear in the pattern of
this modulation; the patterns of the modulation are different for the process B0 → (B0) → f
and its CP conjugate process B0 → (B0) → f , when the process of interest violates CP .
However, there are two technical difficulties in the measurement of the time-dependent CP -
violating effect. One is the determination of the B0 flavor, whether B0 or B0, at the beginning
of the time-evolution. Another is the measurement of the proper time t, which is typically

τB0 ∼ ∆m−1
d ∼ 1 ps ,

and too short to be precisely measured as time.
We overcome these difficulties by 1) exploiting the coherence of B0B0 produced in pairs,

and 2) boosting the pairs with respect to the laboratory frame. At B-factories, B mesons are
created in a coherent state via the decay chain of e+e− → Υ(4S) → B0B0. Among various
cases of the subsequent decays, we choose the events where one of the B0 (BCP ) decaying to
the final state of interest, f , irrespective of the decay of another B0 (Btag), as shown in Fig. 1.2.
Since B0 decays are dominated by the flavor-specific decay modes that distinguish the flavor
charge of B0, Btag is most likely to decay to a flavor-specific final state. The coherence of the
B0B0 pair allows us to use this Btag decay to tag the b-flavor of the BCP at the beginning of
the time-evolution; BCP is tagged to be B0 (B0) at the time of Btag decay, t2, in case of the
Btag decaying to the final state of a B0 (B0) flavor eigenstate. We then push the start button
of the stopwatch at the time t2 and track the time-evolution of the BCP beginning from B0

(B0), until the time of its decay, t1, when we push the stop button; the proper time difference
∆t ≡ t1 − t2 is the quantity that parameterizes the time-evolution of BCP . To measure the ∆t

1Throughout this thesis, the inclusion of the charge conjugate decay mode is implied unless otherwise stated.
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Figure 1.2: Illustration of event topology in energy-asymmetric B-factories. In this figure, B1

and B2 corresond to the BCP and Btag, respectively, and π+π−π0 is chosen to be the final
state of interest, f , as an example.

of order ∼ 1 ps, B-factories produce Υ(4S) in a boosted state, where the boost factor (βγ)Υ is
0.425 at Belle/KEKB. Because

mΥ(4S) ' 2mB ,

two B’s decaying from Υ(4S) are almost at rest in the center of mass system of the Υ(4S) and
thus they have the same velocity in laboratory frame. This allows us to relate the position dif-
ference of decay vertices of two B’s in the boost direction, ∆z, with the proper time difference,
∆t, by

∆t ' ∆z

c(βγ)Υ
,

as illustrated in Fig. 1.2. From the boost factor of 0.425 and the typical ∆t of ∼ 1 ps, the
typical ∆z is estimated to be ∼ 200µm, which is possible to be measured in a reasonable
precision.

Among various observables measured in B-factories, the CKM angle φ2 has a desirable
feature for the SM test; the precisions of the direct measurement and the indirect measurement
are at the similar level and reasonably good, being better than 10%. Recent observation of
the Bs-Bs mixing [15] improves the indirect measurement of φ2, which also motivates the
improvement in the direct measurement of φ2. The elements of the CKM matrix, Vtd, Vtb, Vud,
and Vub, defines the angle φ2 as

φ2 ≡ arg

(
VtdV

∗
tb

−VudV ∗
ub

)
,

and thus the direct measurement of φ2 is possible via the decay processes that involve these
CKM factors. As shown in Fig. 1.3, the factor VtdV

∗
tb arises from B0-B0 mixing and VudV

∗
ub

appears in the decay processes that involve b→ u transition, such as B0 → π+π−, B0 → ρ+ρ−,
or B0 → ρ±π∓.

The difficulty in the measurement of φ2 through the decays with b → u transition is the
possible contribution from the gluonic penguin diagram of b → d transition (Fig. 1.4). The
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b


















B0

V ∗

tdVtb

W

π+/ρ+

π−/ρ−

Figure 1.4: Gluonic penguin diagram of the B0 decay via b→ d transition.

contribution contaminates the measurement of φ2, since the decays via this diagram yields the
CKM factor VtbV

∗
td, which is different from that of the b → u transition. The isospin analy-

sis [16] removes this contamination by incorporating the knowledge of other related processes;
in the case of B → ππ, for example, it involves the decay modes B0 → π0π0 and B+ → π+π0

in addition to B0 → π+π−. Though it removes the contamination from penguin diagram in a
model independent way, an additional four-fold discrete ambiguity arises. The discrete ambi-
guity is eight-fold in total, since there is an intrinsic two-fold ambiguity of the time-dependent
CP -violation measurement in general2. Although the isospin analysis is also applicable to
the case of B → ρπ [17, 18], the number of discrete ambiguities is much more than those of
B → ππ and B → ρρ due to the fact that the number of involved decay modes is larger; five
decay modes, B0 → ρ+π−, B0 → ρ−π+, B0 → ρ0π0, B+ → ρ+π0, and B+ → ρ0π+, are
involved in total. This makes it difficult to constrain φ2 by the B → ρπ decay processes using
the isospin analysis only.

In 1993, however, Snyder and Quinn pointed out that a time-dependent Dalitz plot analysis
of the decay B0 → ρπ → π+π−π0 offers a unique way for the measurement of the angle φ2

without discrete ambiguity (for φ2 in the range between 0 and π), which cannot be obtained
from the analyses of B → ππ or B → ρρ [19]. The Dalitz plot analysis uses the isospin
relation among the three B0 decay modes, B0 → ρ+π−, ρ−π+, ρ0π0, and takes into account
the possible contamination from the b → d penguin transitions. In addition, measurements of
the related charged decay modes B+ → ρ+π0 and B+ → ρ0π+ provides further improvement
of the φ2 determination.

The uniqueness of the time-dependent Dalitz plot analysis is from the measurement related
to the interference between B0 → ρ+π−, B0 → ρ−π+, and B0 → ρ0π0. Since the final state
is π+π−π0 for all of the ρ+π−, ρ−π+, and ρ0π0, their kinematic overlaps give rise to the

2The two-fold ambiguity comes from the fact that the observable is proportional to sin 2φ, where φ is the
weak phase related to the decay mode of interest, and thus one cannot discriminate φ and π − φ.
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CHAPTER 1. INTRODUCTION

interferences among them. The measurement of the interferences and their time-dependent
decay rates offer us the information on the relative phases among the complex decay amplitudes
of the six related processes: B0 → ρ+π−, ρ−π+, ρ0π0 and their charge conjugates. The isospin
relation connects the amplitudes with φ2 as

e+i2φ2 =
q

p

A(B0 → ρ+π−) +A(B0 → ρ−π+) + 2A(B0 → ρ0π0)

A(B0 → ρ+π−) +A(B0 → ρ−π+) + 2A(B0 → ρ0π0)
,

and thus the information on the relative phases plays an essential role in constraining φ2.
In this thesis, we present a direct measurement of φ2 using a unique method of time-

dependent Dalitz plot analysis in the B0 → ρπ → π+π−π0 decay process. The analysis
was performed on a 414 fb−1 data sample that contains 449 × 106BB̄ pairs collected on the
Υ(4S) resonance. The data were taken at the KEKB collider [20] and collected with the Belle
detector [21]. Based on the obtained result, we investigate the consistency between the direct
and indirect measurements of φ2.

10



Chapter 2

Phenomenology of CP Violation
in B0 → π+π−π0 Decay

1 Kobayashi-Maskawa Mechanism

In this section, we describe how the CP violation manifests itself in the quark sector. Denoting
the u-type quarks (u, c, t) and d-type quarks (d, s, b) by U and D, respectively, the charged-
current weak interaction Lagrangian in the quark sector, LC.C., is written as

LC.C. = − g√
2

[(
ULγ

µV DL

)
W+

µ +
(
DLγ

µV †UL

)
W−

µ

]
, (2.1)

where V is the quark mixing matrix, or Cabibo-Kobayashi-Maskawa (CKM) matrix [2, 3]. It
describes the relation between the mass eigenstates, (d, s, b), and the eigenstates of charged-
current weak interaction, (d′, s′, b′):




d′

s′

b′



 = V




d

s

b



 =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb








d

s

b



 . (2.2)

Since
(CP )W+

µ (CP )† = −W−
µ (2.3)

and
(CP )ψ1γ

µψ2 (CP )† = −ψ2γ
µψ1 , (2.4)

where ψi is a fermion state in general,

(CP )LC.C. (CP )† = − g√
2

[(
ULγ

µV ∗DL

)
W+

µ +
(
DLγ

µ
(
V ∗
)
†UL

)
W−

µ

]
, (2.5)

and thus LC.C. is invariant under the CP transformation only when V = V ∗, i.e., all the
elements of V are real numbers.

To calculate the number of possible complex phase in the matrix, we start by counting the
degrees of freedom in the N × N matrix V . A complex N × N matrix in general has 2N 2

degrees of freedom. The unitarity of the matrix V requires

∑

j

VijV
∗
kj = δik , (2.6)

11
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corresponding to N2 constraints. Having N dimensions in V , total number of quarks is 2N ,
N for each of u-types and d-types. In quantum mechanics, the phases of the quarks are
meaningless and thus we can use the meaningless phases to remove complex phases in V .
Since the overall phase does not change V , the redefinition of the quark phase removes 2N − 1
phases from V . Thus, the degrees of freedom in V are

2N2 −N2 − (2N − 1) = N2 − 2N + 1 = (N − 1)2 . (2.7)

This degrees of freedom can be classified into two categories:

• Real-valued degrees of freedom, corresponding to the rotation of N -element vectors, and

• Complex phases.

The former corresponds to the degrees of freedom in an N ×N real-valued orthogonal matrix
R. The number of elements of R is N2; the requirement of orthogonality yields

∑

j

RijRkj = δik (i < k) , (2.8)

corresponding to N(N + 1)/2 constraints; the degrees of freedom in R is thus

N2 − 1

2
N(N + 1) =

1

2
N(N − 1) . (2.9)

Consequently, the number of possible complex phase in V is

(N − 1)2 − 1

2
N(N − 1) =

1

2
(N − 1)(N − 2) . (2.10)

When N = 3, the CKM matrix V can have a single complex phase and CP can be violated in
case the phase is non-zero.

Since degrees of freedom in V are four for N = 3, it is convenient to parameterize V with
four parameters. The most popular parameterization is the Wolfenstein parameterization [22],
which is a power-series expansion in the real parameter λ ≡ sin θC , where θC is Cabibbo
angle [2]:

V =




1 − 1
2λ

2 λ Aλ3(ρ− iη)

−λ 1 − 1
2λ

2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1


+ O(λ4) . (2.11)

Here, A, ρ, and η are real-valued parameters of order one.
Among the unitarity conditions of Eq. (2.6), those with i 6= k describe triangles in complex

12
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plane:

VudV
∗
cd︸ ︷︷ ︸

O(λ)

+ VusV
∗
cs︸ ︷︷ ︸

O(λ)

+ VubV
∗
cb︸ ︷︷ ︸

O(λ5)

= 0 , (2.12)

VudV
∗
us︸ ︷︷ ︸

O(λ)

+ VcdV
∗
cs︸ ︷︷ ︸

O(λ)

+ VtdV
∗
ts︸ ︷︷ ︸

O(λ5)

= 0 , (2.13)

VtdV
∗
cd︸ ︷︷ ︸

O(λ4)

+ VtsV
∗
cs︸ ︷︷ ︸

O(λ2)

+ VtbV
∗
cb︸ ︷︷ ︸

O(λ2)

= 0 , (2.14)

VusV
∗
ub︸ ︷︷ ︸

O(λ4)

+ VcsV
∗
cb︸ ︷︷ ︸

O(λ2)

+ VtsV
∗
tb︸ ︷︷ ︸

O(λ2)

= 0 , (2.15)

VtdV
∗
ud︸ ︷︷ ︸

O(λ3)

+ VtsV
∗
us︸ ︷︷ ︸

O(λ3)

+ VtbV
∗
ub︸ ︷︷ ︸

O(λ3)

= 0 , (2.16)

VudV
∗
ub︸ ︷︷ ︸

O(λ3)

+ VcdV
∗
cb︸ ︷︷ ︸

O(λ3)

+ VtdV
∗
tb︸ ︷︷ ︸

O(λ3)

= 0 . (2.17)

As illustrated in Fig. 2.1, the shapes of the six unitarity triangles can be characterized by the
dependence of the side lengths on the order of λ. The first four triangles are squashed; the
first and second (third and fourth) triangles have the sides that are order λ4 (λ2) smaller than
the others. The fifth and sixth have three sides of the same order of λ3, which implies the
CP violating effect can be large when the physics process of interest is related to the these
two triangles. In particular, Eq. (2.17) is related to B meson decays and called the “Unitarity
Triangle,” and thus large CP violation is expected in B decays. As shown in Fig. 2.2, the
angles of the Unitarity Triangle are denoted by φ1, φ2, and φ3

1:

φ1 ≡ π − arg

(−VtdV
∗
tb

−VcdV ∗
cb

)
, (2.18)

φ2 ≡ arg

(
VtdV

∗
tb

−VudV ∗
ub

)
, (2.19)

φ3 ≡ arg

(
VudV

∗
ub

−VcdV ∗
cb

)
. (2.20)

The measurement of these angles as well as the lengths of the sides of the Unitarity Triangle
are the crucial test of the CKM picture of the CP violation.

2 Neutral Meson System

2-1 Time Evolution

Suppose we have a neutral meson P 0 and its CP conjugate P 0, whose eigenstates are denoted
by
∣∣P 0
〉

and
∣∣P 0
〉
, respectively. A state

∣∣Ψ
〉

is described in terms of their linear combination

∣∣Ψ
〉

= a
∣∣P 0
〉

+ b
∣∣P 0
〉
. (2.21)

The Shrödinger equation for the state
∣∣Ψ
〉

is

i~
∂

∂t

∣∣Ψ
〉

= Ĥ
∣∣Ψ
〉
, (2.22)

1Another naming convention, β(= φ1), α(= φ2), and γ(= φ3), is also used in the literature.

13



CHAPTER 2. PHENOMENOLOGY OF CP VIOLATION IN B0 → π+π−π0 DECAY

VudV
∗

cd (VcdV
∗

cs)

VusV
∗

cs
(VudV

∗

us
)

VtbV
∗

cb (VcsV
∗

cb)

VtsV
∗

cs
(VtsV

∗

tb
)

VtdV
∗

ud (VtdV
∗

tb)
VtbV

∗

ub
(VudV

∗

ub
)

VtsV
∗

us (VcdV
∗

cb)

VtdV
∗

cd (VusV
∗

ub)

VubV
∗

cb (VtdV
∗

ts)

Figure 2.1: Schematic figures representing the unitarity relations. Top, middle, and bottom
triangles correspond to equations (2.12)-(2.13), (2.14)-(2.15), and (2.16)-(2.17), respectively.

VtdV
∗

tb

VcdV
∗

cb

φ1 (= β)
φ3 (= γ)

φ2 (= α)VudV
∗

ub

Figure 2.2: The “Unitarity Triangle.”
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where Ĥ is the Hamiltonian operator. The time evolution of
∣∣Ψ
〉

is written in terms of those
of the coefficients a and b ∣∣Ψ(t)

〉
= a(t)

∣∣P 0
〉

+ b(t)
∣∣P 0
〉
, (2.23)

and the Shrödinger equation becomes a differential equation of a vector ~ΨT (t) ≡ (a(t), b(t)):

i~
∂

∂t
~Ψ(t) = H ~Ψ(t) , (2.24)

where

H ≡
(〈
P 0
∣∣ Ĥ
∣∣P 0
〉 〈

P 0
∣∣ Ĥ
∣∣P 0
〉

〈
P 0
∣∣ Ĥ
∣∣P 0
〉 〈

P 0
∣∣ Ĥ
∣∣P 0
〉
)
. (2.25)

The 2 × 2 matrix H is given by

H = M − i

2
Γ , (2.26)

where M and Γ are Hermitian matrices2. The CPT conservation requires the matrices to
satisfy

M11 = M22 , and Γ11 = Γ22 . (2.27)

In the followings, we assume the CPT conservation.
We define the eigenvectors of the matrix H as (p, q)T and (p,−q)T , which satisfy

q

p
= +

√
M∗

12 − i
2Γ∗

12

M12 − i
2Γ12

, (2.28)

|p|2 + |q|2 = 1 . (2.29)

Here, the sign of the left hand side of Eq. (2.28) is just a convention3. The eigenstates of Ĥ ,
or the mass eigenstates, are then

|PL〉 ≡ p
∣∣P 0
〉

+ q
∣∣P 0
〉
, (2.30)

|PH 〉 ≡ p
∣∣P 0
〉
− q

∣∣P 0
〉
, (2.31)

with corresponding eigenvalues of HL and HH . The eigenvalues are written with real-valued
parameters ML, MH , ΓL, and ΓH as

HL = ML − i

2
ΓL , (2.32)

HH = MH − i

2
ΓH , (2.33)

which satisfy

ML − i

2
ΓL = M11 −

i

2
Γ11 +

q

p

(
M12 −

i

2
Γ12

)
, (2.34)

MH − i

2
ΓH = M11 −

i

2
Γ11 −

q

p

(
M12 −

i

2
Γ12

)
. (2.35)

2This means that the Hamiltonian matrix H is not Hermitian. This is because the state
˛

˛Ψ
¸

only includes

P 0 and P 0, and does not include the states of their decay products, leading to the fact that the probability
˛

˛

˙

Ψ(t)
˛

˛Ψ(t)
¸˛

˛

2
does not conserve once the decay occurs. The Hermitian property of Hamiltonian in general

comes from the requirement of probability conservation. Thus, the matrix H here does not have to be Hermi-
tian.

3This is related to which of (almost) CP even and odd states is heavier, or the sign of ∆M .
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Equations (2.28), (2.34), and (2.35) give the following relations:

(∆M)2 − 1

4
(∆Γ)2 = 4|M12|2 − |Γ12|2 , (2.36)

∆M∆Γ = 4Re(M12Γ
∗
12) , (2.37)

with
∆M ≡MH −ML , (2.38)

∆Γ ≡ ΓH − ΓL . (2.39)

The time evolution of |PL〉 and |PH〉 are

|PL(t)〉 = e−i(ML−iΓL/2)t |PL(0)〉 , (2.40)

|PH(t)〉 = e−i(MH−iΓH/2)t |PH(0)〉 . (2.41)

The time evolution of the states
∣∣P 0
〉

and
∣∣P 0
〉

is obtained from the equations (2.30), (2.31),
(2.40), and (2.41), as

∣∣P 0(t)
〉

=
1

2p

(
|PL(t)〉 + |PH(t)〉

)

= f+(t)
∣∣P 0(0)

〉
+
q

p
f−(t)

∣∣P 0(0)
〉
,

(2.42)

∣∣P 0(t)
〉

=
1

2q

(
|PL(t)〉 − |PH (t)〉

)

=
p

q
f−(t)

∣∣P 0(0)
〉

+ f+(t)
∣∣P 0(0)

〉
,

(2.43)

where

f±(t) ≡ 1

2

[
e−i(ML−iΓL/2)t ± e−i(MH−iΓH/2)t

]
. (2.44)

2-2 CP violation

Provided there is a decay process of P 0 → f , where f is a final state of the decay, its decay
amplitude Af (t) is4

Af (t) = 〈f | Ĥ
∣∣P 0(t)

〉

= 〈f | Ĥ(t)
∣∣P 0(0)

〉

= 〈f | (CP )†(CP )Ĥ(t)(CP )†(CP )
∣∣P 0(0)

〉

=
〈
f
∣∣ (CP )Ĥ(t)(CP )†

∣∣P 0(0)
〉
.

(2.47)

On the other hand, the amplitude Af (t) of the CP conjugate process, P 0 → f , is

Af (t) =
〈
f
∣∣ Ĥ
∣∣P 0(t)

〉
.

=
〈
f
∣∣ Ĥ(t)

∣∣P 0(0)
〉
.

(2.48)

4Here, we take a convention of

CP
˛

˛P 0(0)
¸

=
˛

˛P 0(0)
¸

and CP
˛

˛P 0(0)
¸

=
˛

˛P 0(0)
¸

, (2.45)

though in general the CP transformation can yield an unphysical phase ζ as

CP
˛

˛P 0(0)
¸

= e+iζ
˛

˛P 0(0)
¸

and CP
˛

˛P 0(0)
¸

= e−iζ
˛

˛P 0(0)
¸

. (2.46)
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Thus, comparison of the two amplitudes, Af (t) and Af (t), is sensitive to the difference between

Ĥ(t) and (CP )Ĥ(t)(CP )†; if we find difference between Af (t) and Af (t), Ĥ(t) violates CP
symmetry.

With Eq. (2.42) and (2.43), the time-dependent amplitudes are calculated as

Af (t) = f+(t)Af +
q

p
f−(t)Af , (2.49)

Af (t) =
p

q
f−(t)Af + f+(t)Af , (2.50)

where
Af ≡ 〈f | Ĥ

∣∣P 0(0)
〉

and Af ≡
〈
f
∣∣ Ĥ
∣∣P 0(0)

〉
. (2.51)

The difference between the amplitudes is

Af (t)

Af (t)
=
Af

Af
+

p
qAff−(t)

f+(t)Af + q
pf−(t)Af



1 −
(
q

p

Af

Af

)2


 . (2.52)

Thus, the condition for the CP -violation is

q

p

Af

Af
6= ±1 , (2.53)

or ∣∣∣∣∣
Af

Af

∣∣∣∣∣ 6= 1 . (2.54)

Note that CP is conserved in the case of

q

p

Af

Af
= ±1 ,

∣∣∣∣∣
Af

Af

∣∣∣∣∣ = 1 , and
Af

Af
6= 1 , (2.55)

since the pure phase difference in the amplitudes is not an observable.

3 CP Violation in B Decays

3-1 Special Properties in B0 System

In B0(B0)[23] system, a negligible difference in the widths of the two mass eigenstates is
expected5

∆Γ

Γ
= O(10−2) � 1 , (2.56)

where

Γ ≡ 1

2
(ΓH + ΓL) . (2.57)

Ignoring the width difference, equation (2.44) becomes

f+(t) = e−iMte−Γt/2 cos(∆md t/2) , (2.58)

f−(t) = e−iMte−Γt/2 i sin(∆md t/2) , (2.59)

5This is because the difference ΓH − ΓL is only produced by decay channels common to B0 and B0. The
small width difference is expected as a natural consequence of the fact that the decay width of B0 and B0 are
dominated by the decay channels to which B0 or B0 only can decay exclusively.
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where

M ≡ 1

2
(MH +ML) , (2.60)

∆md ≡ ∆M = MH −ML . (2.61)

The mass difference measured by experiments is comparable with the decay width:

∆md

Γ
∼ 1 . (2.62)

With equations (2.56) and (2.62), we obtain

∆Γ

∆md
= O(10−2) � 1 . (2.63)

The mass hierarchy and GIM mechanism of the standard model gives the following relation:

∣∣∣∣
Γ12

M12

∣∣∣∣ = O
(
mb

2

mt
2

)
∼ 10−3 . (2.64)

This can be roughly understood as follows. Since both M12 and Γ12 are related to the transition
of B0 ↔ B0, this can be understood by the box diagrams describing the B0-B0 mixing.
(Fig. 2.3) To M12, virtual intermediate states contribute and all of the cases q = u, c, t are
allowed. Here, the contribution from q = u, c are canceled out by GIM-cancellation and
contribution of q = t with large mass difference is dominant; and thus |M12| ∼ mt

2/mW
2. To

Γ12, on the other hand, the virtual intermediate state contribution is not allowed since Γ is
related to decays of b quark, and thus |Γ12| ∼ mb

2/mW
2. The detailed discussion can be found

elsewhere [24].
By the relations (2.56), (2.62), and (2.64), we obtain approximations of Eqs. (2.36) and

(2.37):

∆md ' 2|M12| , (2.65)

∆Γ ' 2Re(M12Γ
∗
12)/|M12| , (2.66)

(2.67)

which lead to the approximated expression of Eq. (2.28):

q

p
' M∗

12

|M12|
. (2.68)

As described above, M12 is related to the box diagrams of Fig. 2.3 with q = t. Thus, it is
related to the CKM matrix elements as

M12 ∝ (V ∗
tbVtd)2 , (2.69)

and thus
q

p
' V ∗

tbVtd

VtbV ∗
td

. (2.70)

Note that following relation is satisfied

∣∣∣∣
p

q

∣∣∣∣ ' 1 , (2.71)

up to the precision of O(10−2).
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Figure 2.3: Box diagrams for the B0-B0 mixing.

3-2 Time Evolution of a Coherent B0B0 System

At B-factories, the B0 mesons are produced from the decay of Υ(4S) in pairs. The two meson
state in the center mass system of Υ(4S) is written as

|Φ(n̂1, t1; n̂2, t2)〉 =
1√

1 + a2

[∣∣B0(n̂1, t1)
〉 ∣∣B0(n̂2, t2)

〉
+ a

∣∣B0(n̂1, t1)
〉 ∣∣B0(n̂2, t2)

〉]
δ(n̂1 + n̂2) ,

(2.72)
where n̂1,2 and t1,2 are the flight direction and proper time of the each B meson, respectively,
and δ(n̂1 + n̂2) is from momentum conservation. Since Υ(4S) is a vector particle, the two
meson state |Φ〉 is required to be an eigenstate of P (parity) transformation with an eigenvalue
of −1:

P |Φ(n̂1, t1; n̂2, t2)〉 ≡ |Φ(−n̂1, t1;−n̂2, t2)〉
= |Φ(n̂2, t1; n̂1, t2)〉
= − |Φ(n̂1, t1; n̂2, t2)〉 ,

(2.73)

where δ(n̂1 + n̂2) leads to the second equality. The solution for this equation is a = −1, and

|Φ(n̂1, t1; n̂2, t2)〉 =
1√
2

[∣∣B0(n̂1, t1)
〉 ∣∣B0(n̂2, t2)

〉
−
∣∣B0(n̂1, t1)

〉 ∣∣B0(n̂2, t2)
〉]
δ(n̂1 + n̂2) .

(2.74)
From this equation and equations (2.42), (2.43), (2.58), and (2.59), the time evolution of the
state |Φ〉 is

|Φ(n̂1, t1; n̂2, t2)〉 =
1√
2
e−i(M−iΓ/2)(t1+t2)

[
cos

(
t1 − t2

2

)(∣∣B0
1

〉 ∣∣B0
2

〉
−
∣∣B0

1

〉 ∣∣B0
2

〉)

− i sin

(
t1 − t2

2

)(p
q

∣∣B0
1

〉 ∣∣B0
2

〉
− q

p

∣∣B0
1

〉 ∣∣B0
2

〉)]
,

(2.75)

with

∣∣B0
1

〉
≡

∣∣B0(n̂1, 0)
〉
, (2.76)

∣∣B0
2

〉
≡

∣∣B0(n̂2, 0)
〉
, (2.77)

∣∣B0
1

〉
≡

∣∣B0(n̂1, 0)
〉
, (2.78)

∣∣B0
2

〉
≡

∣∣B0(n̂2, 0)
〉
. (2.79)
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The decay amplitude of Υ(4S) → B0B0 → f1f2 is then

A(t1, t2) ≡ 〈f1f2| ĤI |Φ(n̂1, t1; n̂2, t2)〉

=
1√
2
e−i(M−iΓ/2)(t1+t2)

[
cos

(
t1 − t2

2

)(
Af1Af2 −Af1Af2

)

− i sin

(
t1 − t2

2

)(p
q
Af1Af2 −

q

p
Af1Af2

)]
,

(2.80)

where B1 decays to a final state f1 at time t1 and B2 decays to f2 at time t2, respectively.
Here, ĤI is the interaction Hamiltonian and

Af1 ≡ 〈f1| ĤI

∣∣B0
〉
, (2.81)

Af2 ≡ 〈f2| ĤI

∣∣B0
〉
, (2.82)

Af1 ≡ 〈f1| ĤI

∣∣B0
〉
, (2.83)

Af2 ≡ 〈f2| ĤI

∣∣B0
〉
. (2.84)

In measuring CP violation, we choose f1 to be a decay mode of interest and f2 to be a flavor
eigenstate ftag, i.e., Af2 = 0 or Af2 = 0. In this case, the time dependent decay width is

dΓ
/
dt1dt2 ∝ |A(t1, t2)|2

=





e−Γ(t1+t2)|Af+ |2
[
|Af1 |2 + |Af1 |2

−(|Af1 |2 − |Af1 |2) cos(∆md∆t) + 2Im
(

q
pAf1A

∗
f1

)
sin(∆md∆t)

] (ftag = f+)

e−Γ(t1+t2)|Af− |2
[
|Af1 |2 + |Af1 |2

+(|Af1 |2 − |Af1 |2) cos(∆md∆t) − 2Im
(

q
pAf1A

∗
f1

)
sin(∆md∆t)

] (ftag = f−)

(2.85)

where f+ is a final state to which B0 only can decay, f− is its CP conjugate, i.e., f− = f+,
∆t ≡ t1− t2, and we assume |p/q| = 1. Since no (or very small) direct CP violation is expected
in the decay modes like B0 → f+

6, we assume

|Af+ | = |Af− | . (2.86)

Thus, we can simplify equation (2.85) as

dΓ
/
dt1dt2 ∝e−Γ(t1+t2)

[
|Af1 |2 + |Af1 |2

− qtag · (|Af1 |2 − |Af1 |2) cos(∆md∆t) + qtag · 2Im

(
q

p
Af1A

∗
f1

)
sin(∆md∆t)

]
,

(2.87)

where qtag denotes the flavor of decaying B2, or Btag hereafter, and qtag = +1(−1) for ftag =
f+(−). At B-factories, we can only measure ∆t and cannot measure t1 + t2. By integrating
equation (2.87) over the unmeasurable direction of t1 + t2, we obtain

dΓ
/
d∆t ≡

∫ +∞

|∆t|

d(t1 + t2)
dΓ

dt1dt2

∝ e−Γ|∆t|
[
|Af1 |2 + |Af1 |2

− qtag · (|Af1 |2 − |Af1 |2) cos(∆md∆t) + qtag · 2Im

(
q

p
Af1A

∗
f1

)
sin(∆md∆t)

]
.

(2.88)

6Violation of this assumption is part of so-called tag-side interference (TSI), of which we take account in the
systematic error.
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This is what we observe as the time evolution of the two B meson system at B-factories.

3-3 B Meson Decaying to a CP Eigenstate

When the decay mode of interest f1 is a CP eigenstate, we call it fCP and it satisfies

∣∣fCP

〉
≡ CP |fCP 〉 = ηfCP

|fCP 〉 , (2.89)

where ηfCP
is the CP eigenvalue of the state fCP and ηfCP

= ±1. This relation leads to

AfCP
≡
〈
fCP

∣∣ Ĥ
∣∣B0

〉
= ηfCP

〈fCP | Ĥ
∣∣B0

〉
= ηfCP

AfCP
, (2.90)

and Eq. (2.88) is rewritten in terms of AfCP
and AfCP

as

dΓ
/
d∆t ∝ e−Γ|∆t|

[
|AfCP

|2 + |AfCP
|2

− qtag · (|AfCP
|2 − |AfCP

|2) cos(∆md∆t)

+ qtag · ηfCP
2Im

(
q

p
AfCP

A ∗
fCP

)
sin(∆md∆t)

]
.

(2.91)

Note that the additional factor ηfCP
is introduced when we transform AfCP

into AfCP
. For

convenience, we take |AfCP
|2+|AfCP

|2 as overall normalization and rewrite the equation (2.91)
as

dΓ
/
d∆t ∝ e−Γ|∆t|

[
1 + qtag · AfCP

cos(∆md∆t) + qtag · SfCP
sin(∆md∆t)

]
, (2.92)

with

AfCP
≡

|AfCP
|2 − |AfCP

|2

|AfCP
|2 + |AfCP

|2
=

|λfCP
|2 − 1

|λfCP
|2 + 1

, (2.93)

SfCP
≡ ηfCP

2 Im
(

q
pAfCP

A ∗
fCP

)

|AfCP
|2 + |AfCP

|2 = ηfCP

2 ImλfCP

|λfCP
|2 + 1

. (2.94)

Here, λfCP
is defined as

λfCP
≡ q

p

AfCP

AfCP

. (2.95)

Note that ηfCP
could be outside of SfCP

in some definitions.
When the CP is violated in the process, we see the difference between B0 → fCP and

B0 → fCP , corresponding to non-zero AfCP
or SfCP

. This only happens when λfCP
6= ±1,

which is consistent with the condition of Eq. (2.53). AfCP
is non-zero only when |λfCP

| 6= 1
(direct CP violation).

3-4 B Meson Decaying to a non-CP Eigenstate

When the decay mode of interest f1 is not a CP eigenstate, there is no relation corresponding
to Eq. (2.90). Thus, the coefficients of cos(∆md∆t) and sin(∆md∆t) could be non-zero even
if the CP is conserved. We can still obtain information related to the CP violating effect by
measuring the time-dependences of both B0(B0) → f1 and B0(B0) → f1 processes. This can
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be demonstrated as follows. We rewrite equation (2.88) as

dΓ/d∆t ∝






(1 + ACP ) e−Γ|∆t|
[
1 − qtag · (C + ∆C) cos(∆md∆t)

+qtag · (S + ∆S) sin(∆md∆t)
] (for B1 → f1)

(1 −ACP ) e−Γ|∆t|
[
1 − qtag · (C − ∆C) cos(∆md∆t)

+qtag · (S − ∆S) sin(∆md∆t)
] (for B1 → f1)

(2.96)

where
1 + ACP ∝ |Af1 |2 + |Af1 |2 , (2.97)

1 −ACP ∝ |Af1
|2 + |Af1

|2 , (2.98)

C + ∆C ≡ |Af1 |2 − |Af1 |2
|Af1 |2 + |Af1 |2

, (2.99)

C − ∆C ≡
|Af1

|2 − |Af1
|2

|Af1
|2 + |Af1

|2 , (2.100)

S + ∆S ≡
2 Im

(
q
pAf1A

∗
f1

)

|Af1 |2 + |Af1 |2
, (2.101)

S − ∆S ≡
2 Im

(
q
pAf1

A∗
f1

)

|Af1
|2 + |Af1

|2
, (2.102)

and thus

ACP =

(
1 − |λf1 |2

)
− |ξ|2

(
1 − |λf1

|2
)

(
1 + |λf1 |2

)
+ |ξ|2

(
1 + |λf1

|2
) , (2.103)

C =
1 − |λf1 |2|λf1

|2
(
1 + |λf1

|2|ξ|2
)(

1 + |λf1 |2
/
|ξ|2
) , (2.104)

∆C =
|λf1 |2

/
|ξ|2 − |λf1

|2|ξ|2
(
1 + |λf1

|2|ξ|2
)(

1 + |λf1 |2
/
|ξ|2
) , (2.105)

S =
Im
[
(1 − λ∗f1

λ∗
f1

)(λf1/ξ + λf1
ξ)
]

(
1 + |λf1

|2|ξ|2
)(

1 + |λf1 |2
/
|ξ|2
) , (2.106)

∆S =
Im
[
(1 + λ∗f1

λ∗
f1

)(λf1/ξ − λf1
ξ)
]

(
1 + |λf1

|2|ξ|2
)(

1 + |λf1 |2
/
|ξ|2
) , (2.107)

with

λf1 ≡ q

p

Af1

Af1

, (2.108)

λf1
≡ q

p

Af1

Af1

, (2.109)

ξ ≡
Af1

Af1

. (2.110)
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When CP is violated, we see the difference between B0 → f1 and B0 → f1 (or, B0 → f1 and
B0 → f1), corresponding to non-zero ACP , C, or S7. This only happens when λf1 6= ±1 or
λf1

6= ±1, which are consistent with Eq. (2.53). In particular, ACP and C can only be non-zero

when |λf1 | 6= 1 or |λf1
| 6= 1 (direct CP violation). On the other hand, ∆C and ∆S can be

non-zero even if CP is conserved.
It is convenient for the interpretation of the direct CP violation to define A±∓ as [25]

A+− ≡ |λf1 |2 − 1

|λf1 |2 + 1
= −ACP + C + ACP ∆C

1 + ∆C + ACP C , and (2.114)

A−+ ≡
|λf1

|2 − 1

|λf1
|2 + 1

= +
ACP − C −ACP ∆C

1 − ∆C −ACP C , (2.115)

which can be interpreted as

A+− =
Γ(B0 → f1) − Γ(B0 → f1)

Γ(B0 → f1) + Γ(B0 → f1)
, and (2.116)

A−+ =
Γ(B0 → f1) − Γ(B0 → f1)

Γ(B0 → f1) + Γ(B0 → f1)
. (2.117)

4 CP Asymmetry in B0 → π+π−π0 Decay Process

4-1 Basic Properties

Since the decay process B0 → π+π−π0 is dominated by B0 → ρ+π− and ρ−π+, the final
state is not a CP eigenstate. Although there exists B0 → ρ0π0 process, where the final state
is a CP eigenstate, the contribution from this process is small as described later. Thus, one
has to measure both of B0 → ρ+π− and B0 → ρ−π+, at least, to observe the CP violating
effect. The processes B0 → ρ+π−, ρ−π+, ρ0π0 are described by tree, color suppressed tree,
and penguin diagrams, up to O(λ) precision [26]. Figure 2.4 shows the diagrams. Since the
process B0 → ρ0π0 does not have the contribution from the color allowed tree diagram, a small
branching fraction is expected. The amplitudes corresponding to the diagrams are

AT (B0 → ρ+π−) = T+− V ∗
ubVud , (2.118)

AP (B0 → ρ+π−) = P+− V ∗
tbVtd , (2.119)

AT (B0 → ρ−π+) = T−+ V ∗
ubVud , (2.120)

AP (B0 → ρ−π+) = P−+ V ∗
tbVtd , (2.121)

AC(B0 → ρ0π0) = C00 V ∗
ubVud , (2.122)

AP (B0 → ρ0π0) = P 00 V ∗
tbVtd , (2.123)

7Suppose the case to compare the difference between B0 → f1 and B0 → f1, for example. In this case, the
time-dependent decay widths for them are

dΓ/d∆t ∝ (1 + ACP ) e−Γ|∆t|
h

1 − (−1) · (C + ∆C) cos(∆md∆t) + (−1) · (S + ∆S) sin(∆md∆t)
i

, (2.111)

and

dΓ/d∆t ∝ (1 −ACP ) e−Γ|∆t|
h

1 − (+1) · (C − ∆C) cos(∆md∆t) + (+1) · (S − ∆S) sin(∆md∆t)
i

, (2.112)

respectively. Thus, their difference is proportional to

2ACP e−Γ|∆t|
h

1 − ∆C cos(∆md∆t) + ∆S sin(∆md∆t)
i

+ 2e−Γ|∆t|
h

C cos(∆md∆t) − S sin(∆md∆t)
i

,

(2.113)

and can be non-zero only when either of ACP , C, or S is non-zero.
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Figure 2.4: Feynman diagrams related to B0 → (ρπ)0 processes.
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and

AT (B0 → ρ+π−) = T−+ VubV
∗
ud , (2.124)

AP (B0 → ρ+π−) = P−+ VtbV
∗
td , (2.125)

AT (B0 → ρ−π+) = T+− VubV
∗
ud , (2.126)

AP (B0 → ρ−π+) = P+− VtbV
∗
td , (2.127)

AC(B0 → ρ0π0) = C00 VubV
∗
ud , (2.128)

AP (B0 → ρ0π0) = P 00 VtbV
∗
td , (2.129)

where the subscripts T , C, and P in the left hand sides denote tree, color suppressed tree,
and penguin transitions, respectively; and T±∓, C00, and P±∓(00), denotes the amplitudes
excluding the explicitly written factors coming from CKM matrix. Ignoring the difference
of strong interaction between B0 → ρ+π− and B0 → ρ−π+, i.e., the factor T−+/T+−, and
contributions from penguin transitions, the coefficients of cos(∆md∆t) and sin(∆md∆t) of the
processes B0 → ρ±π∓ calculated from equations (2.99)-(2.102) are

C ± ∆C =
|λ′ρ±π∓ |2 − 1

|λ′ρ±π∓ |2 + 1
∼ 0 , (2.130)

S ± ∆S =
2Imλ′ρ±π∓

|λ′ρ±π∓ |2 + 1
∼ sin(2φ2) , (2.131)

with

λ′ρ±π∓ ≡ q

p

A(B0 → ρ±π∓)

A(B0 → ρ±π∓)

∼ V ∗
tbVtd

VtbV ∗
td

VubV
∗
ud

V ∗
ubVud

= e2iφ2 ,

(2.132)

where the last equality comes from the definition of φ2 in Eq. (2.19). Thus, φ2 is the CKM
angle that is related to the process B0 → ρ±π∓.

However, we cannot measure the φ2 directly from S ± ∆S in practice. This is because the
two effects ignored above are actually not negligible; the effects from 1) the factor T−+/T+−

originating from strong interaction difference between B0 → ρ+π− and B0 → ρ−π+, and 2)
contributions from penguin transitions are to be taken into account.

As for the former, the sizes and phases of the amplitudes T±∓, C00, and P±∓(00) are de-
pendent on the decay modes, where the difference originates from the different contribution of
strong interaction related to each mode. Due to the CP -conserving property of strong inter-
action, the amplitudes are common between B0 → ρ+π− and B0 → ρ−π+, as the equations
above show. In the time-dependent analysis, however, what we measure is the interference
between B0 → ρ+π− and B0 → ρ+π− (or, between B0 → ρ−π+ and B0 → ρ−π+), and the
contributions from strong interaction can be different, i.e., the factor T−+/T+− is different
from unity in general. With this factor taken into account and assuming tree transitions only,
λ′ρ±π∓ in equation (2.132) becomes

λ′ρ±π∓ ∼ q

p

AT (B0 → ρ±π∓)

AT (B0 → ρ±π∓)
= r±T e

i(2φ2±δT ) , (2.133)
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with

r+T ≡ 1

r−T
≡
∣∣∣∣
T−+

T+−

∣∣∣∣ , and (2.134)

δT ≡ arg

(
T−+

T+−

)
. (2.135)

Consequently, the coefficients C ± ∆C and S ± ∆S are

C ± ∆C ∼ r±T
2 − 1

r±T
2
+ 1

, and (2.136)

S ± ∆S ∼
√

1 − (C ± ∆C)2 sin(2φ2 ± δT ) . (2.137)

Thus, it is still possible to measure φ2 using all four observables of C ± ∆C and S ± ∆S.
The second problem, the contribution from the penguin diagrams, is more serious. This is

because the phases from both weak and strong interactions are different for the contributions
from tree and penguin diagrams. The parameter corresponding to λ′

ρ±π∓ for the penguin
contribution is

λ′Pρ±π∓ ≡ q

p

AP (B0 → ρ±π∓)

AP (B0 → ρ±π∓)

=
P−+

P+−

V ∗
tbVtd

VtbV ∗
td

VtbV
∗
td

V ∗
tbVtd

= r±P e±iδP ,

(2.138)

with

r+P ≡ 1

r−P
≡
∣∣∣∣
P−+

P+−

∣∣∣∣ , and (2.139)

δP ≡ arg

(
P−+

P+−

)
. (2.140)

Here, the corresponding CP -violating weak phase is 0 and the strong interaction factor is
P−+/P+−, both being different from those of tree diagram contributions. In addition to
r+P and δP , the complex ratio P+−/T+− is also a newly introduced unknown parameter.
With the penguin diagram contribution included, we have model parameters corresponding to
seven degrees of freedom: φ2, T

−+/T+−, P−+/P+−, and P+−/T+−. The number of model
parameters is now larger than that of observables and one cannot constrain φ2 without further
assumptions or additional observables.

There are two approaches proposed to overcome this issue: the isospin (pentagon) analysis
and the time-dependent Dalitz plot analysis. We describe them in the following subsections.
Note that they are not exclusive with each other; to constrain φ2 at the end of this thesis, we
use both of them simultaneously to make full use of the information we have.

4-2 Isospin (Pentagon) Analysis

There are four isospin relations between the amplitudes related to B0 → ρ±π∓, ρ0π0, B+ →
ρ+π0, and ρ0π+ [17, 18]:

A++A− + 2A0 = Ã+ + Ã− + 2Ã0

=
√

2(A+0 +A0+) =
√

2(Ã−0 + Ã0−) ,
(2.141)
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A+0 −A0+ −
√

2(A+ −A−) = Ã−0 − Ã0− −
√

2(Ã− − Ã+) , (2.142)

where

A+ ≡ A(B0 → ρ+π−) , (2.143)

A− ≡ A(B0 → ρ−π+) , (2.144)

A0 ≡ A(B0 → ρ0π0) , (2.145)

A+0 ≡ A(B+ → ρ+π0) , (2.146)

A0+ ≡ A(B+ → ρ0π+) , (2.147)

A+ ≡ p

q
A(B0 → ρ+π−) , (2.148)

A− ≡ p

q
A(B0 → ρ−π+) , (2.149)

A0 ≡ p

q
A(B0 → ρ0π0) , (2.150)

A−0 ≡ p

q
A(B− → ρ−π0) , (2.151)

A0− ≡ p

q
A(B− → ρ0π−) , (2.152)

and
Ãκ ≡ e−2iφ2Aκ , Ã−0 ≡ e−2iφ2A−0 , Ã0− ≡ e−2iφ2A0− . (2.153)

Now the related model parameters correspond to

(10 amplitudes = 20 d.o.f.) + φ2

− (1 global phase) − (4 isospin relations = 8 d.o.f.) = 12 d.o.f. ,
(2.154)

while the number of observables is

(5 branching fractions) + (2 charge asymmetries of B+ decay modes)

+ (2 × 3 time-dependent coefficients of B0 decay modes) = 13 .
(2.155)

Thus, with more observables than model parameters, we can solve this problem and constrain
φ2.

In practice, however, it is difficult to constrain φ2 only with this method. This is due
to the size of branching fraction of B0 → ρ0π0, which is not so small that we can ignore
the contribution from the process but not so large that we can measure the CP violation
parameters of the process with a good precision. Without the good measurements of the CP
violation parameters of the process, we only have 11 observables, effectively, and we cannot
constrain φ2 very well.

4-3 Time-Dependent Dalitz Plot Analysis

Snyder and Quinn pointed out that the time-dependent Dalitz plot analysis can be a powerful
method to measure φ2 using the B0 → (ρπ)0 → π+π−π0 decay process [19]. The essence of this
method is to measure the time-dependent CP violation parameters of the interference between
the three decay modes: B0 → ρ+π−, B0 → ρ−π+, and B0 → ρ0π0. This increases the number
of observables and makes it possible to constrain φ2 combined with the isospin relation of the
first equality in equation (2.141), even with the presence of the penguin contributions. Further,
the information from the interference can solve the discrete ambiguity between φ2 and π− φ2,
which cannot be solved by the measurements using other modes like B → ππ and B → ρρ.
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In the time-dependent Dalitz plot analysis, the amplitudes Af1 and Af1 in equation (2.88)
have the Dalitz plot dependence, which are denoted by A3π(s+, s−) and A3π(s+, s−). Here,
we define the Lorentz-invariant Dalitz plot variables as

s+ ≡ (p+ + p0)
2 ,

s− ≡ (p− + p0)
2 , and

s0 ≡ (p+ + p−)2 ,

(2.156)

where p+, p−, and p0 are the four-momenta of π+, π−, and π0 in the B0 → π+π−π0 decay,
respectively. Among the Dalitz plot variables, the following relation holds

s+ + s− + s0 = mB0
2 + 2mπ+

2 +mπ0
2 . (2.157)

Ignoring the B0 → π+π−π0 contributions from the processes other than B0 → (ρπ)0 →
π+π−π0, the Dalitz plot amplitudes

(

A
)

3π(s+, s−) can be written as

A3π(s+, s−) = f+(s+, s−)A+ + f−(s+, s−)A− + f0(s+, s−)A0 , and (2.158)
q

p
A3π(s+, s−) = f+(s+, s−)A+ + f−(s+, s−)A− + f0(s+, s−)A0 , (2.159)

where functions
(

f
)

κ(s+, s−) (with ρ charge κ = +,−, 0) incorporate the kinematic and dynam-
ical properties of B0 decay into a vector ρκ and a pseudoscalar πκ, with (+,−, 0) = (−,+, 0),
corresponding to the mass and helicity distributions of the ρκ. Figure 2.5 schematically shows
the fκ(s+, s−) in the Dalitz plot. We will discuss in Sec. 1 of chapter 6 the detail of the

functions
(

f
)

κ(s+, s−). As described there, we assume the relation

fκ(s+, s−) = fκ(s+, s−) (2.160)

in our nominal fit. The definition of the complex coefficients Aκ and Aκ here are consistent
with equations (2.143)-(2.145) and (2.148)-(2.150).
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Figure 2.5: Schematic figures of the fκ(s+, s−). Dotted lines show the kinematic boundary.

With equations (2.158), (2.159), and (2.160), we rewrite Eq. (2.88) as

dΓ

d∆t ds+ds−
∝ e−Γ|∆t|

[
|A3π(s+, s−)|2 + |A3π(s+, s−)|2

− qtag · (|A3π(s+, s−)|2 − |A3π(s+, s−)|2) cos(∆md∆t)

+ qtag · 2Im

(
q

p
A3π(s+, s−)A3π(s+, s−)∗

)
sin(∆md∆t)

]
.

(2.161)
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where

|A3π(s+, s−)|2 ± |A3π(s+, s−)|2 =
∑

κ∈{+,−,0}

|fκ|2(|Aκ|2 ± |Aκ|2)

+ 2
∑

κ<σ∈{+,−,0}

(
Re[fκf

∗
σ ] Re[AκAσ∗ ±AκAσ∗] − Im[fκf

∗
σ ] Im[AκAσ∗ ±AκAσ∗]

)
, and

(2.162)

Im

(
q

p
A3π(s+, s−)A3π(s+, s−)∗

)
=

∑

κ∈{+,−,0}

|fκ|2Im[AκAκ∗]

+ 2
∑

κ<σ∈{+,−,0}

(
Re[fκf

∗
σ ] Im[AκAσ∗ +AσAκ∗] + Im[fκf

∗
σ ] Re[AκAσ∗ −AσAκ∗]

)
.

(2.163)

Here, the |fκ|2 and Re(Im)[fκf
∗
σ ] are nine linear-independent functions in the Dalitz plot.

Since there are three types of distribution in ∆t direction, e−|∆t|/τ
B0 , e−|∆t|/τ

B0 cos(∆md∆t),
and e−|∆t|/τ

B0 sin(∆md∆t), we have 27 linear-independent functions in ∆t-Dalitz plot space
in total. Exploiting the information of both ∆t and Dalitz plot, therefore, we can measure
all of 27 coefficients of the independent functions, which are sufficient to determine all of the
amplitudes Aκ and Aκ except for overall phase and normalization, in principle.

Equations (2.141) and (2.153) are derived from the fact that each combination-sum of the
amplitudes connected by equality is written only by tree diagram contributions; we can write
the combination-sums as

A+ +A− + 2A0 =TAlle−iφ2 , and (2.164)

A+ +A− + 2A0 =TAlle+iφ2 . (2.165)

Thus, with all the amplitudes Aκ and Aκ determined by the time-dependent Dalitz plot anal-
ysis, we can determine the φ2 using the relation of

e2iφ2 =
A+ +A− + 2A0

A+ +A− + 2A0
, (2.166)

where the ratio in the right hand side can be determined without the unmeasured overall phase
and normalization. Note that here we have no discrete ambiguity related to φ2, which is an
advantage of this method compared to the isospin (pentagon) analysis of B → ρπ and the
analysis with other decay processes, B → ππ and B → ρρ.

Another advantage of this method, compared to the isospin (pentagon) analysis described
in the previous section, is the large number of observables. The model parameters here are 9,
calculated as

(6 complex amplitudes = 12 d.o.f.) + φ2

− (1 overall phase) − (1 overall normalization) − (1 isospin relation = 2 d.o.f.) = 9 ,

(2.167)

while the number of observables are 26:

(27 coefficients) − (1 overall normalization) = 26 . (2.168)

The number of observables are far larger than that of model parameters. This allows us to
determine the φ2 even in the situation where some of the observables cannot be measured with
good precisions due to the small branching fraction of B0 → ρ0π0.
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Chapter 3

Experimental Apparatus

In this chapter, we describe the experimental apparatus of the KEK B factory, which consists
of the KEKB accelerator and the Belle detector. The experiment is located at the High Energy
Accelerator Research Organization (KEK) in Japan.

1 KEKB Accelerator

KEKB [20] is a two-ring energy-asymmetric e+e− collider and aims to produce copious B and
anti-B mesons as in a factory. Figure 3.1 shows a schematic layout of KEKB. It consists of
two 3 km-long storage rings, an 8 GeV electron ring (HER) and a 3.5 GeV positron ring (LER),
and an injection linear accelerator. The two rings cross at one point, called the interaction
point (IP), where electrons and positrons collide with a finite crossing angle of ±11 mrad. The
Belle detector surrounds IP to catch particles produced by the collisions. The center-of-mass
energy is 10.58 GeV, which corresponds to the mass of the Υ(4S) resonance. Due to the energy
asymmetry, the Υ(4S) are produced with a Lorentz boost of (βγ)Υ = 0.425. On average, the
separation of the decay vertices of two B mesons is approximately 〈∆z〉 = cτB(βγ)Υ ∼ 200µm.

The design luminosity of KEKB is 1034 cm−2s−1. Now the accelerator operates routinely
with a peak luminosity of 1.5 × 1034 cm−2s−1, which is the world record as of Oct. 2006.
In early 2004, a new method of operation of KEKB was successfully introduced. It is called
“continuous injection mode” and removes the dead time of the ordinary injection method.
Without the continuous injection, data taking has to stop every hour to replenish the beams.
Now the KEKB can produce more than 1 fb−1 per day. The best records up to Oct. 2006 are
1.6517× 1034 cm−2s−1 for the peak luminosity and 1.2315 fb−1 per day.

2 Belle Detector

Belle detector [21] is a general-purpose 4-π detector surrounding IP. It consists of a barrel,
forward, and backward components. Figure 3.2 shows the configuration of the Belle detector.

Precision tracking and vertex measurements are provided by a central drift chamber (CDC)
and a silicon vertex detector (SVD). The identifications of charged pions and kaons are based
on the information from three subdetectors: the dE/dx measurement by CDC, a set of time-of-
flight counters (TOF), and a set of aerogel Čerenkov counters (ACC). Electromagnetic particles
are detected in an array of CsI(Tl) crystal calorimeters (ECL). The electron identification is
based on a combination of the dE/dx measurements by CDC, the response of ACC, and the
information of position, shape, and energy of the electromagnetic shower in ECL. The above
detectors are located inside a superconducting solenoid of 1.7 m radius that maintains 1.5 T
magnetic field. The outermost detector subsystem is a KL and muon detector (KLM). A pair
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Figure 3.1: Schematic view of the layout of KEKB.
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of BGO crystal array called extreme forward calorimeter (EFC), which is placed on the surface
of the QCS cryostats, provides coverage at small angle uncovered by the other detectors.

Two inner detector configurations are used. A 3-layer SVD with a 2 cm radius beam-pipe
is used until the summer of 2003. A data sample corresponding to the integrated luminosity of
140 fb−1 (DS-I) is collected with this configuration. In the summer of 2003, a 4-layer SVD, a
1.5 cm radius beam-pipe, and a small-cell inner drift chamber are installed. A data sample cor-
responding to the integrated luminosity of 274 fb−1 (DS-II) is collected with this configuration.
Performance parameters of the detectors are summarized in Table 3.1.

8 GeV e−

3.5 GeV e+

Silicon Vertex Detector (SVD)

KL and µ detector (KLM)

Central Drift Chamber (CDC)

Extreme Forward Calorimeter (EFC)

Aerogel Cerenkov Counter (ACC)

Electromagnetic Calorimeter (ECL)

Time-Of-Flight counter (TOF)

Superconducting Solenoid

Figure 3.2: Overview of the Belle detector.

2-1 Silicon Vertex Detector (SVD)

It is crucially important for the time-evolution study to measure the difference between the
flight lengths of the two B mesons in the z direction, where z is defined as the opposite
of the positron beam direction. SVD [27] provides the essential information for the precise
reconstruction of the decay vertices close to IP. Since the average separation of two B-decay
vertices is ∼ 200µm, the required z resolution is ∼ 200µm. In addition, the vertex detector
can be useful for identifying and measuring the decay vertices of D and τ particles.

Since most particles of interest in Belle have momenta of 1 GeV/c or less, the vertex res-
olution is dominated by the multiple-Coulomb scattering. This imposes strict constraints on
the design of the detector. In particular, the innermost layer of the vertex detector must be
placed as close to IP as possible, the support structure must be light in weight but rigid, and
the readout electronics are to be placed outside the tracking volume. The design must also
withstand large beam backgrounds. With the high luminosity operation of KEKB, the radia-
tion dose to the detector is measured to be 1 kRad/day as of October 2006. Radiation doses
of this level could both degrade the noise performance of the electronics and induce leakage
currents in the silicon detectors.

Figure 3.3 shows the side and end views of the SVD for DS-I (SVD1). SVD1 consists of three
concentric cylindrical layers arranged in a barrel and covers the angle range 23◦ < θ < 139◦ (θ
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Table 3.1: Performance parameters for the Belle detector.

Detector Type Configuration Readout Performance

Beam-pipe

DS-I Beryllium
double wall

Cylindrical, r = 20 mm,
0.5/2.5/0.5 mm = Be/He/Be,

He gas cooled

DS-II Beryllium
double wall

Cylindrical, r = 15 mm,
0.5/2.5/0.5 mm =
Be/Paraffin/Be,

Paraffin liquid cooled

SVD

DS-I Double-sided
Si strip

3-layers: 3/8/14 ladders,
Strip pitch: 25(φ)/42(z) µm

φ : 40.96 k,
z : 40.96 k

σ(∆z) ∼ 80 µm
for B0 → (ρπ)0

DS-II Double-sided
Si strip

4-layers: 6/12/18/18 ladders,
Strip pitch:

50(φ)/75(z) µm(layer 1-3),
65(φ)/73(z) µm(layer 4)

φ : 55.296 k,
z : 55.296 k

σ(∆z) ∼ 70 µm
for B0 → (ρπ)0

CDC

DS-I Small cell
drift chamber

Anode: 50 layers,
Cathode: 3 layers,
r = 8.3-87.4 cm,

−78.72 ≤ z ≤ 158.77 cm

A: 8.4 k,
C: 1.8 k

σrφ = 130 µm
σz = 200 ∼

1400 µm σpt/pt =
0.3%

p

pt
2 + 1

σdE/dx = 8%

DS-II Small cell
drift chamber

Anode: 49 layers,
No cathode layer,
r = 10.4-87.4 cm,

−78.72 ≤ z ≤ 158.77 cm

A: 8.5 k

ACC Silica aerogel 960 barrel / 228 end-cap
FM-PMT readout

Np.e. ≥ 6, K/π
separation:

1.2 < p < 3.5 GeV

TOF/TSC Scintillator 128/64 φ segmentation,
r = 120 cm, 3-m long

128×2 / 64 σt = 100 ps K/π
separation: up to

1.2 GeV/c

ECL CsI
(Towered-
structure)

Barrel: r = 125-162 cm,
Endcap: z = −102 cm and

+196 cm

6624,
1152(FW),
960(BW)

σE/E =
1.3%/

√
E σpos =

0.5 cm/
√

E (E in
GeV)

KLM Resistive
plate counters

14 layers (5 cm Fe + 4 cm gap)
2 RPCs in each gap

θ: 16 k,
φ: 16 k

∆φ = ∆θ = 30 mr
for KL ∼ 1%
hadron fake

EFC BGO Photodiode readout,
Segmentation: 32 in φ, 5 in θ

100 × 2 Energy resolution
(rms):

7.3% at 8 GeV,
5.8% at 8 GeV

Magnet Super-
conducting

Inner radius = 170 cm B = 1.5 T
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being the polar angle from the z axis), which corresponds to 86% of the full solid angle. The
three layers at radii of 30.0 mm, 45.5 mm, and 60.5 mm surround the beam pipe, a double-wall
beryllium cylinder of 2.3 cm radius and 1 mm thickness. There are 8/10/14 ladders along φ
in layers 1/2/3, respectively, where φ is the azimuthal angle around the z axis. Each ladder
consists of double-sided silicon strip detectors (DSSDs) reinforced by boron-nitride support
ribs.

The DSSD’s fabricated by Hamamatsu Photonics (HPK)1, originally designed for the DEL-
PHI microvertex detector, are used for the SVD1. Each DSSD consists of 1280 sense strips
and 640 readout pads on each side, where the pitch size of the strips is 42µm (25µm) in z-side
(φ-side). The overall DSSD size is 57.5×33.5 mm2 with 300µm thickness. In total 102 DSSD’s
are used and the number of readout channels is 81,920. For the z-coordinate measurement,
the n-side strips are used and a double-metal structure running parallel to z is employed to
route the signals from orthogonal z-sense strips to the ends of the detector. Adjacent strips
are connected to a single readout trace on the second metal layer which gives an effective strip
pitch of 84µm. A p-stop structure is employed to isolate the z-sense strips. A relatively large
thermal noise (∼ 600e−) is observed due to the common-p-stop design. On the φ side, every
other sense-strip is only connected to a readout channel. Charge collected by the floating strips,
the strips unconnected to readout channels, in between is read from adjacent strips by means
of capacitive charge division.

The readout chain for DSSD’s is based on the VA1 integrated circuit [28, 29]. The VA1
chip is a 128-channel CMOS integrated circuit produced by IDEAS2. It is specially designed
for the readout of silicon vertex detectors and other small-signal devices that require low-noise
preamplifier. VA1 has excellent noise performance and reasonably good radiation tolerance of
200 krad (1 Mrad) for VA1 fabricated in the Austrian Micro Systems (AMS) 1.2µm (0.8µm)
process [30], where the VA1 with 0.8µm process is used from the summer of 2000.

CDC

23o139o

IPBe beam pipe
30

45.5
60.5

unit:mm

SVD sideview

SVD endview

BN rib
 reinforced by CFRP

Figure 3.3: Detector configuration of SVD1.

In the summer of 2003, a new vertex detector, SVD2, was installed [31]. Figure 3.4 schemati-
cally shows the configuration of SVD2. It has four detector layers; there are 6/12/18/18 ladders

1http://www.hamamatsu.com/
2http://www.ideas.no/
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at the radii of 20.0/43.5/70.0/88.0 mm for the 1/2/3/4 layers, respectively. The polar angle
acceptance is expanded to 17◦ < θ < 150◦, which is the same as CDC and corresponds to
the 92% of the full solid angle. The beam-pipe, surrounded by the ladders, has 1.5 cm radius
and double-wall structure, where inner and outer layers have 0.6 mm and 0.35 mm thickness,
respectively, with cooling liquid3 circulated through the space of 0.5 mm between them.

The DSSD’s are fabricated by HPK. The size of the DSSD for the layer 1-3 (4) is 28.4 ×
79.2 mm2 (34.9× 76.4 mm2) with 300µm thickness. Each DSSD has 1024 and 512 sense strips
in z(p)-side and φ(n)-side4, respectively. For the inner three layers, the z-strip (φ-strip) pitch
is 75µm (50µm). For the fourth layer, the z-strip (φ-strip) pitch is 73µm (65µm). Every
φ-strip for each DSSD is read out, while every other strip is read out in z-side. In total, 246
DSSD’s are used and the number of readout channels is 110,592. Flex circuits are used instead
of double-metal structure to read out the z-strips, which reduces the capacitance due to the
double-metal layer. Typical noise of a ladder is ∼ 500-1100 e−.

The readout chain for DSSD’s is based on the VA1TA integrated circuit. The VA1TA chip
is a 128-channel CMOS integrated circuit, produced by IDEAS, having a trigger capability in
addition to the preamplifier function. It is fabricated with the AMS 0.35µm process and has
an excellent radiation tolerance of over 20 Mrad [30].

The impact parameter resolution for reconstructed tracks is measured as a function of the
track momentum p (measured in GeV/c) and the polar angle θ. It can be fitted with a function
form of

σ =

√

σ1
2 +

(
σ2

p̃

)2

, (3.1)

and is symbolically written as
σ = σ1 ⊕ σ2/p̃ . (3.2)

Here, p̃ is the pseudo-momentum defined as

p̃ ≡
{
pβ sin3/2 θ for r-φ side ,

pβ sin5/2 θ for z side .
(3.3)

As shown in Fig. 3.5, the impact parameter resolutions of SVD2 is better than those of SVD1,
mainly owing to the smaller radius of the first layer. The impact parameter resolutions mea-
sured with the cosmic ray events are

σrφ (µm) = 19.2⊕ 54.0/p̃ , σz (µm) = 42.2⊕ 44.3/p̃ , (3.4)

for SVD1, and
σrφ (µm) = 21.9⊕ 35.5/p̃ , σz (µm) = 27.8⊕ 31.9/p̃ , (3.5)

for SVD2.

2-2 Central Drift Chamber (CDC)

The efficient reconstruction of charged particle tracks and precise determination of their mo-
menta are the prerequisite to almost all of the measurements in the Belle experiment. The
resolution of a transverse momentum pt, which is the momentum component transverse to
the z axis, is required to be σpt

/pt ∼ 0.5%
√

1 + pt
2 (pt in GeV/c) for all charged particles

with pt ≥ 100 MeV/c in the polar angle region of 17◦ ≤ θ ≤ 150◦. In addition, the charged
particle tracking system is expected to provide important information for the trigger system
and particle identification information by the precise measurement of dE/dx.

3Normal paraffin grade L, Nippon Oil Corp. (http://www.eneos.co.jp/english/)
4Note that z(φ)-side corresponds to the p(n)-side in the SVD2, while φ(z)-side corresponds to the p(n)-side

in the SVD1.
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Figure 3.4: Detector configuration of SVD2.
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Figure 3.5: Comparison of the impact parameter resolutions in the directions of r-φ (left) and
z (right) measured with cosmic ray data.
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The central drift chamber (CDC) [32, 33] has been designed and constructed to meet above
requirements for the central tracking system. Since the majority of the B decay daughters have
momenta lower than 1 GeV/c, minimization of multiple scattering is important to achieve the
required momentum resolution. A low-Z gas is selected to reduce the multiple scattering.

The structure of CDC used to collect DS-I is shown in Fig. 3.6. It is asymmetric in the
z, providing an angular coverage of 17◦ ≤ θ ≤ 150◦, which corresponds to 92% of the full
solid angle. The longest wires are 2400 mm long. The outer radius is 874 mm and the inner
one is extended down to 83 mm. CDC is a small-cell cylindrical drift chamber with 50 layers
of anode wires, which consist of 32 axial- and 18 stereo-wire layers, and three cathode strip
layers. Axial wires are parallel to the z axis, while stereo wires slant to the z axis to provide z
position information. Stereo wires also provide a highly efficient fast z-trigger combined with
the cathode strips. CDC has a total of 8400 drift cells. At the inner layers of CDC, three
cathode-strip layers are made for higher precision z measurement at the position where the
particles enter CDC, which is especially beneficial for the purpose of trigger.

In the summer of 2003, the inner part structure of CDC has been modified jointly with the
upgrade of SVD. The three inner layers with cathode strips were removed to make the space
for the upgraded SVD with larger radius. Instead, we have installed two layers of smaller cells,
which we call small-cell CDC (sCDC). The inner radius after the modification is 104 mm, while
the other geometry is unchanged. The sCDC maintains the performance of the Level-1 trigger
by keeping the number of inner layers used for the trigger to be five, which was six before the
modification. In addition, we exploit the small drift time due to the smaller cell to provide
additional information for the Level-0 trigger logic required by SVD, which was provided by
the information from TOF alone before the upgrade.

A low-Z gas mixture, consisting of 50% He and 50% ethane (C2H6), is used to minimize
multiple Coulomb scattering to achieve a good momentum resolution, especially for low momen-
tum particles. Since low-Z gases have a smaller photo-electric cross section than argon-based
gases, they have the additional advantage of reduced background from synchrotron radiation.
Even though the gas mixture has a low-Z, a good dE/dx resolution is obtained by the large
ethane component.

The measured spatial resolution in the r-φ direction5 is ∼ 120-150µm with a dependence
on the incident angles and layers. The pt resolution obtained by the study using cosmic ray is

σpt

pt
(%) =

√
(0.28pt)

2
+ (0.35/β)

2
(pt in GeV/c) (3.6)

without the SVD information, and

σpt

pt
(%) =

√
(0.19pt)

2
+ (0.30/β)

2
(pt in GeV/c) (3.7)

with the SVD information. (Fig 3.7)
The dE/dx measurement in CDC can distinguish particle species, since the mean energy

loss 〈dE/dx〉 for a charged particle is given as a function of the velocity, by Bethe-Bloch
formula. A scatter plot of the measured dE/dx and particle momentum is shown in Fig. 3.8,
together with the expected mean energy losses for different particle species. Populations of
pions, kaons, protons, and electrons can be clearly seen. The dE/dx resolution is measured to
be 7.8% in the momentum range from 0.4 to 0.6 GeV/c.

2-3 Aerogel Čerenkov Counter System (ACC)

Particle identification, particularly the identification of π± against K±, plays an important
role in the many analyses of B decays. An array of silica-aerogel threshold Čerenkov counters

5We define the “r-φ direction” as the axis that is perpendicular to the z direction on the plane of each DSSD.
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Figure 3.7: pt resolution studied using cosmic rays.
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Figure 3.8: Charged track momenta vs. dE/dx observed in collision data.

is selected as a part of the Belle particle identification system. It covers the momentum range
between 1.5 GeV and 3.5 GeV with respect to the K±/π± separation, extending the coverage
beyond the reach of dE/dx measurements by CDC and time-of-flight measurements by TOF.

The Čerenkov radiations are emitted in case of

n >
1

β
=

√

1 +

(
m

p

)2

, (3.8)

where β, m, and p are the velocity, mass, and momentum of the charged particle, respectively;
and n is the refractive index of the matter through which the particle is passing. Since mK± >
mπ± , there is a momentum region where the pions emit Čerenkov light, while kaons and heavier
particles do not. Thus, one can identify pions against kaons by choosing proper refractive index
n for the momentum region of interest.

The configuration of ACC [34] is shown in Fig. 3.9. ACC consists of 960 counter modules
segmented into 60 cells in the φ direction for the barrel part and 228 modules arranged in five
concentric layers for the forward end-cap part of the detector. All the modules are arranged
in a semi-tower geometry, pointing to IP. A typical ACC module consists of five aerogel tiles
stacked in a thin (0.2 mm thick) aluminum box with an approximate size of 12× 12 × 12cm3.

To detect the Čerenkov lights, two (one) fine-mesh type photomultiplier tubes (FM-PMTs)
are attached to each module in the barrel (end-cap) part. This FM-PMTs are designed to
operate in strong magnetic field of 1.5 T [35].

In order to obtain a good K±/π± separation for the required kinematic range, the refractive
indices of aerogels are selected to be between 1.01 and 1.03, depending on their polar angle
region. In barrel part, they are optimized for the momentum corresponding to the daughter
particles of B meson two-body decays. In end-cap part, they are optimized for the momentum
of K± from B cascade decays, which is advantageous in B flavor tagging.

The performance of ACC is confirmed using the decay process of D∗+ → π+D0(→ K−π+),
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where the identification of the charged particles from the D0 decay can be determined without
using the ACC information, by the charge of π from the D∗+ decay. Figure 3.10 shows the
number of photo-electron distribution of π± and K± in this decay process, where π± is well
separated from K±, being consistent with MC.
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Figure 3.9: Arrangement of ACC in Belle detector.

2-4 Time-of-Flight Counter (TOF)

A time-of-flight (TOF) detector system using plastic scintillation counters is very powerful for
particle identification in e+e− collider detectors. For a 1.2 m flight path, the TOF system with
100 ps time resolution is effective for particle momenta below about 1.2 GeV/c. Roughly 90%
of the particles produced in Υ(4S) decays are in this momentum region. It can provide clean
and efficient b-flavor tagging. In addition to particle identification, the TOF counters provide
fast timing signals for the trigger system. To avoid pile-up in the trigger queue, the rate of the
TOF trigger signals must be kept below 70 kHz. Simulation studies indicate that to keep the
fast trigger rate below 70 kHz in any beam background conditions, the TOF counters should
be supplemented by thin trigger scintillation counters (TSC).

The following relation is satisfied between the time-of-flight T measured with TOF and the
momentum p measured momentum with CDC:

T =
L

cβ
=
L

c

√

1 +

(
m

p

)2

, (3.9)

where L is a length of the flight. For example, when L = 120 cm and p = 1.2 GeV/c, T = 4.0 ns
for a pion (mπ± = 140 MeV/c2), while T = 4.3 for a kaon (mK± = 494 MeV/c2). Thus, the
difference of T between pions and kaons is ∼ 300 ps and K±/π± separation with 3σ significance
is obtained with the time resolution of 100 ps.

The Belle TOF system [36] consists of 128 TOF counters and 64 TSC counters. Two
trapezoidally shaped TOF counters and one TSC counter, with a 1.5 cm intervening radial
gap, form one module. In total 64 TOF/TSC modules located at a radius of 1.2 m from IP
cover a polar angle range from 34◦ to 120◦. The minimum transverse momentum to reach
the TOF counters is about 0.28 GeV/c. The dimensions of a module are given in Fig. 3.11.
The modules are individually mounted on the inner wall of the barrel ECL container. The

40



CHAPTER 3. EXPERIMENTAL APPARATUS

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40

E
nt

ri
es

/p
e/

tr
ac

k

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40

E
nt

ri
es

/p
e/

tr
ac

k

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40

E
nt

ri
es

/p
e/

tr
ac

k

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40

E
nt

ri
es

/p
e/

tr
ac

k

Figure 3.10: ACC number of photo-electron distribution for π± and K± from D∗± decays.
Each plot corresponds to the different set of modules with a different refractive index.

1.5 cm gaps between the TOF counters and TSC counters are introduced to isolate TOF from
photon conversion backgrounds by taking the coincidence between the TOF and TSC counters.
Electrons and positrons created in the TSC layer are impeded from reaching the TOF counters
due to this gap in a 1.5 T field. Fine-mesh photomultiplier tubes (FM-PMTs) are attached to
both ends of the TOF counter with air gaps of 0.1 mm. The air gaps for the TOF counter
selectively pass earlier arrival photons with small incident angle and reduce a gain saturation
effect of FM-PMTs due to large pulses at a very high rate. Since the time resolution is
determined by the rising edge of the time profile of arrival photons at PMT, the air gaps
hardly affect the time resolution. As for the TSC counters, the tubes are glued to the light
guides at the backward ends.

Figure 3.12 shows time resolutions as a function of z for forward and backward PMTs and
for the weighted average. The resolution for the weighted average is about 100 ps with a small
z dependence. This satisfies the requirement. Figure 3.13 shows the mass distribution for
each track in hadron events, calculated using Eq. (3.9) using the momentum of the particle
determined from the CDC track fit assuming muon mass. Clear peaks corresponding to pions,
kaons, and protons are seen. The data points are in good agreement with an MC expectation
(histogram) obtained assuming the time resolution of TOF σTOF = 100 ps.

2-5 Electromagnetic Calorimeter (ECL)

The main purpose of the electromagnetic calorimeter is the detection of photons from B meson
decays with high efficiency and good resolutions in energy and position. Since most of these
photons are end products of cascade decays, they have relatively low energies and, thus, good
performance below 500 MeV is especially important. On the other hand, since important two-
body decay modes, such as B → K∗γ and B0 → π0π0, produce photons energies up to 4 GeV,
good resolution for high momentum region is also needed to reduce backgrounds for these
modes. Electron identification in Belle relies primarily on a comparison of the charged particle
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σ (TOF) = 100ps

P<1.25GeV/c

Figure 3.13: Mass distribution from TOF measurements for particles with momenta below
1.2 GeV/c. The histogram corresponds to MC distribution.

momentum and the energy deposits in the electromagnetic calorimeter. Good electromagnetic
energy resolution results in better hadron rejection against electron. High momentum π0

detection requires the separation of two nearby photons and a precise determination of their
opening angle. This requires a fine-grained segmentation in the calorimeter.

In order to satisfy the above requirements, we use a highly segmented array of CsI(Tl)
crystals with silicon photodiode readout installed in a magnetic field of 1.5 T inside a super-
conducting solenoid magnet. CsI(Tl) crystals have desirable features of a large photon yield,
weak hygroscopicity, mechanical stability, and moderate price.

The overall configuration of the Belle calorimeter system, ECL [37], is shown in Fig. 3.14.
ECL consists of the barrel section of 3.0 m in length with the inner radius of 1.25 m and the
annular end-caps at z = +2.0 m and −1.0 m from IP. Each crystal has a tower-like shape and is
arranged to point almost to IP. There are small tilt angles from the direction exactly pointing to
the IP to avoid photons to escape through the gap of the crystals. In the barrel section the tilt
is ∼ 1.3◦ in the θ and φ directions. Forward (backward) end-cap crystals are tilted by ∼ 1.5◦

(∼ 4.0◦) in the θ direction. The calorimeter covers the polar angle region of 17.0◦ < θ < 150.0◦,
corresponding to a total solid angle coverage of 91% of 4π sr. Small gaps between the barrel
and end-cap crystals provide a pathway for cables and room for supporting structures of the
inner detectors. The loss of solid angle associated with these gaps is approximately 3% of the
total acceptance. The entire system contains 8736 CsI(Tl) counters and weighs 43 tons.

The size of a crystal in the θ-φ direction is determined so that a crystal contains approx-
imately 80% of the total energy deposit by a photon injected at the center of its front face.
The typical dimension of a crystal is 55 mm× 55 mm at front face and 65 mm× 65 mm at rear
face for the barrel part. The length (in r direction) is 30 cm, which corresponds to 16.2X0

(radiation length). This length is long enough to avoid deterioration of the energy resolution
at high energies due to the shower leakage from rear of the counter.

The energy dependence of the average position resolution estimated by MC and can be
approximated by

σ (mm) = 0.27 +
3.4√
E

+
1.8
4
√
E

(E in GeV) , (3.10)

which is shown in Fig. 3.15. As can be seen in the figure, the estimation is well consistent with
the result of the beam test [37] in the measured energy region. The energy resolution given by
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the beam test is

σE

E
(%) =

√(
0.066

E

)2

+

(
0.81
4
√
E

)2

+ 1.342 (E in GeV) . (3.11)

This is consistent with the collision data calibrated by e+e− → e+e− (Bhabha) events, where
the energy resolutions are 1.5%, 1.9%, and 2.5% for the barrel, forward, and backward ECL,
respectively. (Fig. 3.16)

Figure 3.14: Configuration of ECL.

2-6 K0
L

and Muon Detection System (KLM)

KLM [38] is designed to identify K0
L and muon with high efficiency over a broad momentum

range greater than 600 MeV/c.
KLM consists of alternating layers of charged particle detectors and 4.7 cm-thick iron plates.

The barrel-shaped region around IP covers an angular range from 45◦ to 125◦ in the polar
angle and the end-caps in the forward and backward directions extend this range to 20◦ and
155◦. There are 15 detector layers and 14 iron layers in the octagonal barrel region and 14
detector layers in each of the forward and backward end-caps. The iron plates provide a total
of 3.9 interaction lengths of material for a particle traveling normal to the detector planes.
In addition, ECL provides another 0.8 interaction length of material to convert K0

L. K0
L that

interacts in the iron plates of KLM or ECL produces a shower of ionizing particles. The
position information of this shower with respect to the IP determines the flight direction of
K0

L, while the fluctuations in the size of the shower is so large that it is impossible to measure
the energy of K0

L in useful resolution. The multiple layers of charged particle detectors and
iron allow the discrimination between muons and charged hadrons (π± or K±) based on their
range and transverse scattering. Muons travel much farther with smaller deflections on average
than strongly interacting hadrons.
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Figure 3.15: Energy dependence of the average position resolution. The solid curve is the result
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The plots correspond the overall average (top left) and each of the barrel (top right), forward
end-cap (bottom left), and backward end-cap (bottom right) sections.

45



CHAPTER 3. EXPERIMENTAL APPARATUS

The detection of charged particles is provided by glass electrode resistive-plate counters
(RPCs). Resistive plate counters have two parallel plate electrodes with high bulk resistivity
(≥ 1010 Ωcm) separated by a gas-filled gap. We choose a incombustible mixture of 62% HFC-
134a, 30% argon, and 8% butane silver. Butane silver is a mixture of approximately 70%
n-butane and 30% iso-butane. In a streamer mode, an ionizing particle traversing the gap
initiates a streamer in the gas that results in a local discharge of the plates. This discharge is
limited by the high resistivity of the plates and the quenching characteristics of the gas. The
discharge induces a signal on external pickup strips, which can be used to record the location
and the time of the ionization.

Figure 3.17 shows the cross-section of a superlayer for the barrel region, in which two RPCs
are sandwiched between the orthogonal θ and φ pickup strips with the ground planes for signal
reference and proper impedance. This unit structure of two RPCs and two readout planes is
enclosed in an aluminum box and is less than 3.7 cm thick. Each RPC is electrically insulated
with a double layer of 0.125 mm thick mylar. Signals from both RPCs are picked up by copper
strips above and below the pair of RPCs, providing a three-dimensional space point information
for particle tracking. Each barrel module has two rectangular RPCs with 48 z pickup strips
perpendicular to the beam direction. The smaller seven superlayers closest to IP have 36 φ
strips and the outer eight superlayers have 48 φ strips orthogonal to the z strips. Each end-cap
superlayer module contains 10 π-shaped RPCs and have the 96 φ and 46 θ pickup strips.

Figure 3.18 shows a histogram of the difference between the direction of the neutral cluster
(K0

L candidate) detected by KLM and the missing momentum direction in data. The miss-
ing momentum vector is calculated using all the other measured particles in the event. The
histogram shows a clear peak where the direction of the neutral cluster measured in KLM is
consistent with the missing momentum in the event, indicating correct detection of K0

L. The
non-peaking flat-distributed component in the histogram is mainly due to undetected neutrinos
and particles escaping the detector acceptance.

2-7 Extreme Forward Calorimeter (EFC)

EFC6 [39] extends the polar angle coverage by ECL, which is 17◦ < θ < 150◦. EFC covers the
angular range from 6.4◦ to 11.5◦ in the forward direction and 163.3◦ to 171.2◦ in the backward
direction. EFC is also required to function as a beam mask to reduce backgrounds for CDC.
In addition, EFC is used for a beam monitor for the KEKB control and a luminosity monitor
for the Belle experiment. It can also be used as a tagging device for two-photon physics. Since
EFC is placed in the very high radiation level area around the beam pipe near IP, it is required
to be radiation hard. Thus, a radiation-hard BGO (Bismuth Germanate, Bi4Ge3O12) crystal
calorimeter is used for EFC. The detector is segmented into 32 in φ and 5 in θ for both the
forward and backward detectors. The radiation lengths of the forward and backward crystals
are 12 and 11, respectively.

The energy sum spectra for e+e− → e+e− (Bhabha) events show a correlation between the
forward and backward EFC detectors as expected. A clear peak at 8 GeV (3.5 GeV) with a
resolution of 7.3% (5.8%) in rms is seen for the forward (backward) EFC.

2-8 Solenoid Magnet

A superconducting solenoid provides a magnetic field of 1.5 T in a cylindrical volume of 3.4 m
in diameter and 4.4 m in length [40]. The coil is surrounded by a multilayer structure consisting
of iron plates and calorimeters, which is integrated into a magnetic return circuit. The iron
structure of the Belle detector serves as the return path of magnetic flux and an absorber
material for KLM. It also provides the overall support for all of the detector components.

6EFC is not explicitly used in this analysis.
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2-9 Trigger System (TRG)

The cross section for physics events of interest, like e+e− → BB event, is smaller than those of
the background processes, like e+e− → uu. Thus, they have to be triggered by appropriately
restrictive conditions. In addition, high beam backgrounds are also expected due to the high
beam current. Since the rates are very sensitive to actual accelerator conditions, it is difficult
to make a reliable estimate. Therefore, the trigger system is required to be robust against
unexpectedly high beam background rates. The trigger conditions should be flexible so that
background rates are kept within the tolerance of the data acquisition system, while the effi-
ciency for physics events of interest is kept high. It is important to have redundant triggers to
keep the efficiency high even for varying conditions. The Belle trigger system is designed to
satisfy these requirements.

The Belle trigger system consists of the Level-1 hardware trigger and the Level-3 software
trigger. The latter is designed to be implemented in the online computer farm. Figure 3.19
shows the schematic view of the Belle Level-1 trigger system [41]. It consists of the sub-detector
trigger systems and the central trigger system called the Global Decision Logic (GDL). The sub-
detector trigger systems are classified into two categories: track triggers and energy triggers.
CDC and TOF are used to yield trigger signals for charged particles. CDC provides r-φ
and r-z track trigger signals. The ECL trigger system provides triggers based on the total
energy deposit and the cluster counting of crystal hits. These two categories allow sufficient
redundancy. The KLM trigger gives additional information on muons and the EFC triggers are
used for tagging two photon events as well as Bhabha events. The sub-detectors process event
signals in parallel and provide trigger information to GDL, where all information is combined
to characterize an event type.

Accompanied with the upgrade of SVD in the summer of 2003, we have implemented trigger
capability using the track information from SVD. Though we do not use it for the data taking
currently, it has proved to effectively reduce the trigger rate with slight loss of the events of
interest and to be useful in future when the accelerator is improved to have higher beam current
and the beam background gets larger.

The trigger system provides the trigger signal with the fixed time of 2.2µs after the event
occurrence. The Belle trigger system, including most of the sub-detector trigger systems, is
operated in a pipelined manner with clocks synchronized to the KEKB accelerator RF signal.
The typical Level-1 trigger rate as of October 2006 is ∼ 400-600 Hz, which is well below the
requirement, . 800 Hz, from the current data acquisition system (DAQ). The trigger rate is
dominated by the beam background. The trigger efficiency is monitored from the data using
the redundant triggers. Each of the multitrack, total energy, and isolated cluster counting
triggers provides more than 96% efficiency for multi-hadronic data samples. The combined
efficiency is more than 99.5%.

2-10 Data Acquisition System (DAQ)

In order to satisfy the data acquisition requirements so that it works at ∼ 400 kHz with a
deadtime fraction of less than 10%, the distributed-parallel system is devised. The global
scheme of the original system is shown in Fig. 3.20. The entire system is segmented into
seven subsystems running in parallel, each handling the data from a sub-detector. Data from
each subsystem are combined into a single event record by an event builder, which converts
“detector-by-detector” parallel data streams to an “event-by-event” data river. The event
builder output is transferred to an online computer farm, where another level of event filtering
is done after the fast event reconstruction. The data are then sent to a mass storage system
located at the computer center via optical fibers. With this system, a deadtime fraction of
∼ 8% for the Level-1 trigger rate of 400 Hz is achieved.

To date, the DAQ system has undergone several improvements to keep up with the in-
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creasing luminosity and beam background. The upgrade of SVD in the summer of 2003 also
involved the entire replacement of the DAQ part of the SVD, enhancing the performance of the
system such that the deadtime of the SVD DAQ is not a bottleneck for the whole DAQ system
anymore. At the same time, some other parts of the DAQ system has also been modified. The
DAQ subsystem for some sub-detectors with large numbers of channels are subdivided and the
degree of parallelism is enhanced. These modifications greatly improved the performance of
the DAQ system as a whole and now it achieves ∼ 2% deadtime fraction for the Level-1 trigger
rate of 400 Hz. This is well acceptable for the current trigger rate of ∼ 400-600 Hz. There is
also an upgrade in the lower stream of the system. A PC farm to perform the event recon-
struction (RFARM) is introduced at the lowest stream, which makes it possible to reconstruct
the events simultaneously with the data taking. This system has been in full operation since
the summer of 2004 and now the raw data is not stored.
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Analysis Tools and Techniques

1 Particle Identification

In this section, we describe our strategy of the particle identification. Particle identification
plays important roles in 1) the suppression of the b → c decay backgrounds such as B0 →
D0π0(D0 → K+π−), which has large branching fraction and can mimic B0 → π+π−π0 without
K+ identification, and 2) the flavor tagging, where the charges of the identified leptons and
strange particles are very important.

1-1 K±/π± Identification

We discriminate between K± and π± by combining following three measurements [42]:

• CDC measurement of dE/dx,

• TOF measurement, and

• ACC measurement of the number of photoelectrons (Npe).

The three measurements covers different momentum regions; Fig. 4.1 shows the momentum
coverage of each measurement for the K±/π± separation. We model the probability density
functions (PDF’s) from the responses of the detectors for each of K± and π±; the likelihood
functions for each detectors are calculated based on the PDF’s. The product of the three
likelihoods for the three measurements is the overall likelihood probability for being a kaon
(LK) or a pion (Lπ). A particle is then identified as a kaon or a pion by a selection criterion
based on the likelihood ratio RK/π :

RK/π ≡ LK

LK + Lπ
. (4.1)

The validity of the K±/π± identification is demonstrated using the data of the charm decay
chain of D∗+ → D0π+(D0 → K−π+). In the decay chain, we can use the charge of the π
from the first D∗+ decay to determine the K±/π± identification of the charged tracks from
the subsequent D0 decays. Note that the mass difference between D∗+ and D0 is 145 MeV,
which is only ∼ 6 MeV above the π± mass, and thus the π from the first decay of D∗+ has
characteristic low momentum. This makes it possible to obtain a very pure sample (S/N > 30)
without relying on the information of particle information. Figure 4.2 shows a two-dimensional
distribution of the likelihood ratio RK/π and measured momenta for the kaon and pion tracks.
The figure demonstrates the clear separation between kaons and pions up to around 4 GeV/c.
The measured K efficiency and π fake rate in the barrel region are plotted as functions of the
track momentum in Fig. 4.3, where a selection criterion of RK/π > 0.6 is applied.
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Figure 4.1: Momentum coverage of each detector used for K±/π± separation.
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Figure 4.2: A scatter plot of the track momentum (vertical axis) and the likelihood ratio
RK/π (horizontal axis) for K± (closed circle) and π± (open circle) obtained from the data of
D∗+ → D0π+(D0 → K−π+) decays. Strong concentration in the region of RK/π ∼ 1 (∼ 0) is
observed for K± (π±) over a wide momentum region up to ∼ 4 GeV/c.
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Figure 4.3: K efficiency and π fake rate in the barrel region measured using the data of
D∗+ → D0π+(D0 → K−π+) decays. The selection criterion of RK/π > 0.6 is applied here.

1-2 Electron Identification

We use the following five discriminants to distinguish electrons against hadrons and muons [43]:

Matching χ2 Matching between the position of the charged track extrapolated to the ECL
and the energy cluster position measured by the ECL. An electron show a good matching,
i.e., small χ2, since the electromagnetic shower in the ECL develops along the electron
track. On the other hand, the matching is worse for the hadrons, since the energy deposit
by a hadron comes from interactions such as π+n → π0p (π0 → γγ → EM shower)
where the flight directions of the secondary π0 and the subsequent γ are not always well
correlated with that of the primary π+. (Fig. 4.4, left)

E/p ratio The ratio of the energy measured by the ECL,E, and the charged track momentum,
p, measured by the CDC. An electron yields E/p ratio of ∼ 1 since it deposits almost all
of its energy in ECL, while a hadron does not. (Fig. 4.4, middle)

E9/E25 ratio Transverse shower shape at the ECL, defined as the ratio between the energy
deposit in the 3 × 3 array of ECL crystals around the cluster center (E9) and that in
the 5 × 5 array (E25). Electrons have a peak at around E9/E25 ∼ 1 with small tail
in the small E9/E25 region, while hadrons have larger tail in the small E9/E25 region.
The reason is the same as the case of matching χ2; secondary π0 and γ from the hadron
interaction tend to have large transverse momentum and energy deposit can spread over
a wide region. (Fig. 4.4, right)

dE/dx in the CDC Electrons and hadrons with the same momenta have different velocity
and thus exhibit different dE/dx.

Light yield (Npe) in ACC Electrons and hadrons with the same momenta have different
velocity and thus yield different amount of light in ACC.

Corresponding to all the five discriminants, likelihood functions are calculated for electrons
and non-electrons. Here the non-electrons are the mixture of the particles other than electrons
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(hadrons and muons), whose composition is obtained relying on the MC of generic B decays.
The total likelihood functions for electrons (Le) and non-electrons (Le) are defined as the
products of the five likelihood functions. With the total likelihood, we define the likelihood
ratio Re/e:

Re/e ≡ Le

Le + Le
, (4.2)

which we use for track selection criteria. Figure 4.5 shows the likelihood distributions for elec-
trons and pions, where electrons are identified. The performance of the electron identifications,
i.e., the efficiency and the fake rate, is well calibrated using various processes of e+e− → e+e−γ,
e+e− → e+e−e+e−, hadronic events with a single e±, hadronic events with photon conversion,
and J/ψ → e+e−, where the difference between data and MC is studied and well understood.

1-3 Muon Identification

Muon identification [44] is based on the difference of interaction in material between muons and
hadrons. Since a muon are a massive lepton, it deposits its energy only through the multiple-
Coulomb scattering, while an electron, the almost massless lepton, deposits its energy by the
creation of an electromagnetic shower and a hadron deposit their energy through hadronic
interactions. Electrons fully deposit their energy in the ECL and rarely reach KLM and thus
can be easily distinguished from muons.

Muons are identified against hadrons as follows. A track is extrapolated from the CDC to
the KLM and associated KLM hits are searched; a track is re-fitted with those associated KLM
hits, assuming that a track deposit its energy only by multiple scattering; we use the following
two information obtained in this procedure for the muon identification:

• Range of the associated KLM hits. The difference between measured and expected ranges
is used as the discriminant, and

• Goodness of the matching between the position of the associated KLM hits and that
obtained by extrapolating the CDC track.

The likelihood functions are calculated for the two discriminants; we calculate the total
likelihood functions for muons (Lµ-ID

µ ), pions (Lµ-ID
π ), and kaons (Lµ-ID

K ), as the products of
the likelihood functions of the discriminants. Based on the likelihood functions, the muon
likelihood ratio (Rµ/π,K) is calculated:

Rµ/π,K ≡ Lµ-ID
µ

Lµ-ID
µ + Lµ-ID

π + Lµ-ID
K

. (4.3)

Figure 4.6 shows the efficiency for muons and the fake rate for pions estimated using the data
of e+e− → e+e−µ+µ− and KS → π+π−. For momentum above 1 GeV, the efficiency is above
∼ 90% while the fake rate is below ∼ 2%.

2 Flavor Tagging

In the measurement of CP violation, we need to know the flavor of the B that decays into ftag,
which we call Btag, in the decay chain of Υ(4S) → B0B0 → fCPftag, where fCP = π+π−π0 in
this analysis. We use the charged track information inclusively, except for that of the tracks
in the π+π−π0. In this section, we describe the algorithm to determine the flavor of Btag from
the inclusive track information.

The flavor tagging algorithm used at Belle is called as multi-dimensional likelihood (MDLH)
method [45]. The flavor of the Btag is determined based on the charge information of the
following characteristic final state particles (Fig. 4.7):
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Figure 4.4: Cluster-track matching χ2 (left), E/p (middle), and E9/E25 (right) distributions
for electrons (solid line) and charged pions (broken line).
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Figure 4.5: Likelihood ratio for the electron identification (Re/e). Solid and broken histograms
correspond to the electrons and charged pions, respectively.
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Figure 4.6: Muon efficiency and pion fake rate depending on the track momentum. Here, the
criterion of Rµ/π,K > 0.9 is applied.

• high momentum leptons from B → Xl±ν,

• intermediate momentum leptons from the cascade decay B → DX , D → Kl±ν,

• kaons from the cascade decay B → DX , D → K±Y ,

• high momentum pions from B → D(∗)π± decays,

• slow pions from B → D∗±X , D∗± → Dπ±, and

• Λ from the b→ c→ s cascade decay.

The flavor tagging proceeds in two steps: track-level and event-level. In the track-level flavor
tagging, the information of the tracks, such as the charge, momentum, and particle ID, are
examined and the likelihood of the mother Btag being B0 or B0 is calculated for each of the
track categories. We describe the flavor tagging information by qtag · r. Here, qtag = +1(−1)
when Btag is likely to be B0(B0) and r describes the confidence on the qtag decision, where
r = 1 when the decision is 100% confident and r = 0 for 0% confidence, i.e., qtag = +1 and
qtag = −1 will be given randomly for the case of r = 0. In the event-level flavor tagging,
we combine all the track-level likelihood and calculate event-level likelihood. The obtained
event-level likelihood is calibrated using the data of the control sample and then used in the
physics analysis.

2-1 Track-level Flavor Tagging

The track-level consists of four categories (slow pion, lambda, kaon, and lepton) of flavor
tagging lookup tables, which are used to calculate the likelihood. Charged tracks which do
not belong to fCP = π+π−π0 are used in the track-level tagging algorithms. These tracks
are required to be associated with the interaction point (IP) except the one used in K0

S or Λ
recontruction. The minimum distance between the track and IP is required to be less than
2 cm x-y plane and 10 cm in z axis.
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Slow Pion Category A charged track which has a momentum < 0.25 GeV/c in the center
mass system (cms) is used for slow pion tags. These tracks cannot be kaon like, according
to their particle identcation likelihood ratio, RK/π . The following variables are exploited
to calculate the likelihood: the track’s 1) charge, 2) momentum and 3) polar angle in the
laboratory frame, 4) the angle between the slow pion and the thrust axis of rest of the
tag side particles in the cms (αthr), and 5) a pion/electron identcation ratio Rπ/e from
dE/dx measurements. The angle αthr is useful to suppress the background from non-D∗

decays. The ratio Rπ/e provides additional power for removing background electrons
from photon conversion.

Lambda Category A pair of oppositely charged tracks is reconstructed as a Λ candidate.
One of the tracks should be identified as a proton. The Λ candidate is required to
have an invariant mass, Mpπ, in the range of 1.1108-1.1208 GeV/c2 The angle between
the candidate Λ momentum and the Λ flight direction (estimated by the IP and the
candidate Λ vertex), θdefl, should be less than 30◦. The distance between the tracks in z
axis at the Λ vertex position, ∆z, should be smaller than 4 cm. The flight distance in x-y
plane of the candidate Λ is required to be larger than 0.5 cm. The lookup table includes
the flavor of Λ; Mpπ, θdefl, and ∆z described above; and the presence of K0

S candidates
as the discriminant.

Kaon Category A charged track which is not positively idented as a lepton or a proton is
included in this category. The flavor information from the kaon in the b → c → s decay
is the main concern. The fast pions from B → D(∗)π± decays are also included1. The
lookup table includes the following variables as the discriminant: the charge of the target
track, the presence of K0

S candidates, the momentum of the track in the cms, the polar
angle of the track in the laboratory frame, and the K±/π± identcation likelihood ratio
(RK/π).

Lepton Category The lepton tag is the most powerful tagging method. High momentum
electrons and muons from the B → Xl±ν decays and the intermediate momentum leptons
in the decay chain of B → DX , D → Kl±ν are considered. A charged track with a
momentum greater than 0.4 GeV/c and electron likelihood larger than 0.8 is included
as an electron candidate. A muon candidate is required to have a momentum greater
than 0.8 GeV/c and muon likelihood larger than 0.95. The lepton momentum in the cms
frame and the polar angle of the track in the laboratory frame are used in the discriminant
as basic information. The lepton identcation likelihood is included for the selection of
higher purity leptons. The lepton momentum can distinguish between the leptons from
the primary B → Xl±ν decays and those from the secondary D → Kl±ν decays, which
is important since the charges of the leptons are opposite for the primary and secondary
from the same flavor of Btag. The variables of recoil mass and missing momentum also
provide information about these two types of decays; the recoil mass may indicate the
presence of D mesons, and the missing momentum indicates the momenta of neutrinos.

All the output are calculated based on the lookup tables prepared with MC. The MC events
distribute over the lookup tables, where the number of B0 events (N(B0)) and that of B0

events (N(B0)) are defined for each bin. Based on the prepared lookup table, the likelihood
for a track being from B0 (L(B0)) and B0 (L(B0)) are calculated by the N(B0) and N(B0)
of the lookup-table bin where the track is located, as

L(B0) =
N(B0)

N(B0) +N(B0)
, (4.4)

1This is achieved automatically, since we do not apply a cut criterion on the particle ID information, RK/π ,
but use it as a discriminant in the lookup table. In this manner, kaons and pions are treated together without
discrete distinction.
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L(B0) = 1 −L(B0) . (4.5)

The (qtag · r) as the output of the track-level flavor tagging is calculated from the likelihood as

qtag · r =
L(B0) −L(B0)

L(B0) + L(B0)
. (4.6)

2-2 Event-level Flavor Tagging

The flavor tagging information at the track-level are combined into a single qtag and r for each
event, as shown in Fig. 4.8. In the lepton and slow pion categories, the tracks with the highest
r value is chosen as an input for the event-level flavor tagging. On the other hand, kaon and Λ
categories are combined by taking a product of the likelihood for all the tracks and Λ candidates
in these categories and the product is used to calculate (qtag · r) as the input for the event-level
flavor tagging. This strategy gives a better result than choosing the one track or candidate
with the highest r value. A three dimensional event-level lookup table is prepared with those
three (qtag · r) values as the input. The likelihood and the resultant event-level (qtag · r) are
calculated from the lookup table in the same manner as the track-level flavor tagging.

Slow pion Kaon Lepton

Information on charged tracks

Lambda

Track-level 
look-up tables

Flavor information "q" and "r"

Event-level look-up table

q.r q.r(q.r)K/Λ

Select track
      with 
largest "r"

Calculate
combined "q.r"

Select track
      with 
largest "r"

Figure 4.8: A schematic diagram of the flavor tagging algorithm.

2-3 Calibration and the Resultant Performance

Since the lookup tables used above are all based on MC, the performance, or the fraction of
wrong-tag, has to be calibrated with data. We describe our method to calibrate it with data
in the followings.

The wrong-tag effect enters in our observation as follows. Provided that we have a true
∆t-qtag PDF in general, Pt(∆t, qtag), the distribution we observe, P (∆t, qtag), is diluted by the
wrong-tag effect as

P (∆t, qtag) = (1 − w)Pt(∆t, qtag) + wPt(∆t, qtag) , (4.7)
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where w is the wrong-tag fraction2 and qtag = −1(+1) for qtag = +1(−1). For example, in the
case of CP -violation measurement, the Pt(∆t, qtag) is given by Eq. (2.92) of chapter 2 as

Pt(∆t, qtag) =
1

4τB0

e−|∆t|/τ
B0

{
1 + qtag ·

[
AfCP

cos(∆md∆t) + SfCP
sin(∆md∆t)

]}
, (4.8)

where τB0 = 1/Γ and overall constant factor is determined to make the PDF normalized to be
unity. Then, the distribution with the wrong-tag effect taken into account is

P (∆t, qtag)

=
1

4τB0

e−|∆t|/τ
B0

{
1 + qtag(1 − 2w)

[
AfCP

cos(∆md∆t) + SfCP
sin(∆md∆t)

]}
.

(4.9)

In practice, the situation is more complex. First, in order to make full use of the statistical
power of the output from the flavor tagging, we introduce six regions of the tagging quality
r: 0 < r ≤ 0.25, 0.25 < r ≤ 0.5, 0.5 < r ≤ 0.625, 0.625 < r ≤ 0.75, 0.75 < r ≤ 0.875,
and 0.875 < r ≤ 1.0. We treat the events in the different regions separately. The wrong-tag
fraction has to be defined for each region as wl, where l = 1, 2, · · · , 6 is the index over the r
regions. Secondly, the wrong-tag fraction can be different for B0 and B03. With the wrong-tag
probability for B0(B0) decay defined as w+

l (w−
l ), Eq. (4.7) is rewritten as

P (∆t, qtag = +1) = (1 − w+
l )Pt(∆t,+1) + w−

l Pt(∆t,−1) ,

P (∆t, qtag = −1) = (1 − w−
l )Pt(∆t,−1) + w+

l Pt(∆t,+1) ,
(4.10)

and Eq. (4.9) is

P (∆t, qtag) = P (∆t, qtag, l)

=
1

4τB0

e−|∆t|/τ
B0

{
1 − qtag∆wl + qtag(1 − 2wl)

[
AfCP

cos(∆md∆t) + SfCP
sin(∆md∆t)

]}
,

(4.11)

where ∆wl ≡ w+
l −w−

l and wl ≡ (w+
l +w−

l )/2. Here, ∆wl is called wrong-tag fraction difference
and its absolute value is much smaller than wl. The 12 values in total, wl and ∆wl, are the
parameters to be calibrated.

Another useful example is the case to observe B0-B0 mixing. In this case, instead of fCP

we measure the decay chain of Υ(4S) → B0B0 → fflvftag, where fflv is a final state of flavor
eigenstate for B0 or B0. In this case, the Pt(∆t, qtag) without the wrong-tag effect is

Pt(∆t, qtag) = Pt(∆t, qflv, qtag) =
1

8τB0

e−|∆t|/τ
B0

{
1 − qflvqtag cos(∆md∆t)

}
, (4.12)

where qflv = +1(−1) when fflv is the flavor eigenstate of B0(B0). The distribution we observe
in this case is

P (∆t, qtag) = P (∆t, qrec, qtag, l)

=
1

8τB0

e−|∆t|/τ
B0

{
1 − qtag∆wl − qflvqtag(1 − 2wl) cos(∆md∆t)

}
.

(4.13)

The key observation here is that the amplitudes of the terms proportional to e−|∆t|/τ
B0 and

e−|∆t|/τ
B0 cos(∆md∆t) are only dependent on wl and ∆wl. We exploit this fact to calibrate

2Note that there is a relation of r = 1 − 2w by construction of r, if the MC were perfect.
3This effect arises from the fact that our detector is made of matter, not antimatter; the detection efficiency

can be different for a particle and an antiparticle, such as K+ and K−. This potentially makes the asymmetry
of the wrong-tag fraction between B0 and B0.
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wl and ∆wl with data. Choosing the control sample events with final states of D(∗)−π+,
D∗−ρ+, and D∗−l+ν as the fflv, we perform a time-dependent fit and determine the wl and
∆wl. Figure 4.9 shows the fit result. The vertical axis is (NOF −NSF)/(NOF +NSF), where
NOF(SF) is the number of events with qflvqtag = −1(+1) in each |∆t| bin. As can be seen in
the figure, the mixing amplitudes are larger for the bins with large r than those with small r,
reflecting the fact that the events with large r have small wrong-tag fraction. Table 4.1 lists
the parameters obtained by the fit, which we use in the time-dependent Dalitz plot analysis.
Effective tagging efficiency is defined as

εtag ≡
∑

F lwl , (4.14)

where F l is the event fraction for each tagging quality region l; we achieve εtag ∼ 30%.

-1
-0.5

0
0.5

1

0 5 10 15
-1

-0.5
0

0.5
1

0 5 10 15

-1
-0.5

0
0.5

1

0 5 10 15

(O
F

-S
F

)/
(O

F
+

S
F

)

-1
-0.5

0
0.5

1

0 5 10 15

-1
-0.5

0
0.5

1

0 5 10 15
|∆t|(ps)

-1
-0.5

0
0.5

1

0 5 10 15
|∆t|(ps)

Figure 4.9: Fit result of the time-dependent fit to the B0-B0 mixing. The plots from top-left
to bottom-right correspond to the events with l = 1, 2, · · · , 6, respectively. The amplitude of
the oscillation is large in the region with large l, since the dilution effect is small there.

3 Proper-Time Difference Reconstruction

We need to measure the proper-time difference of two B meson decays, ∆t, to observe the
time-dependent CP asymmetry. Since the Υ(4S) is produced in a boosted system, where the
boost factor is (βγ)Υ = 0.425, and the momenta of B’s in the Υ(4S) rest frame are small, ∆t
is related to the position difference between the decay vertices of two B mesons, ∆z, as

∆t =
∆z

c(βγ)Υ
≡ zCP − ztag

c(βγ)Υ
. (4.15)

Here zCP and ztag are the decay vertex positions of the BCP (B decaying to π+π−π0) and
the Btag (tag-side B), respectively. Described in this section is the method to reconstruct the
vertex positions from the information of charged tracks and the interaction point (IP).
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Table 4.1: Wrong tag fractions wl and wrong tag fraction difference ∆wl obtained from the
time-dependent fit to the B0-B0 mixing. Most of the wrong tag fraction differences are con-
sistent with zero.

DS-I

l wl ∆wl

1 0.464± 0.006 −0.011± 0.006

2 0.331± 0.008 +0.004± 0.010

3 0.231± 0.009 −0.011± 0.010

4 0.163± 0.008 −0.007± 0.009

5 0.109± 0.007 +0.016± 0.009

6 0.020± 0.005 +0.003± 0.006

DS-II

l wl ∆wl

1 0.467± 0.006 +0.005± 0.007

2 0.324± 0.007 −0.029± 0.009

3 0.223± 0.010 +0.019± 0.011

4 0.160± 0.011 +0.008± 0.011

5 0.101± 0.009 −0.022± 0.010

6 0.020± 0.006 +0.003± 0.006

3-1 Interaction Point (IP) Profile

We use the constraint of interaction point, which is the collision point of the electron and
positron beams, to improve the efficiency and position resolution of the vertex reconstruction.
With this information, we can reconstruct the vertex position even from a single charged track.

We treat the IP as profile, the distribution accumulated and averaged over a certain range
of events. The IP profile is calculated from the following information:

Fill-by-fill (run-by-run) information The IP distribution measured by Belle detector ac-
cumulated over each beam fill (run)4. This information is used to determine the rotation
of IP with respect to the detector coordinate, (θx, θy, θz), and the detector-measured
size of IP in the rotated coordinate, (σmes

x′ , σmes
y′ , σmes

z′ ). The typical scale of the size is
∼ (100µm, 70µm, 3 mm).

Event-by-event information The IP distribution measured by Belle detector accumulated
over each 10,000 events, which is usually smaller than the number of events for each run.
This information is used to obtain the mean position of the IP: (µx, µy, µz).

KEKB accelerator information The run-by-run beam size information offered by KEKB
accelerator, from which we calculate the KEKB-measured size of IP in (x, y) direction
only, (σacc

x , σacc
y ), whose typical size is (70µm, 5µm). Note that the cross-section of the

beams are designed to be elliptical and thus σacc
x � σacc

y .

For the first two items measured with Belle detector, we use hadronic events, which consists
of e+e− → qq (q = u, d, s, c) continuum events and e+e− → BB events. Since the continuum
events have dominant contribution, the tracks are considered to be coming from the primary
vertices of the e+e− collision. The detector-measured size is affected and smeared by detector
resolution.

From the above measurements, we calculate the profile of IP as follows. For the mean
position and the rotation, we use the measured (µx, µy, µz) and (θx, θy, θz) as they are. For the
size, on the other hand, we use following values calculated based on the measured information:

σx′ =
√

(σmes
x′ )2 − (σmes

y′ )2 ,

σy′ = σacc
y ,

σz′ = σmes
z′ .

(4.16)

4Until 2002, this information of IP profile was calculated for each beam fill. Since 2003, having large enough
luminosity, it has been calculated for each run, which is smaller unit for the region of events than the fill. (A
fill consists of several runs.) Note that now we do not have the concept of fill, since KEKB is operated in the
continuous injection mode.
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The reason we obtain σx′ by this relation is that σmes
y′ can be considered to be detector resolution

since σmes
y′ � σacc

y . Note that the detector resolution in z direction (∼ 0.1 mm) is much better
than σmes

z′ ∼ 3 mm and thus we can use σmes
z′ for σz′ . The typical size of the (σx′ , σy′ , σz′) is

(70µm, 5µm, 3 mm). In the physics analysis, we convolve the obtained (σx′ , σy′ , σy′) with 1)
the uncertainty of (µx, µy, µz) measurement and 2) B flight effect, which we estimate to be
21µm in x and y directions; and use it for the vertex reconstruction.

3-2 Vertex Reconstruction of BCP

The vertex position of BCP → π+π−π0 decay is reconstructed using two charged tracks of
the π+ and π−, and IP. We require the charged tracks to have sufficient number of SVD-hits
associated; a 2-D hit and another z hit is the least requirement in DS-I, while two 2-D hits is
at least required in DS-II. Here, a 2-D hit is a set of r-φ hit and z hit in a single SVD layer
associated with the same charged track. Only the tracks satisfying this requirement are used
for the vertex reconstruction; the vertex reconstruction fails when both of the two charged
tracks in an event does not satisfy the requirement.

3-3 Vertex Reconstruction of Btag

The decay vertex of the Btag is determined inclusively from the tracks that are not assigned
to BCP and satisfy the requirement of SVD-hits, where the SVD-hit requirement is the same
as that for BCP vertex reconstruction. Further selection criteria are carefully chosen and
required to minimize the effect of poorly-reconstructed tracks and long-lived particles, such as
D mesons and K0

S. The effect of the secondary charm decay moves the decay vertex position of
the Btag toward charm flight direction. It also significantly degrades the vertex resolution. For
this reason, the resolution of ∆z ≡ zCP − ztag measurement is dominated by that of tag-side
vertex, ztag. The followings are the requirements to the tracks:

• The track must be associated with sufficient number of SVD-hits (the same requirement
as CP -side).

• The estimated track error in z direction, σz , must be less than 500µm to remove poorly
reconstructed tracks.

• Tracks from K0
S candidates are rejected; a pair of tracks is rejected when the invariant

mass of the two tracks, mππ, satisfies |mππ−mK0
S
| < 15 MeV/c2, where mK0

S
is K0

S mass.

• Tracks with impact parameter to the CP -side vertex position in r-φ plane (δr) greater
than 500µm are rejected for the further reduction of the K0

S daughter.

With the tracks that satisfy the requirements and IP constraint, we reconstruct the Btag

vertex. After the vertex reconstruction, we examine the reduced χ2 defined as χ2/n, where n is
the degree of freedom. If the reduced χ2 of the vertex fit is larger than 20, the track giving the
largest contribution to the reduced χ2 is removed. This rule has an exception; when the track
with the largest χ2 contribution is a lepton with a momentum greater than 1.1 GeV in the cms,
the track is kept and the track with second largest χ2 contribution is removed. This is because
a lepton with high momentum is likely to come from a primary semileptonic B decays5. We
perform this procedure iteratively until the reduced χ2 gets less than 20 or a single track is
left.

In the DS-II, the Btag vertex reconstruction has another step. In the case where the
resultant vertex is reconstructed from a single track and IP constraint after the above procedure,

5Note that we intend to remove the tracks from secondary decays by the removal of the tracks with large χ2

contributions. The high momentum leptons are likely to originate from the primary vertices of the processes
such as B0 → D(∗)−l+ν.
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we go back to the beginning of the procedure and redo the same procedure with modified
requirements to the tracks. The only modification is the requirement of SVD-hits; here, we
require the tracks to have two 2-D hits in 2nd, 3rd, or 4th layer, i.e., we ignore the 1st-layer hit
in the examination of the SVD-hit requirement. There is a fact that the single track used for
the vertex reconstruction tends to be poorly reconstructed when the track is associated with
only two SVD-hits and one of them is in the 1st layer. This is because the 1st layer has smaller
radius in DS-II than DS-I and thus suffers from more fake hits due to beam background. In this
condition, the two-hits requirement to reject the poorly reconstructed tracks wrongly associated
with SVD-hits does not work as intended. The redoing procedure described above works well
to remove such poorly reconstructed tracks with little reduction of the vertex-reconstruction
efficiency.

3-4 Requirement to the Quality and Performance

We examine the qualities of the reconstructed vertices with following variable

ξ ≡ 1

2ntrk

ntrk∑

i

(zfit − zi
trk)

2

σi
z
2 , (4.17)

where ntrk, i, zfit, z
i
trk, and σi

z are the number of tracks used for the vertex reconstruction,
the index over the tracks, the z position of the fitted vertex, the z position of i-th track at
the closest approach to the vertex, and the estimated error of the i-th track in z direction,
respectively. This is similar to usual χ2 but only z direction is used. This is because the usual
χ2 is correlated with B flight length and thus with ∆z, since IP constraint is strong in x-y
direction. Consequently, use of the usual χ2 can cause a possible bias in ∆z measurement and
thus we use the ξ defined above, which has no correlation with ∆z. We require ξ < 100 for
both of the vertices of BCP and Btag.

The efficiencies of the vertex reconstruction in the B0 → π+π−π0 decay process are 91%,
88%, and 86% for BCP , Btag, and both of them, respectively, which are estimated using MC.
Note that the efficiency for the both vertex reconstructions to success is not a product of the
efficiencies for those of BCP and Btag, indicating that when one of the two vertices in an event
is poorly reconstructed, another also tends to be poorly reconstructed. To further remove the
events with poorly reconstructed vertices, we apply a criterion of |∆t| < 70 ps. The efficiency
of this cut is 99.8%.

We evaluate the performance of the vertex reconstruction using MC as shown in Fig. 4.10,
where the reconstructed position and the true position are compared. In DS-I (DS-II), typical
resolutions in rms are 80µm, 150µm, and 170µm (70µm, 140µm, and 150µm) for zCP , ztag,
and ∆z, respectively. Corresponding ∆t resolution is 1.3 ps (1.2 ps).

Since the detector resolution is comparable to the lifetime of B0 and the period of B0-
B0 oscillation, the smearing effect due to the resolution has to be taken into account in the
time-dependent CP -violation measurement. We treat this effect as resolution function, R(δ∆t),
where δ∆t is the difference between the measured ∆t and true value of it. We perform a detailed
study of the resolution function using a control sample data of the decay modes B0 → D∗−l+ν,
D(∗)−π+, D∗−ρ+, B+ → D0π+, and J/ψK+ [46]. As the PDF for the maximum likelihood
fit, Pfit(∆t), we use a convolution of the resolution function and the ideal distribution without
the resolution effect, Pideal(∆t):

Pfit(∆t) = [R⊗ Pideal](∆t) . (4.18)
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Figure 4.10: The distributions of δzCP (left), δztag (middle), and δ∆z (right) in DS-II,
where δzCP , δztag, and δ∆z are the difference between the reconstructed and generated
(reconstructed − generated) values for zCP , ztag, and ∆z, respectively. In the δztag distri-
bution, there is a bias of +25µm, which is due to the effect of the secondary vertex of D
mesons. This leads to the bias of −25µm in the δ∆z distribution.

4 Techniques Dedicated to B0 → π+π−π0 Dalitz Analysis

4-1 Square Dalitz plot (SDP)

The signal and the continuum background e+e− → qq(q = u, d, s, c), which is the dominant
background in this analysis, populate the kinematic boundaries of the usual Dalitz plot as
shown in Figs. 4.11 and 4.12. Since we model part of the Dalitz plot PDF’s with binned
histograms, the distribution concentrated in a narrow region is not easy to treat. We therefore
apply the transformation

ds+ds− → | det J |dm′dθ′ , (4.19)

which defines the square Dalitz plot (SDP) [47, 48]. The new coordinates are

m′ ≡ 1

π
arccos

(
2
m0 −mmin

0

mmax
0 −mmin

0

− 1

)
, (4.20)

θ′ ≡ 1

π
θ0

(
=

1

π
θ−0

)
. (4.21)

Here, m0 =
√
s0 and θ0 are the mass and the helicity angle of ρ0 (or π+π−), respectively;

mmax
0 ≡ mB0 −mπ0 and mmin

0 ≡ 2mπ+ are the kinematic limits of m0, and J is the Jacobian
of the transformation. The determinant of the Jacobian is given by

| det J | = 4|~p+||~p0|m0 ·
mmax

0 −mmin
0

2
π sin(πm′) · π sin(πθ′) , (4.22)

where ~p+ and ~p0 are the three momenta of π+ and π0 in the π+π− rest frame. The detail of
the parameter transformation and some useful relations can be found in appendix C.

4-2 Parameterization

We parameterize the coefficients of equations (2.162) and (2.163), which are the parameters

to be determined by this analysis, not by the complex amplitudes
(

A
)
κ directly but by the
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Figure 4.11: Distribution of signal Monte Carlo (without detector efficiency and smearing) in
the Dalitz plot.
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Figure 4.12: Distribution of qq background (from the data Mbc sideband) in the Dalitz plot.
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coefficients corresponding to their bilinear products as follows

|A3π(s+, s−)|2 ± |A3π(s+, s−)|2

∝
∑

κ∈{+,−,0}

|fκ|2U±
κ + 2

∑

κ<σ∈{+,−,0}

(
Re[fκf

∗
σ ]U±,Re

κσ − Im[fκf
∗
σ ]U±,Im

κσ

)
, (4.23)

Im

(
q

p
A3π(s+, s−)A3π(s+, s−)∗

)

∝
∑

κ∈{+,−,0}

|fκ|2Iκ + 2
∑

κ<σ∈{+,−,0}

(
Re[fκf

∗
σ ] IIm

κσ + Im[fκf
∗
σ ] IRe

κσ

)
,

(4.24)

with the coefficients being related to the amplitudes as

U±
κ =

(
|Aκ|2 ± |Aκ|2

) /
N , (4.25)

Iκ = Im
[
AκAκ∗

] /
N , (4.26)

U±,Re(Im)
κσ = Re(Im)

[
AκAσ∗ ±AκAσ∗

] /
N , (4.27)

IRe(Im)
κσ = Re(Im)

[
AκAσ∗−(+)AσAκ∗

] /
N , (4.28)

whereN is an overall normalization factor. The 27 coefficients (4.25)-(4.28) are the parameters
determined by the fit [49]. The parameters (4.25)-(4.26) and (4.27)-(4.28) are called non-
interfering and interfering parameters, respectively.

This parameterization makes the fit well behaved, with the fit parameters being Gaussian
distributed and having no local minimum. The Dalitz-∆t distribution of signal is spanned by
27 linearly independent basis functions: there are nine linearly independent basis functions in
Dalitz plot dimension as shown in the Fig. 4.13 and three linearly independent basis functions
in ∆t-qtag dimension, which are

e−|∆t|/τ
B0 , qtag · e−|∆t|/τ

B0 cos(∆md∆t) , and qtag · e−|∆t|/τ
B0 sin(∆md∆t) . (4.29)

All the combination products of the Dalitz plot and ∆t basis functions are the basis functions
for Dalitz-∆t, whose number is 27. The above parameterization is to parameterize the signal
distribution by the linear combination of the 27 basis functions with their coefficients as fit
parameters, and thus the fit is well behaved. Since the overall normalization is arbitrary, we
fix it by requiring U+

+ = 1, i.e., we take N = |A+|2 + |A+|2 as the normalization.
All these are analogous to the case of usual time-dependent CP violation measurement.

In a usual analysis without the Dalitz plot dependence, the time-dependent decay width of
equation (2.88) is reparameterized as

dΓ
/
d∆t ∝ e−Γ|∆t|

[
D + qtag · A cos(∆md∆t) + qtag · S sin(∆md∆t)

]
, (4.30)

with

D =
(
|Af1 |2 + |Af1 |2

) /
N , (4.31)

A =
(
|Af1 |2 − |Af1 |2

) /
N , (4.32)

S = 2Im

(
q

p
Af1A

∗
f1

)/
N , (4.33)

where N is an overall normalization. Then, to fix overall normalization we require D = 1, i.e.,
take N = |Af1 |2 + |Af1 |2, and obtain the usually used formalism of

dΓ
/
d∆t ∝ e−Γ|∆t|

[
1 + qtag · A cos(∆md∆t) + qtag · S sin(∆md∆t)

]
. (4.34)
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Figure 4.13: The nine basis functions of the signal Dalitz plot distribution in the square Dalitz
plot. Only the contribution from ρ(770) is assumed here.

Here, to use D, A, and S instead of Af1 and q
pAf1 corresponds to using the 27 coefficients

instead of Aκ and Aκ; and the requirement of D = 1 corresponds to the requirement of
U+

+ = 1.
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Chapter 5

Event Selection and Signal
Extraction

1 Data Set

The analysis presented in this thesis is based on the data sample taken from January 2000 to
June 2005. The integrated luminosity for each day and the history of the total accumulated
luminosity are shown in Fig. 5.1. The total integrated luminosity of 461 fb−1 has been accu-
mulated in this period, among which 414 fb−1 and 47 fb−1 are taken on and 50 MeV-below the
Υ(4S) resonance, respectively. The data sample contains 449× 106BB pairs.

2 Event Selection

2-1 Reconstruction of B0 → π+π−π0 Candidates

To reconstruct candidate B0 → π+π−π0 decays, charged tracks reconstructed with the CDC
and SVD are required to originate from the interaction point (IP):

|dr| < 0.1 cm , and |dz| < 4 cm , (5.1)

where dr and dz are transverse and longitudinal components of the tracks’ impact parameters
with respect to the IP, respectively. They are also required to have transverse momenta greater
than 0.1 GeV/c. We distinguish charged kaons from pions based on the likelihood ratio RK/π

and require the tracks to be pion like:

RK/π < 0.4 . (5.2)

We reject tracks that are positively identified as electrons; in terms of the likelihood ratio Re/e,
tracks satisfying

Re/e < 0.95 (5.3)

are selected.
Photons are identified as isolated ECL clusters that are not matched to any charged track.

We reconstruct π0 candidates from pairs of photons detected in the barrel (endcap) ECL with
Eγ > 0.05 (0.1) GeV, where Eγ is the photon energy measured with the ECL. Photon pairs with
momenta greater than 0.1 GeV/c in the laboratory frame and with an invariant mass between
0.1178 GeV/c2 to 0.1502 GeV/c2, roughly corresponding to ±3σ of the mass resolution, are
used as π0 candidates.
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We identify B meson decays using the energy difference

∆E ≡ Ecms
B −Ecms

beam , (5.4)

and the beam-energy constrained mass

Mbc ≡
√

(Ecms
beam)2 − (pcms

B )2 , (5.5)

where Ecms
beam is the beam energy in the center mass system (cms), and Ecms

B and pcms
B are the

cms energy and momentum of the reconstructed B candidate, respectively.
We select candidates in the large fitting region that is defined as −0.2 GeV < ∆E < 0.2 GeV

and 5.2 GeV/c2 < Mbc < 5.3 GeV/c2, The large fitting region consists of the signal region
defined as −0.1 GeV < ∆E < 0.08 GeV and Mbc > 5.27 GeV/c2, and the complement, called
the sideband region, which is dominated by background events.

2-2 Vertexing and Flavor Tagging

We then apply the vertexing and the flavor tagging, detail of which are described in Sec. 2 and
Sec. 3 of chapter 4.

2-3 Continuum Suppression Cut

The continuum events e+e− → qq (q = u, d, s, c) is the dominant background in the B →
π+π−π0 candidates. We reduce the background events by exploiting the event topology; we
make use the fact that a continuum event is jet-like in the cms while a BB event has a spherical
topology due to the large mass of the B meson. To characterize the event topology, we employ a
modified version of Super Fox-Wolfram moment, so-called KSFW. The KSFW is an algorithm
to form a Fisher discriminant from the Super Fox-Wolfram moments and missing mass. The
distributions of the discriminants are shown in Fig. 5.3. More detailed description on the
KSFW can be found eleswhere [50].

In addition to the KSFW, we also use the B flight direction with respect to the beam
axis in cms, cos θ∗B , to separate signal and continuum events. The B flight direction has the
distribution with a dependence of 1−cos2 θ∗B , since the property of helicity conservation in the
weak interaction vertex requires the helicities of the interacting e+ and e− to be opposite and
thus the angular momentum of B0B0 satisfies Lz = ±1. On the other hand, the continuum
events have a uniform angular distribution1. Thus, the cos θ∗B works as a good discriminant.
Figure 5.2 shows the distributions of signal and continuum components.

We use signal MC (sideband data) to determine the likelihood distribution of KSFW and
cos θ∗B for the signal (continuum background) component. We approximate the likelihood func-
tion of cos θ∗B of the continuum component by a flat distribution, and that of signal component
by fitting the MC-generated distribution with 2-nd order polynomial, the result of which is

Lsig
cos θ∗

B
= 1.48− 0.02 · | cos θ∗B | − 1.41 · | cos θ∗B |2 . (5.6)

We compose a likelihood ratio, KLR, using the likelihood distributions of KSFW and cos θ∗B :

KLR ≡
Lsig

cos θ∗
B
Lsig

KSFW

Lsig
cos θ∗

B
Lsig

KSFW + Lqq
cos θ∗

B
Lqq

KSFW

. (5.7)

1Note that qq from the e+e− → qq themselves have angular dependence. However, fake B’s reconstructed
from the qq have uniform distribution, since they are random combinations of the particles from both of the q
and q.
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Figure 5.4 shows the distributions of the KLR in each bins of the flavor tagging quality r. As
can be seen there, the distribution is dependent on the r-bin.

We use the KLR to define a selection criterion to reduce the continuum background events;
we reject the events with KLR smaller than cut values. To determine the criterion, we define
the Figure of Merit (F.o.M.) as a function of the cut value of KLR:

F.o.M. ≡ Nsig√
Nsig +Nqq

, (5.8)

where Nsig and Nqq are the expected numbers of events of signal and continuum components,
respectively, for the given cut value. The cut criterion that gives the maximum F.o.M. is
expected to be optimum, i.e., yields the largest statistical power. We calculate Nsig and
Nqq using the likelihood distributions obtained above and assuming the branching fraction of
2.4× 10−5 for the signal, and obtain the F.o.M. curve shown in the Fig. 5.5. Here we treat the
different flavor tagging quality regions separately, since the distributions and signal to noise
ratios are dependent on the r2. Using the F.o.M. curves, we determine the KLR cut value for
each r-bin as listed in Table 5.1.
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Figure 5.2: The distribution of |cosθ∗B |. Hatched and outlined histograms correspond to the
signal MC and sideband data, respectively.

2-4 Best Candidate Selection

The reconstructed signal events contain substantial fraction of incorrectly reconstructed can-
didates, what we call self cross feed (SCF). Consequently, each event can have multiple B →
π+π−π0 candidates. To select one candidate for each event, effectively suppressing the SCF,
we apply best candidate selection.

Since the distribution of fitted π0 mass andKLR are different for the correctly reconstructed
signal and SCF as shown in Fig. 5.6, we use the two variables for the best candidate selection.

2In general, the signal to noise ratio is larger for the regions with large r than those with small r.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.3: The distributions of the missing mass (a) and the Fisher discriminant (b)-(h)
obtained from the KSFW algorithm for the signal (black) and continuum background (blue)
events. Here, (b)-(h) correspond to the Fisher distributions for the different missing mass
regions. Since the distribution depends on the missing mass, we treat the events in the different
missing mass region separately.

Table 5.1: KLR cut value of each r-bin.

l (r-bin) KLR cut value

1 0.95

2 0.92

3 0.90

4 0.90

5 0.87

6 0.30
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l = 1 l = 2

l = 3 l = 4

l = 5 l = 6

Figure 5.4: The KLR distribution for each r-bin. Hatched and outlined histograms correspond
to the signal MC and sideband data, respectively.
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Figure 5.5: Figure of Merit (F.o.M.) for each r-bin. The cut values of KLR that maximize the
F.o.M. are large in the region with large r, reflecting the fact that the signal to noise ratio is
larger in the region with large r than that with small r.
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The distribution depends on the r-bin and thus we treat the different r-bins separately. We use
2-dimensional PDF’s of correctly reconstructed signal and SCF, denoted by P l

true(mπ0 ,KLR)
and P l

SCF(mπ0 ,KLR), respectively. Here, l represents the dependence on the tagging quality
r. Using the PDF’s, we calculate a likelihood ratio, RBC :

RBC ≡ P l
true(mπ0 ,KLR)

P l
true(mπ0 ,KLR) + P l

SCF(mπ0 ,KLR)
. (5.9)

Figure 5.7 shows the distribution of the RBC for both correctly reconstructed signal and SCF.
When a event has multiple candidates reconstructed, we calculate the RBC for each candidate
and select the candidate with the largest RBC .
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Figure 5.6: The distributions of mπ0 and KLR for 4th r-bin (as an example). Hatched and
outlined histograms correspond to the correctly reconstructed signal and SCF, respectively. In
both plots, the correctly reconstructed signal distributes sharply, as expected.

2-5 Veto in Dalitz Plot

The contributions from ρ(1450) and ρ(1700) are considered to be contamination in this analysis.
Thus, we apply a veto in the Dalitz plot to minimize the contaminating effect. Here, each event
are required to satisfy one of following conditions:

0.55 GeV/c2 <
√
s+ < 1.0 GeV/c2 ,

0.55 GeV/c2 <
√
s− < 1.0 GeV/c2 ,

0.55 GeV/c2 <
√
s0 < 0.95 GeV/c2 .

(5.10)

Figure 5.8 show the vetoed region schematically. We use a different condition for s0 to minimize
possible contribution from B0 → f0(980)π0 background.

76



CHAPTER 5. EVENT SELECTION AND SIGNAL EXTRACTION

Figure 5.7: The distribution of LRBC for truly reconstructed signal (blue) and SCF (red).
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Figure 5.8: The mass window in usual Dalitz plot (left) and square Dalitz plot (right), overlayed
with MC-generated signal distribution. Hatched region corresponds to the vetoed region.
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3 Signal Extraction

3-1 PDF for the Fit

The event-by-event PDF for signal extraction is basically the same as that for time-dependent
Dalitz plot analysis but integrated over the ∆t direction and summed over qtag

P
��∆t(∆E,Mbc;m

′, θ′; l) =
∑

qtag=±1

∫
d∆t P (∆E,Mbc;m

′, θ′; ∆t, qtag; l) , (5.11)

where P
��∆t(∆E,Mbc;m

′, θ′; l) and P (∆E,Mbc;m
′, θ′; ∆t, qtag; l) are the PDF’s for the fit here

and that for the time-dependent Dalitz plot analysis described later in Sec. 2 of chapter 6.
We use the Dalitz plot information only for the events inside the signal region, i.e., the

PDF’s inside the signal region (P SR

��∆t
) and the sideband region (P SB

��∆t
) are

P SR

��∆t
(∆E,Mbc;m

′, θ′; l) = P
��∆t(∆E,Mbc;m

′, θ′; l) , (5.12)

and

P SB

��∆t
(∆E,Mbc; l) =

∫∫
dm′ dθ′ P

��∆t(∆E,Mbc;m
′, θ′; l) , (5.13)

respectively. There are two reasons to treat the events in the signal region and those in the
sideband region separately. One reason is that the correlation between ∆E-Mbc and Dalitz
plot distributions is too large to be properly treated if we use the Dalitz plot information in the
sideband region3. By limiting the events to use Dalitz plot information only to those in the ∆E-
Mbc signal region, we can make the correlation smaller and under control. Another reason is
that there is no benefit to use the Dalitz plot information for the events in the sideband region.
The Dalitz plot information is a good discriminant to separate signal events and continuum
background events. Since few signal events are in the sideband region, the Dalitz plot is not
useful there.

From the event-by-event PDF, we compose an extended likelihood function, Lext, for the
fit. The detail of the construction of Lext can be found in appendix F. The number of free
parameters, which are listed and described in table 5.2, is 36 in total. By maximizing the
likelihood Lext, we obtain the fit results for the parameters.

3-2 Fit Result

Figure 5.9 shows the Mbc (∆E) distribution for the reconstructed B0 → π+π−π0 candidates
within the ∆E (Mbc) signal region, together with the histograms of fitted PDF’s. The fit result
is listed in Table 5.2, yielding

Nsig =
∑

DS-I, DS-II

νSRfsig = 971± 42 , (5.14)

(
fsig = 1 −

∑

l

f l
qq − fb→c − fb→u

)

where Nsig is the total number of B0 → π+π−π0 events in the signal region. The error is
statistical only and correlations are taken into account in its calculation.

3Since both ∆E-Mbc and Dalitz plot are kinematic variables, it is natural for them to have a correlation
with each other.
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Table 5.2: The parameters determined in the ∆E-Mbc and Dalitz fit for the signal yield
extraction. The errors shown here are statistical only. We find significant dependence of the
∆E slope parameters pl

1 on the flavor tagging quality bin l, which is a common tendency to
the analyzes of various decay modes in Belle.

Name DS-I DS-II Description

νSR +913± 23 +1848± 33 Fitted number of events in the signal region.

f1
qq +0.1969+0.0070

−0.0068 +0.1877+0.0048
−0.0047

The products of continuum component
fraction in the signal region, fqq , and
event fraction in each tagging quality
region, F l

qq , defined as f l
qq ≡ fqqF l

qq .

f2
qq +0.0888+0.0037

−0.0036 +0.1019± 0.0029

f3
qq +0.0677+0.0030

−0.0029 +0.0662± 0.0021

f4
qq +0.0619+0.0028

−0.0027 +0.0587+0.0020
−0.0019

f5
qq +0.0476+0.0024

−0.0023 +0.0395± 0.0015

f6
qq +0.1001+0.0042

−0.0041 +0.1143+0.0033
−0.0032

p1
1 +0.66± 0.16 +0.82± 0.11

The slope of the ∆E PDF for continuum
component in each tagging quality region.

p2
1 +0.21± 0.23 +0.14± 0.16

p3
1 +0.22± 0.27 +0.40± 0.19

p4
1 +0.06± 0.28 +0.39± 0.21

p5
1 −0.45± 0.32 −0.39± 0.26

p6
1 −1.29± 0.22 −1.22± 0.15

α −16.5± 1.3 −16.1± 0.9 The parameter of ARGUS function.

U−
+ +1.23+0.13

−0.11

The time-integrated Dalitz plot
coefficients. They are just nuisance
parameters in this fit.

U0
+ +0.32+0.06

−0.05

U+,Re
+− +0.92+0.74

−0.72

U+,Re
+0 +0.36+0.49

−0.46

U+,Re
−0 +0.23+0.50

−0.47

U+,Im
+− +1.29± 0.71

U+,Im
+0 −0.44+0.36

−0.32

U+,Im
−0 −1.44+0.44

−0.39

fb→c +0.0259 (fixed) +0.0266 (fixed) The fractions of the BB backgrounds
from b→ c and b→ u transitions.fb→u +0.0556 (fixed) +0.0557 (fixed)
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Figure 5.9: The (a) Mbc and (b) ∆E distributions within the ∆E and Mbc signal regions.
The histograms are cumulative. Solid, dot-dashed, dotted and dashed hatched histograms
correspond to correctly reconstructed signal, SCF, BB background, and continuum background
PDF’s, respectively.
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Chapter 6

Time-Dependent Dalitz Plot Fit

In this chapter, we describe the time-dependent Dalitz plot fit and its result. Before performing
the analysis, we need to determine the kinematics of ρ, in particular the lineshape of ρ, which
is one of the most important aspect of this analysis; Sec. 1 describes the formalism and the
procedure to determine the lineshape. The subsequent sections describe the fitting procedure,
result, and systematic uncertainties.

1 Kinematics of ρ Meson Decay

As described in Sec. 4-3 of chapter 2, the functions
(

f
)

κ(s+, s−), which take into account the
dynamics in B0 → ρκπκ decay, play an important role in this analysis. In this section, we
discuss the detail of them.

1-1 Formalism

The function
(

f
)

κ(s+, s−) can be factorized into two parts as

(

f
)

κ(s+, s−) = T κ
J

(

F
)κ
π (sκ) (κ = +,−, 0) , (6.1)

where T κ
J and

(

F
)
κ
π (sκ) correspond to the helicity distribution and the lineshape of ρκ, respec-

tively.

Helicity Distribution

In the case of pseudoscalar-vector (J = 1) decay, T κ
J is given by

T κ
1 = −4|~pj ||~pk| cos θjk , (6.2)




T+
1 = −4|~p+||~p−| cos θ+− ,

T−
1 = −4|~p0||~p+| cos θ0+ ,

T 0
1 = −4|~p−||~p0| cos θ−0 ,


 (6.3)

where ~pj , ~pk are the three momenta of the πj and πk in the rest frame of ρκ (or the πiπj

system), and the θjk(≡ θκ) is the angle between ~pj and ~pk (see Fig. 6.1).
An equivalent alternative expression for the T κ

1 is

T κ
1 = ski − sjk +

(mB0
2 −mπk

2)(mπj
2 −mπi

2)

sij
, (6.4)
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Figure 6.1: The relation between three pions in the rest frame of ρκ.

with

s0+ ≡ (p0 + p+)2 = s+ , s+− ≡ (p+ + p−)2 = s0 , and s−0 ≡ (p− + p0)
2 = s− . (6.5)

In a Dalitz plot analysis, this expression written in terms of the Dalitz plot variables is some-
times convenient. The derivation of the equivalence can be found in Sec. 1 of appendix D.

Lineshape of ρ

The lineshape is parameterized with Breight-Wigner functions corresponding to the ρ(770),
ρ(1450), and ρ(1700) resonances:

(

F
)κ
π (s) = BWρ(770) +

(

β
)

κBWρ(1450) +
(
γ

)

κBWρ(1700) , (6.6)

where the amplitudes
(

β
)

κ and
(
γ

)

κ (denoting the relative size of two resonances) are complex
numbers. We use Gounaris-Sakurai (GS) model [51] for the Breit-Wigner shape (see Sec. 2 of
appendix D for the detail) and world average [52] for the mass and width of each resonance.

Though the
(

β
)

κ and
(
γ

)

κ can be different for each of six decay modes of B0(B0) → ρκπκ in
general, we assume no such variation, i.e.,

(

F
)κ
π (s) = Fπ(s) ≡ BWρ(770) + β BWρ(1450) + γ BWρ(1700), (6.7)

in our nominal fit, and address the possible variation in the systematic error. Equation (6.7)
leads to the relation of fκ(s+, s−) = fκ(s+, s−), which is assumed in Sec. 4-3 of chapter 2.

1-2 Determination of ρ Lineshape

Using our data sample, we determine the (β, γ) used in our nominal fit and possible deviations

of (
(

β
)

κ,
(
γ

)

κ) from the determined (β, γ).

Data Sample and Selection Criteria

The data sample and selection criteria used here are the same as those described in chapter 5,
except that we adopt a wider Dalitz plot mass window here to include the Dalitz plot region
corresponding to the radial excitations; each event is required to satisfy 0.55 GeV/c2 <

√
s0 <

1.5 GeV/c2,
√
s+ < 1.5 GeV/c2, or

√
s− < 1.5 GeV/c2 (see Fig. 6.2). The signal fraction and

the parameters of the continuum background of this data sample are determined in the same
way as described in chapter 5.
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Figure 6.2: The mass window for the lineshape determination in usual Dalitz plot (left) and
square Dalitz plot (right), overlayed with MC-generated signal distribution. Hatched region
corresponds to the vetoed region.

Lineshape Determination

Using the data sample described above, we determine the ρ lineshape, i.e. the phases and
amplitudes of the coefficients β and γ in equation (6.7), which we use for all of the decay
amplitudes. In this fit, we use the PDG values [52] for the masses and widths of the ρ(770),
ρ(1450), and ρ(1700). The fit yields the result listed in Table 6.1. As can be seen in the table,
the free parameters are the amplitudes (β, γ) and the time-integrated Dalitz plot parameters of
UX

+ . The latter are nuisance parameters in the fit here1. The mass distributions and fit results
are shown in Fig. 6.3. Figure 6.4 schematically shows how the radial excitations contribute to
our fit result. Note that the values given here for β and γ and their errors are not meaningful
measurements of physics parameters but rather are quantities needed for the time-dependent
Dalitz fit. This is because these parameters are determined from the interference region, the
interference between ρ+π− and ρ−π+, etc., and depend on the unfounded common lineshape
assumption of Eq. (6.7). However, because statistics are still low, the time-dependent Dalitz
analysis would not be possible if we were to discard the common lineshape assumption.

Thus, it is important to determine the common or average lineshape as well as obtain an
upper limit on the deviation from the average lineshape for each of the six decay amplitudes,

that is, the deviation of (
(

β
)

κ,
(
γ

)

κ) from the nominal (β, γ). For this purpose, we put constraints
on additional amplitudes that describe 1) the excess in the high mass region,

√
s > 0.9 GeV/c2,

and 2) the interferences between radial excitations and the lowest resonance, the ρ(770): in-
terferences between ρ(770)+π− and ρ(1450)−π+, etc. The nominal fit is performed with the
average lineshape determined above, fixing all of the additional amplitudes to zero. When
floating the additional amplitudes for the other resonances, we obtain results consistent with
zero for all of the additional amplitudes but with large uncertainties compared to the errors for

1Since (β, γ) are highly correlated with the time-integrated Dalitz plot parameters, in particular with the
interfering parameters, it is important to set them free and estimate the uncertainty of (β, γ) properly. Note that
the fitted values of the Dalitz plot parameters here are not important and not necessarily consistent with the
values of our final time-dependent Dalitz plot fit result. This is because the fitted Dalitz plot parameters here
are strongly affected by the contribution from radial excitations, ρ(1450) and ρ(1700), which we intentionally
avoid in the final fit by adopting narrower mass window in the Dalitz plot than that used here.
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the average lineshape parameters above. The detail of the study can be found in appendix E.
In the systematic error study, we use the fit result with the additional lineshape parameters
floating including their uncertainties.

Table 6.1: Result of the lineshape fit. The large phase differences between ρ(770) and ρ(1450),
argβ, and between ρ(1450) and ρ(1700), arg γ − argβ, indicate that the interferences between
them are destructive.

Parameter Name Values and Errors

|β| 0.313+0.067
−0.055

|γ| 0.082+0.042
−0.032

argβ
(
+219+16

−18

)
◦

arg γ
(
+102+26

−32

)
◦

U−
+ +1.30+0.13

−0.12

U0
+ +0.35+0.06

−0.06

U+−,Re
+ +0.60+0.69

−0.72

U+0,Re
+ −0.09+0.34

−0.33

U−0,Re
+ +0.26+0.37

−0.39

U+−,Im
+ +1.23+0.72

−0.73

U+0,Im
+ −0.19+0.36

−0.39

U−0,Im
+ −1.48+0.41

−0.41
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Figure 6.3: Mass distributions and fitted lineshapes in ρ+π− (left), ρ−π+ (middle), and ρ0π0

(right) enhanced regions. The histograms are cumulative. Solid, dot-dashed, dotted and dashed
hatched histograms correspond to correctly reconstructed signal, SCF, BB, and continuum
PDFs, respectively. Note that there are feed-downs from other quasi-two-body components
than those of interest, especially in the high-mass regions. For example, the high-mass region
(m0 & 1.0 GeV/c2) of the ρ0π0 enhanced region (right) includes large contributions from ρ±π∓.

2 Event-by-Event PDF for Time-Dependent Dalitz Fit

To determine the 26 time-dependent Dalitz plot parameters, we define the following event-by-
event PDF:

P (~x) = fsigPsig(~x) + fqqPqq(~x) + fBBPBB(~x) , (6.8)
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Figure 6.4: A schematic figure of the fit result of the lineshape and the contributions from
radial excitations. Note that our definition of Fπ(s) does not include the factor 1/(1 + β + γ)
as in Eq. (6.7). One can see that the ρ(770) and ρ(1450) destructively interfere with each other
near

√
s ≡ mππ = 1.4(GeV/c2), which means that the ρ(1450) has a large impact on the phase

of Fπ(s) although the absolute value of |Fπ(s)| is not much affected.
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where Psig, Pqq , and PBB are PDF’s for signal, continuum background, and BB background,
respectively, and fsig, fqq , and fBB are the corresponding fractions that satisfy

fsig + fqq + fBB = 1 . (6.9)

The vector ~x, the argument of the PDF’s, represents a set of event-by-event variables:

~x ≡ (∆E,Mbc;m
′, θ′; ∆t, qtag, l; pπ0 , Ebeam) , (6.10)

where ∆E is the energy difference between the BCP candidate and the beam energy, Mbc is the
beam-energy constrained mass calculated using the beam energy in place of the reconstructed
energy, (m′, θ′) are the square Dalitz plot variables, ∆t is the proper time difference between
the decays of BCP and Btag, qtag and l are the flavor of Btag and its quality obtained by the
flavor-tagging procedure, pπ0 is the momentum of the π0 of the π+π−π0 final state measured
in the laboratory frame, and Ebeam is the run-dependent beam energy.

In this section, we briefly describe the PDF for each component. The detailed study of
them can be found in appendix A.

2-1 Signal PDF

The PDF of the signal component, Psig, consists of a PDF for correctly reconstructed events,
Ptrue, and PDF’s of the SCF components, PCR and PNR:

Psig(~x) =

Ptrue(~x) +
∑

i=CR, NR

Pi(~x)

ntrue +
∑

i=CR, NR

ni

, (6.11)

where CR and NR represent two types of SCF, the π± (charged) replaced and π0 (neutral)
replaced, respectively; and nsig, nCR, and nNR are the integrals of the PDF’s in the signal
region. We describe each component in the following.

PDF for correctly reconstructed events

In terms of the event fractions for the lth flavor tagging region (F l
true), the Dalitz plot de-

pendent efficiency (εl), the π0 momentum dependent efficiency correction taking account of
the difference between data and MC (ε′), wrong tag fraction (wl), and the wrong tag fraction
difference between B0 and B0 (∆wl), the PDF for correctly reconstructed events is given by

Ptrue(~x) = Ptrue(∆E,Mbc;m
′, θ′; ∆t, qtag, l; pπ0)

= F l · Ptrue(∆E,Mbc; pπ0) · εl(m′, θ′) ε′(pπ0) · |detJ(m′, θ′)| · P l
true(m

′, θ′; ∆t, qtag),

(6.12)

where |detJ(m′, θ′)| is the Jacobian for the square Dalitz plot defined in Eq. (4.22) and

P l
true(m

′, θ′; ∆t, qtag)

=
e−|∆t|/τ

B0

4τB0

·
{

(1 − qtag∆wl)(|A3π |2 + |A3π|2)

+ qtag(1 − 2wl) ·
[
−(|A3π|2 − |A3π |2) cos(∆md∆t) + 2Im

(
q

p
A3πA

∗
3π

)
sin(∆md∆t)

]}
,

(6.13)
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which is based on Eq. (2.161) and follows the parameterization described in Sec. 4-2 of chapter 4.
For the ∆t PDF, the above equation is convolved with the resolution function as described in
Sec. 3-4 of chapter 4.

The ∆E-Mbc PDF is normalized such that
∫∫

SR

d∆E dMbc Ptrue(∆E,Mbc; pπ0) = 1 (∀pπ0) , (6.14)

where
∫∫

SR d∆E dMbc represents the integration over the ∆E-Mbc signal region. This nor-
malization condition is convenient since we define the Dalitz plot efficiency for events inside
the signal region. With the PDF being also normalized to be unity in the ∆t-qtag direction,
the integral inside the signal region, ntrue, is,

ntrue =
∑

l

nl
true , (6.15)

nl
true ≡

∑

qtag

∫
d∆t

∫∫

SR

d∆E dMbc

∫∫

SDP, Veto

dm′ dθ′ P l
true(∆E,Mbc;m

′, θ′; ∆t, qtag; pπ0)

= F l
true

∫∫

SDP, Veto

dm′ dθ′ εltrue(m
′, θ′) ε′(pπ0) |detJ |

(
|A3π|2 + |A3π|2

)
,

(6.16)

where the correlation between pπ0 and m′ is properly taken into account in the integration of
the last line. The notation

∫∫
SDP, Veto dm

′ dθ′ means integration over the square Dalitz plot
with the vetoed region in the Dalitz plot being taken into account.

The π0 momentum dependent ∆E-Mbc PDF, Ptrue(∆E,Mbc; pπ0), is modeled using MC-
simulated events in a binned histogram interpolated in the pπ0 direction, to which a small
correction obtained with B0 → D(∗)−ρ+ is applied to account for the difference between MC
and data.

The Dalitz plot distribution is smeared and distorted by detection efficiencies and detector
resolutions. We obtain the signal Dalitz plot efficiency from MC to take the former into account.
We introduce a dependence of the efficiency on the r region, εltrue, since a significant dependence
is observed in MC. Small corrections, ε′(pπ0), are also applied to the MC-determined efficiency
to account for differences between MC and data. We use B0 → ρ−D(∗)+, B0 → π−D∗−,
B− → ρ−D0 and B− → π−D0 decays to obtain the correction factors. The detector resolutions
are small compared to the widths of ρ(770) resonances; this is confirmed by MC to be a
negligibly small effect.

PDF for SCF events

The SCF (self cross feed) are wrongly reconstructed signal events, with tracks from Btag

wrongly included in fCP = π+π−π0, or with fake π0’s consisting of wrong γ combinations
or fake γ’s. Since almost all SCF events have only a single wrong track for each, we can cate-
gorize the SCF into two types by the charge of the wrong track, π± (charged) replaced (CR)
or π0 (neutral) replaced (NR). Approximately 20% of signal candidates are SCF’s, which are
subdivided into ∼ 4% of NR SCF and ∼ 16% of CR SCF. This fraction is sizable and thus it
is important to model the SCF well. The time-dependent PDF for SCF events is defined as

Pi(~x) = P l
i(∆E,Mbc;m

′, θ′; ∆t, qtag)

= F l
i · Pi(∆E,Mbc; si) · Pi(m

′, θ′; ∆t, qtag) , (i = NR,CR)
(6.17)

(
sCR ≡ max(s+, s−) , sNR ≡ s0

)
(6.18)

where F l
i , Pi(∆E,Mbc; si), and Pi(m

′, θ′; ∆t, qtag) are the event fraction in l-th tagging r-bin
region, a ∆E-Mbc PDF with the dependence on Dalitz plot, and a Dalitz-∆t PDF, respectively.
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The reason why the Dalitz dependence of the ∆E-Mbc PDF is modeled well can be found in
Sec. 2-2 of appendix A. Here, the Dalitz-∆t PDF is

Pi(m
′, θ′;∆t, qtag) =

e−|∆t|/τi

4τi
·
{

(1 − qtag∆wl
i) PLife

i (m′, θ′)

+ qtag(1 − 2wl
i) ·
[
−PCos

i (m′, θ′) cos(∆md∆t) + P Sin
i (m′, θ′) sin(∆md∆t)

]}
,

(6.19)

where τi, wl
i, and ∆wl

i are the effective lifetime, wrong-tag fraction, and wrong-tag fraction
difference for SCF’s, respectively; and P Life

i (m′, θ′), PCos
i (m′, θ′), and P Sin

i (m′, θ′) are the
Dalitz plot dependent coefficients of the time-dependences of e−|∆t|/τi, e−|∆t|/τi cos(∆t∆md),
and e−|∆t|/τi sin(∆t∆md), respectively. All of them are described later.

The ∆E-Mbc PDF is normalized inside the signal region as
∫∫

SR

d∆E dMbc Pi(∆E,Mbc; si) = 1 (∀si) . (6.20)

With the PDF’s in the ∆t-qtag direction being normalized to unity and
∑

l F l
i = 1, the integral

inside the signal region, ni, is

ni ≡
∑

l

∑

qtag

∫
d∆t

∫∫

SR

d∆E dMbc

∫∫

SDP, Veto

dm′ dθ′ P l
i(∆E,Mbc;m

′, θ′; ∆t, qtag)

=

∫∫

SDP, Veto

dm′ dθ′ PLife
i (m′, θ′) .

(6.21)

We find that the ∆E-Mbc distribution for SCF has a sizable correlation with Dalitz plot
variables, but with only one of its two dimensions. We thus introduce a model with dependences
on the Dalitz plot variable si. The variable sCR = s± ≡ max(s+, s−) is used, because the CR
SCF can be divided into a π+ replaced SCF and a π− replaced SCF, where s− (s+) is used
for π+ (π−) replaced SCF. Here, we exploit the fact that almost all of the π+ (π−) replaced
SCF distributes in the region of s+ < s− (s+ > s−). For the NR SCF, sNR = s0. This
parameterization models the correlation quite well, with each of the parameters si reasonably
related to the kinematics of replaced tracks.

Since the track (π) replacement changes the measured kinematic variables, the SCF events
“migrate” in the Dalitz plot from the correct (or generated) position to the observed position.
Using MC, we determine resolution functions Ri(m

′
obs, θ

′
obs;m

′
gen, θ

′
gen) to describe this “migra-

tion” effect, where (m′
obs, θ

′
obs) and (m′

gen, θ
′
gen) are the observed and the generated (correct)

positions in the Dalitz plot, respectively. Together with the efficiency function εi(m
′
gen, θ

′
gen),

which is also obtained with MC, the Dalitz plot PDF for SCF is described as

P j
i (m′, θ′) =

[
(Ri · εi) ⊗ P j

gen

]
(m′, θ′)

≡
∫∫

SDP

dm′
gen dθ

′
gen Ri(m

′, θ′;m′
gen, θ

′
gen) · εi(m′

gen, θ
′
gen) · P j

gen(m′
gen, θ

′
gen) ,

(6.22)

( i = CR,NR , j = Life,Cos, Sin )

where

PLife
gen (m′

gen, θ
′
gen) = |detJ |(|A3π |2 + |A3π|2) , (6.23)

PCos
gen (m′

gen, θ
′
gen) = |detJ |(|A3π |2 − |A3π|2) , (6.24)

P Sin
gen(m′

gen, θ
′
gen) = |detJ |2Im

[
q

p
A3πA

∗
3π

]
. (6.25)

88



CHAPTER 6. TIME-DEPENDENT DALITZ PLOT FIT

For the NR SCF, the shape of the ∆t PDF defined in equation (6.19) is exactly the same
as correctly reconstructed signal, i.e., τNR = τB0 , wl

NR = wl, and ∆wl
NR = ∆wl, since the

replaced track, π0, is not used for either vertexing or flavor tagging. On the other hand, for the
CR SCF, the ∆t PDF is different from correctly reconstructed signal, since the replaced π±

is used for both vertexing and flavor tagging. Thus, we use MC-simulated CR SCF events to
obtain τCR, wl

CR, and ∆wl
CR, which are different from those of correctly reconstructed signal

events. In particular, ∆wl
CR is opposite in sign for the π+ and π− replaced SCF’s, which is

due to the fact that the replaced π± tends to be directly used for flavor tagging in the slow
pion category.

2-2 Continuum PDF

The PDF for the continuum background is

P(~x) = P l
qq(∆E,Mbc;m

′, θ′; ∆t, qtag)

= F l
qq · P l

qq(∆E,Mbc) · Pqq(m
′, θ′; ∆E,Mbc) ·

[
1 + qtagA

l
qq(m

′, θ′; ∆E,Mbc)

2

]
· Pqq(∆t),

(6.26)

where F l
qq, P l

qq(∆E,Mbc), Pqq(m
′, θ′; ∆E,Mbc), A

l
qq(m

′, θ′; ∆E,Mbc), and Pqq(∆t) are the

event fraction in l-th r-region obtained in the signal yield fit2, a ∆E-Mbc PDF, a Dalitz
plot PDF with the dependence on ∆E-Mbc taken into account, Dalitz plot dependent flavor
asymmetry, and a ∆t PDF. All the terms on the right hand side of the equation are normalized
to be unity as

∑

l

F l
qq = 1 , (6.27)

∫∫

SR

d∆E dMbc P l
qq(∆E,Mbc) = 1 , (6.28)

∫∫

SDP, Veto

dm′ dθ′ Pqq(m
′, θ′; ∆E,Mbc) = 1 (∀∆E, ∀Mbc) , (6.29)

∑

qtag

1 + qtagA
l(m′, θ′; ∆E,Mbc)

2
= 1 (∀∆E, ∀Mbc) , (6.30)

∫
d∆t Pqq(∆t) = 1 , (6.31)

so that

∑

l

∑

qtag

∫
d∆t

∫∫

SR

d∆E dMbc

∫∫

SDP, Veto

dm′ dθ′ P l
qq(∆E,Mbc;m

′, θ′; ∆t, qtag) = 1 . (6.32)

Since the allowed kinematic region is dependent on ∆E andMbc, the Dalitz plot distribution
is dependent on ∆E and Mbc. We define a ∆E-Mbc independent PDF, Pqq(m

′
scale, θ

′), where
m′

scale is a modified version of the square Dalitz plot variablem′, originally defined by Eq. (4.20),
with the kinematic effect taken into account as

m′
scale ≡

1

π
arccos

(
2

m0 −mmin
0

mmax
0 −mmin

0 + ∆E + ∆Mbc
− 1

)
, (6.33)

where
∆Mbc ≡Mbc −mB0 . (6.34)

2Strictly speaking, what is determined in the signal yield fit is the product of fqq and F l, f l
qq ≡ fqq · F l.
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Using the ∆E-Mbc independent PDF, Pqq(m
′, θ′; ∆E,Mbc) is described as

Pqq(m
′, θ′; ∆E,Mbc) =





1

N(∆E + ∆Mbc)
· sin(πm′)

sin(πm′
scale)

· Pqq(m
′
scale, θ

′) (m0 ∈ M) ,

0 (otherwise) ,

(6.35)(
M ≡

[
mmin

0 , min(mmax
0 ,mmax

0 + ∆E + ∆Mbc)
] )

where N(∆E+∆Mbc) and sin(πm′)/ sin(πm′
scale) are a normalization factor and the Jacobian

for the parameter transformation of m′
scale 7→ m′, respectively. We obtain the Pqq(m

′
scale, θ

′)
distribution from data in part of the sideband region, −0.1 GeV < ∆E < 0.2 GeV and
5.2 GeV/c2 < Mbc < 5.26 GeV/c2, where the contribution from BB background is negligi-
ble.

Since we find significant flavor asymmetry dependent on the location in the Dalitz plot, we
introduce the following term to take account of it:

1 + qtagA
l
qq(m

′, θ′; ∆E,Mbc)

2
, (6.36)

which is r-region (l) dependent. The asymmetry is anti-symmetric in the direction of θ′, i.e.,
Al

qq > 0 (Al
qq < 0) in the region of θ′ > 0.5 (θ < 0.5), and the size of the asymmetry is ∼ 20%

at most in the best r-region. Note that the anti-symmetric property means that the introduced
effect is not CP -violating. This asymmetry is due to the jet-like topology of continuum events;
when an event has a high momentum π− (π+) on the CP side, the highest momentum π
on the tag side tends to have + (−) charge. The highest momentum π on the tag side with
+ (−) charge tags the flavor of Btag as B0 (B0)3. Since an event with a high momentum
π− (π+) resides in the region θ′ > 0.5 (θ′ < 0.5), a continuum event in the region θ′ > 0.5
(θ′ < 0.5) tends to be tagged as B0 (B0). We again parameterize the Al

qq(m
′, θ′) in a ∆E-Mbc

independent way as
Al

qq(m
′, θ′; ∆E,Mbc) = Al

qq(m
′
scale, θ

′) , (6.37)

and model with a two-dimensional polynomial, whose coefficients are determined by a fit to
data in the sideband region.

2-3 BB background PDF

The BB background PDF is a linear combination of the all decay modes that are expected to
contribute:

PBB(~x) =

∑
k εkBrkPk(~x)∑

k εkBrk
, (6.38)

where k is an index over the modes; and εk, Brk , and Pk(~x) are the efficiency, branching
fraction, and PDF for each mode, respectively.

The treatment of the PDF for each BB mode is different for CP -eigenstate modes and
flavor-specific or charged modes. The PDF for CP -eigenstate modes is

Pk(~x) = P l
k(∆E,Mbc;m

′, θ′; ∆t, qtag)

= F l
k · Pk(∆E,Mbc) · Pk(m′, θ′) · P l

k(∆t, qtag) ,
(6.39)

where F l
k, Pk(∆E,Mbc), Pk(m′, θ′), and Pk(∆t, qtag) are the event fraction in l-th r-region,

a ∆E-Mbc PDF, a Dalitz plot PDF, and a time-dependent CP -violation PDF, respectively.

3This is because there are decay modes such as B0 → D(∗)−π+, where the π+ has high momentum.
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They are normalized as

∑

l

F l
k = 1 , (6.40)

∫∫

SR

d∆E dMbc Pk(∆E,Mbc) = 1 , (6.41)

∫∫

SDP, Veto

dm′ dθ′ Pk(m′, θ′) = 1 , (6.42)

∑

qtag

∫
d∆t P l

k(∆t, qtag) = 1 . (6.43)

For flavor-specific or charged modes, the PDF is

Pk(~x) = P l
k(∆E,Mbc;m

′, θ′; ∆t, qtag)

= F l
k · Pk(∆E,Mbc)

∑

qflv

Pk(m′, θ′; qflv) · P l
k(∆t, qtag, qflv) ,

(6.44)

where the Dalitz plot PDF Pk(m′, θ′; qflv) is dependent on the flavor of the CP (fully re-
constructed) side B, qflv, and P l

k(∆t, qtag, qflv) is a mixing PDF (lifetime PDF with flavor
asymmetry) for flavor-specific (charged) modes. They are normalized as

∫∫

SDP, Veto

dm′ dθ′ Pk(m′, θ′; qflv) = 1 (∀qflv) , (6.45)

∑

qtag

∑

qflv

∫
d∆t P l

k(∆t, qtag, qflv) = 1 . (6.46)

Note that the normalization conditions above lead to the following relation

∑

l

∑

qtag

∫
d∆t

∫∫

SR

d∆E dMbc

∫∫

SDP, Veto

dm′ dθ′ PBB(~x) = 1 . (6.47)

The ∆E-Mbc PDF and Dalitz plot PDF are obtained mode-by-mode from MC. We assume
the Dalitz plot PDF’s of the CP -eigenstate modes to satisfy following symmetry

Pk(m′, θ′) = Pk(m′, 1 − θ′) , (6.48)

and those of flavor-specific and charged modes to satisfy

Pk(m′, θ′; qflv = +1) = Pk(m′, 1 − θ′; qflv = −1) . (6.49)

3 Unbinned Maximum Likelihood Fit and the Result

With the PDF defined above, we form the likelihood function

L ≡
∏

i

P (~xi) , (6.50)

where i is an index over events. We perform an unbinned-maximum-likelihood fit and determine
the 26 Dalitz plot parameters using the likelihood function with the signal fraction and the
lineshape parameters obtained in Sec. 1 and chapter 5, respectively.

A fit to the 2,824 events in the signal region yields the result listed in Table 6.2. The
correlation matrix of the 26 parameters after combining statistical and systematic errors is
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shown in tables 6.3-6.5. Figure 6.5 shows the projections of the square Dalitz plot in data
with the fit result superimposed. We also show the mass and helicity distributions for each
ρπ enhanced region along with projections of the fit (Fig. 6.6). Figure 6.7 shows the ∆t
distributions and background subtracted asymmetries. We define the asymmetry in each ∆t
bin by (N+ −N−)/(N+ +N−), where N+(−) corresponds the background subtracted number
of events with qtag = +1(−1). The ρ−π+ enhanced region shows a significant asymmetry,
corresponding to a non-zero value of U−

− . Note that this is not a CP -violating effect, since
ρ−π+ is not a CP -eigenstate. No sin-like asymmetry is observed in any of the regions.
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Figure 6.5: Distributions of (a) θ′ and (b) m′ with fit results. The histograms are cumulative.
Solid, dot-dashed, dotted and dashed hatched histograms correspond to correctly reconstructed
signal, SCF, BB, and continuum PDFs, respectively.

Treatment of statistical errors

With a toy MC study, we check the pull distribution, where the pull is defined as the residual
divided by the MINOS error. Here, the MINOS error, which corresponds to the deviation from
the best fit parameter when −2 ln(L/Lmax) is changed by one, is an estimate of the statistical
error. Although the pull is expected to follow a Gaussian distribution with unit width, we
find that the width of the pull distribution tends to be significantly larger than one for the
interference terms due to small statistics. To restore the pull width to unity, we multiply the
MINOS errors of the interference terms by a factor of 1.17, which is the average pull width for
the interference terms obtained above, and quote the results as the statistical errors. For the
non-interfering terms, we quote the MINOS errors without the correction factor.

Qualitative interpretation of the resultant parameters

Here, we qualitatively discuss the meaning of the fit result. As can be seen in Table 6.2, most

of the parameters corresponding to flavor asymmetry, U−
κ , U

−,Im(Re)
κσ , Iκ, and I

Im(Re)
κσ , are zero

consistent. This implies φ2 ∼ 90◦ or 180◦ as described in the following.
As can be found in appendix B, amplitudes A± and A± are related to φ2 as

arg
(
A±∗

A±
)

= arg
(
e2iφ2A±∗

Ã±
)

= 2φ2 + θ± . (6.51)

Here, θ± is not helicity but the phase related to strong interaction. (See Fig. B.1 and Eq. (B.18))
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Figure 6.6: Mass (upper) and helicity (lower) distribution of ρ+π− (left), ρ−π+ (middle),
and ρ0π0 (right) enhanced regions. The histograms are cumulative. Solid, dot-dashed, dotted
and dashed hatched histograms correspond to correctly reconstructed signal, SCF, BB, and
continuum PDFs, respectively.
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Figure 6.7: Proper time distributions of good tag (r > 0.5) regions for qtag = +1 (upper) and
qtag = −1 (middle upper), in ρ+π− (left), ρ−π+ (middle), and ρ0π0 (right) enhanced regions,
where solid (red), dotted, and dashed curves correspond to signal, continuum, and BB PDFs.
The middle lower and lower plots show the background subtracted asymmetries in the good
tag (r > 0.5) and poor tag (r < 0.5) regions, respectively. The significant asymmetry in the
ρ−π+ enhanced region (middle) corresponds to a non-zero value of U−

− .
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Table 6.2: Result of the time-dependent Dalitz plot fit. First and second errors in the middle
column correspond to the statistical and systematic errors, respectively. The right column
describes which term the coefficient corresponds to, omitting constant factors, a common factor
of e−|∆t|/τ

B0 , and the effects of wrong tag fraction and ∆t resolution function.

Name Value Coefficient of

U+
+ +1 (fixed) |f+|2

U+
− +1.27± 0.13± 0.09 |f−|2

U+
0 +0.29± 0.05± 0.04 |f0|2

U+,Re
+− +0.49± 0.86± 0.52 Re[f+f

∗
−]

U+,Re
+0 +0.29± 0.50± 0.35 Re[f+f

∗
0 ]

U+,Re
−0 +0.25± 0.60± 0.33 Re[f−f

∗
0 ]

U+,Im
+− +1.18± 0.86± 0.34 Im[f+f

∗
−]

U+,Im
+0 −0.57± 0.35± 0.51 Im[f+f

∗
0 ]

U+,Im
−0 −1.34± 0.60± 0.47 Im[f−f

∗
0 ]

U−
+ +0.23± 0.15± 0.07 qtag cos(∆md∆t) · |f+|2

U−
− −0.62± 0.16± 0.08 qtag cos(∆md∆t) · |f−|2

U−
0 +0.15± 0.11± 0.08 qtag cos(∆md∆t) · |f0|2

U−,Re
+− −1.18± 1.61± 0.72 qtag cos(∆md∆t) · Re[f+f

∗
−]

U−,Re
+0 −2.37± 1.36± 0.60 qtag cos(∆md∆t) · Re[f+f

∗
0 ]

U−,Re
−0 −0.53± 1.44± 0.65 qtag cos(∆md∆t) · Re[f−f

∗
0 ]

U−,Im
+− −2.32± 1.74± 0.91 qtag cos(∆md∆t) · Im[f+f

∗
−]

U−,Im
+0 −0.41± 1.00± 0.47 qtag cos(∆md∆t) · Im[f+f

∗
0 ]

U−,Im
−0 −0.02± 1.31± 0.83 qtag cos(∆md∆t) · Im[f−f

∗
0 ]

I+ −0.01± 0.11± 0.04 qtag sin(∆md∆t) · |f+|2
I− +0.09± 0.10± 0.04 qtag sin(∆md∆t) · |f−|2
I0 +0.02± 0.09± 0.05 qtag sin(∆md∆t) · |f0|2
IRe
+− +1.21± 2.59± 0.98 qtag sin(∆md∆t) · Im[f+f

∗
−]

IRe
+0 +1.15± 2.26± 0.92 qtag sin(∆md∆t) · Im[f+f

∗
0 ]

IRe
−0 −0.92± 1.34± 0.80 qtag sin(∆md∆t) · Im[f−f

∗
0 ]

IIm
+− −1.93± 2.39± 0.89 qtag sin(∆md∆t) · Re[f+f

∗
−]

IIm
+0 −0.40± 1.86± 0.85 qtag sin(∆md∆t) · Re[f+f

∗
0 ]

IIm
−0 −2.03± 1.62± 0.81 qtag sin(∆md∆t) · Re[f−f

∗
0 ]
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Table 6.3: Correlation matrix (1) of the 26 fitted parameters, with statistical and systematic
errors combined.

U+
− U+

0 U+,Re
+− U+,Re

+0 U+,Re
−0 U+,Im

+− U+,Im
+0 U+,Im

−0

U+
− +1.00

U+
0 +0.22 +1.00

U+,Re
+− +0.06 +0.04 +1.00

U+,Re
+0 +0.10 +0.02 +0.02 +1.00

U+,Re
−0 −0.04 −0.11 +0.01 +0.01 +1.00

U+,Im
+− +0.08 +0.03 +0.12 +0.02 −0.00 +1.00

U+,Im
+0 −0.03 −0.08 −0.00 +0.13 +0.02 −0.00 +1.00

U+,Im
−0 −0.14 −0.08 −0.02 −0.02 +0.10 −0.01 +0.01 +1.00

U−
+ +0.05 +0.02 +0.00 −0.02 +0.00 −0.02 −0.01 −0.01

U−
− −0.23 −0.08 −0.03 −0.04 −0.02 −0.03 +0.01 +0.03

U−
0 +0.05 +0.10 +0.01 +0.00 −0.04 +0.01 −0.06 −0.08

U−,Re
+− −0.03 −0.01 −0.03 −0.00 −0.00 −0.04 +0.00 +0.01

U−,Re
+0 −0.04 −0.01 −0.01 −0.12 −0.00 +0.00 −0.01 +0.02

U−,Re
−0 −0.02 −0.04 −0.00 −0.00 +0.06 −0.00 +0.01 +0.08

U−,Im
+− −0.04 −0.02 −0.05 −0.01 −0.00 +0.00 +0.00 +0.01

U−,Im
+0 −0.03 −0.09 −0.01 −0.01 +0.02 −0.00 −0.04 +0.01

U−,Im
−0 +0.01 −0.02 +0.00 +0.00 +0.00 −0.00 +0.00 −0.25

I+ +0.00 +0.00 −0.02 −0.01 −0.00 −0.05 −0.01 −0.00

I− +0.06 +0.03 −0.01 +0.01 −0.02 +0.05 −0.00 +0.04

I0 +0.01 +0.01 +0.00 +0.02 −0.00 +0.00 −0.02 −0.02

IRe
+− −0.04 −0.01 +0.01 −0.00 +0.00 −0.16 +0.00 +0.00

IRe
+0 +0.00 +0.02 +0.00 −0.13 −0.01 −0.00 −0.00 −0.00

IRe
−0 −0.06 +0.01 −0.01 −0.01 −0.12 +0.00 −0.01 −0.29

IIm
+− −0.02 −0.01 +0.13 −0.00 +0.00 +0.00 +0.00 +0.00

IIm
+0 −0.01 −0.03 +0.00 +0.00 +0.01 +0.01 +0.04 +0.01

IIm
−0 −0.06 −0.04 −0.01 −0.02 −0.09 −0.02 +0.01 +0.08
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Table 6.4: Correlation matrix (2) of the 26 fitted parameters, with statistical and systematic
errors combined.

U−
+ U−

− U−
0 U−,Re

+− U−,Re
+0 U−,Re

−0 U−,Im
+− U−,Im

+0 U−,Im
−0

U−
+ +1.00

U−
− −0.06 +1.00

U−
0 +0.00 −0.01 +1.00

U−,Re
+− −0.07 +0.01 −0.00 +1.00

U−,Re
+0 −0.21 +0.03 −0.08 +0.02 +1.00

U−,Re
−0 +0.01 −0.12 −0.16 −0.00 +0.02 +1.00

U−,Im
+− +0.03 +0.03 −0.00 +0.20 −0.01 −0.00 +1.00

U−,Im
+0 −0.02 +0.01 −0.03 +0.00 +0.01 +0.01 +0.00 +1.00

U−,Im
−0 +0.00 −0.03 +0.02 −0.00 −0.00 +0.14 −0.00 +0.01 +1.00

I+ −0.02 −0.01 +0.00 +0.03 +0.01 +0.00 −0.02 +0.01 +0.00

I− −0.00 −0.01 +0.01 +0.03 −0.00 −0.05 +0.00 −0.01 −0.07

I0 +0.00 −0.01 +0.07 −0.00 −0.02 +0.02 −0.00 −0.05 −0.06

IRe
+− +0.02 +0.01 −0.00 −0.02 −0.00 +0.00 −0.15 +0.00 +0.00

IRe
+0 −0.01 +0.00 +0.02 +0.00 +0.09 −0.01 −0.00 +0.16 +0.01

IRe
−0 −0.01 +0.08 +0.08 +0.01 −0.00 −0.12 +0.01 −0.00 +0.21

IIm
+− +0.02 +0.04 −0.00 +0.04 −0.00 −0.00 +0.04 +0.00 −0.00

IIm
+0 +0.03 +0.00 −0.03 −0.01 −0.28 +0.00 +0.01 −0.03 +0.01

IIm
−0 −0.00 +0.01 −0.01 −0.00 +0.01 +0.18 +0.00 +0.02 +0.11

Table 6.5: Correlation matrix (3) of the 26 fitted parameters, with statistical and systematic
errors combined.

I+ I− I0 IRe
+− IRe

+0 IRe
−0 IIm

+− IIm
+0 IIm

−0

I+ +1.00

I− −0.06 +1.00

I0 +0.00 +0.01 +1.00

IRe
+− −0.04 −0.06 −0.00 +1.00

IRe
+0 +0.04 −0.00 −0.14 −0.00 +1.00

IRe
−0 −0.02 +0.21 +0.01 −0.01 +0.00 +1.00

IIm
+− −0.07 −0.01 −0.00 −0.35 −0.00 +0.00 +1.00

IIm
+0 −0.15 +0.01 −0.09 +0.01 −0.23 −0.00 +0.01 +1.00

IIm
−0 +0.01 −0.14 −0.23 +0.01 +0.04 −0.06 +0.00 +0.03 +1.00
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On the other hand, Iκ is related to A±∗
A± by the definition in Eq. (4.26):

Iκ ∼ Im
[
AκAκ∗

]
.

Consequently, the zero consistent values of I± indicates

sin(2φ2 + θ±) ∼ 0 (6.52)

and thus
2φ2 + θ± ∼ 180◦ or 360◦. (6.53)

Our fit result favors θ± ∼ 0 as follows. For simplicity, we suppose an extreme case where

all of U−
κ and U

−,Im(Re)
κσ are zero. With Eqs. (4.25) and (4.27), U−

κ = 0 leads to

|Aκ| = |Aκ| . (6.54)

and U
−,Im(Re)
κσ = 0 leads to

AκAσ∗ = AκAσ∗ . (6.55)

Combining Eqs. (6.54) and (6.55) with the isospin relation of Eq. (B.16), we obtain

Aκ = Ãκ , (6.56)

which corresponds to
θ± = 0 (6.57)

since
θ± ≡ arg

(
A±∗

Ã±
)
. (6.58)

Though some of the U−
κ and U

−,Im(Re)
κσ in Table 6.2 are significantly non-zero, the situation

is basically similar to this and θ± ∼ 0 is favored; Fig. 6.8 shows the constraint on θ± as the
results of the full Dalitz+Pentagon analysis performed in Sec. 2 of chapter 7, where θ± ∼ 0
corresponds to small ∆χ2.

With θ± ∼ 0 and 2φ2 + θ± ∼ 180◦ or 360◦, our result favors φ2 ∼ 90◦ or 180◦.

4 Systematic Uncertainty

Tables 6.6-6.8 list the systematic errors for the 26 time-dependent Dalitz plot parameters.
The total systematic error is obtained by adding each source of systematic uncertainty in
quadrature.

Radial excitations (ρ′ and ρ′′)

The largest contribution for the interference terms tends to come from radial excitations
(ρ(1450) and ρ(1700), or ρ′ and ρ′′). The systematic error related to the radial excitations
can be categorized into three classes: 1) uncertainties coming from the lineshape variation, i.e.,
the lineshape difference between each decay amplitude, 2) uncertainties in external parameters,
mρ(1450), Γρ(1450), mρ(1700), Γρ(1700), and 3) uncertainties in the common lineshape parameters
β and γ used for the nominal fit.

In our nominal fit, we assume all of 6 decay amplitudes have the same contribution from
ρ(1450) and ρ(1700), i.e., we assume Eq. (6.7). This assumption, however, is not well grounded.

As described in Sec. 1, in general, the contributions from ρ(1450) and ρ(1700), i.e.,
(

β
)

κ and
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Figure 6.8: ∆χ2 ≡ χ2(θ±) − χ2
min vs. θ± as a result of Dalitz+Pentagon analysis, the detail

of which can be found in Sec. 2 of chapter 7. The regions with small ∆χ2 correspond to the
favored region for θ±. As can be seen in the figure, θ± = 0 is included in the allowed region.

(
γ

)

κ, can be different for each of the decay amplitudes and thus the systematic uncertainty from
this assumption must be addressed. For this purpose, we rewrite Eq. (6.7) as

(

F
)κ
π (s) = BWGS

ρ(770)(s) + (β + ∆
(

β
)

κ)BWGS
ρ(1450)(s) + (γ + ∆

(
γ

)

κ)BWGS
ρ(1700)(s) . (6.59)

The variation of the contributions from radial excitations is described by non-zero ∆
(

β
)

κ and
∆

(
γ

)

κ, which are 12 complex variables. We generate various toy MC samples, where the input

Aκ and Aκ are fixed but the values of ∆
(

β
)

κ and ∆
(
γ

)

κ are randomly varied according to the

constraints on ∆
(

β
)

κ and ∆
(
γ

)

κ; these constraints are obtained from the results in Sec. 1-1 of
Sec. 1, and are combined with the isospin relation [17, 18], which improves the constraints.
The statistics for each pseudo-experiment are set to be large enough so that the statistical
uncertainty is negligible. We assign the variations and the biases of the fit results due to the

∆
(

β
)

κ and ∆
(
γ

)

κ variation as systematic errors.
For the masses and widths of the ρ(1450) and ρ(1700), we quote the values from the

PDG [52]. To estimate the systematic error coming from uncertainties in their parameters, we
generate toy MC varying the input masses and widths and fit them with the masses and widths
of the nominal fit. Here, we vary the masses and widths by twice the PDG error, ±50 MeV/c2

and ±40 MeV/c2 (±120 MeV/c2 and ±200 MeV/c2) for ρ(1450) and ρ(1700) masses (widths),
respectively. This is because the variations between independent experiments are much larger
than the 1σ PDG errors. We quote the mean shift of the Toy MC ensemble as the system-
atic errors. The contribution from the uncertainties of the mass and width of ρ(770) is also
estimated in the same manner.

We perform the toy MC to take account of the systematic errors from the uncertainties in β
and γ for the nominal fit, determined in Sec. 1-1, in the same way. Here, the correlation among
the four degrees of freedom of (β, γ) is significant and thus we treat the correlation properly,
as described in Sec. 2 of appendix H.

SCF

Systematic errors due to SCF are dominated by the uncertainty in the difference between data
and MC; these errors are determined from the B → D(∗)ρ control samples that contain a single
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π0 in the final state [53]. We generate toy MC samples varying the amount of SCF’s by their

1σ errors, which are ±100% for the CR SCF and
+30(60)
−30 % for the NR SCF in the DS-I (DS-II);

fit the toy MC samples in the same condition as nominal fit; and quote the mean differences
of the fit results from the default.

We also take account of the uncertainties from the event fraction for each r region (for CR
and NR), the wrong tag fractions (for CR) and lifetime used in the ∆t PDF (for CR), which
are obtained from MC. We vary these parameters in the data fit and quote differences from
the nominal fit as systematic errors.

Signal Dalitz PDF

Systematic errors due to the Dalitz PDF for signal is mainly from the Dalitz plot dependent
efficiency. We take account of MC statistics in the efficiency4 and uncertainty in the π0

momentum dependent efficiency correction, ε′(pπ0), obtained from the control samples of the
decay modes B0 → ρ−D(∗)+, B0 → π−D(∗)+, B− → ρ−D(∗)0 and B− → π−D(∗)0, where
we choose the D subdecay modes such that a single π0 is included in the final states. The
Dalitz plot efficiency obtained from MC is found to have a small charge asymmetry (∼ 3%
at most). We generate toy MC samples with and without the asymmetry, fit them using the
nominal PDF with the asymmetry, and quote twice the difference as the systematic error. The
Dalitz plot efficiency is r region dependent and obtained as a product with the event fraction
in the corresponding region, F l

sig · εl(m′, θ′), using MC. The difference in the fraction, F l
sig, for

data and MC is estimated to be ∼ 10% at most, using the B0 → D∗−π+ decay mode as a
control sample. We vary the fraction in each r region by ±10% and fit the data to estimate
the systematic error.

Background Dalitz PDF

The Dalitz plot for continuum background has an uncertainty due to the limited statistics of the
sideband events, which we use to model the PDF. We estimate the uncertainty by performing
a Toy MC study of sideband events5. Systematic uncertainty from the statistics of the BB
MC, which is used to model the BB Dalitz plot PDF, is also taken into account6.

B0 → π+π−π0 processes other than B0 → (ρπ)0

Large contributions to the systematic errors for the non-interfering parameters tends to come
from the B0 → π+π−π0 decay processes that are not B0 → (ρπ)0. We take account of
the contributions from B0 → f0(980)π0, B0 → f0(600)π0, B0 → ωπ0, and non-resonant
B0 → π+π−π0. Using the 1σ upper limits7 as input, we generate toy MC for each mode
with the interference between the B0 → (ρπ)0 and the other B0 → π+π−π0 mode taken into
account. We obtain the systematic error by fitting the Toy MC assuming B0 → (ρπ)0 only in
the PDF. Within physically allowed regions, we vary the CP -violation parameters of the other
B0 → π+π−π0 modes and the relative phase difference between B0 → (ρπ)0 and the other
B0 → π+π−π0 as the input parameters, and use the largest deviation as the systematic error
for each decay mode.

4The detailed description on the estimation of the statistical fluctuation can be found in Sec. 1-2 of ap-
pendix H.

5The detail of the procedure can be found in Sec. 1-1 of appendix H.
6The detailed description on the estimation of the statistical fluctuation can be found in Sec. 1-2 of ap-

pendix H.
7The procedure to obtain the upper limits can be found in appendix G.
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Background fraction

Systematic errors due to the event-by-event ∆E-Mbc background fractions are studied by vary-
ing the PDF shape parameters and the fraction of continuum background, and the correction
factor to the signal PDF shape by ±1σ. We also vary the fractions of the BB background,
which are estimated with MC, by ±50% (±20%) for the b→ c (b→ u) transition. We assume
smaller uncertainty for the b→ u category since the branching fractions of the decay modes in
this category are better measured than those of the b→ c category.

Physics parameters

We use the world average [52, 54, 55] for the following physics parameters: τB0 and ∆md (used
for the ∆t PDF’s of signal and BB background), the CKM angles of φ1 and φ2 (used in BB
background), and the branching fractions of b→ u decay modes (used in BB background). The
systematic error is assigned by varying them by ±1σ. The charge asymmetry of B0 → a±1 π

∓,
for which there is no measurement and we use zero in the nominal fit, is varied in the physically
allowed region, i.e., ±1.

Background ∆t PDF

Systematic errors from uncertainties in the background ∆t shapes for both continuum and BB
backgrounds are estimated by varying each parameter by ±1σ.

Vertex Reconstruction

To determine the systematic error that arises from uncertainties in the vertex reconstruction,
the track and vertex selection criteria are varied to search for possible systematic biases. Sys-
tematic error due to the IP constraint in the vertex reconstruction is estimated by varying the
smearing used to account for the B flight length by ±10µm.

Resolution Function for the ∆t PDF and Flavor Tagging

Systematic errors due to uncertainties in the resolution function are estimated by varying
each resolution parameter obtained from data (MC) by ±1σ (±2σ). Systematic errors due
to uncertainties in the wrong tag fractions are also studied by varying the wrong tag fraction
individually for each r region.

Fit Bias

We observed fit bias due to small statistics for some of the fitted parameters. Since this bias
is much smaller than the statistical error, we take it into account in the systematic errors. We
estimate the size of the fit bias by toy MC study and quote the bias as the systematic errors.
We also confirm that the bias is consistent between toy MC and full detector MC simulation.

Tag-side interference

Finally, we investigate the effects of tag-side interference (TSI), which is the interference be-
tween CKM-favored and CKM-suppressed B → D transitions in the ftag final state [56]. A
small correction to the PDF for the signal distribution arises from the interference. We es-
timate the size of the correction using the B0 → D∗−`+ν sample. We then generate MC
pseudo-experiments and make an ensemble test to obtain the systematic biases.
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Table 6.6: Table of systematic errors (1). The notation “< 0.01” means that the value is
small and less than 0.01, and thus invisible in the number of significant digits shown here. We
calculate the total systematic error including these small contributions.

U+
− U+

0 U+,Re
+− U+,Re

+0 U+,Re
−0 U+,Im

+− U+,Im
+0 U+,Im

−0

ρ′ and ρ′′ 0.01 0.01 0.31 0.19 0.19 0.21 0.39 0.30

SCF 0.01 0.02 0.31 0.09 0.11 0.11 0.12 0.11

Signal Dalitz 0.06 0.01 0.15 0.20 0.18 0.13 0.10 0.10

BG Dalitz 0.02 0.01 0.17 0.11 0.11 0.14 0.10 0.19

Other πππ 0.04 0.02 0.06 0.08 0.07 0.10 0.09 0.07

BG fraction 0.02 0.01 0.08 0.04 0.07 0.06 0.03 0.11

Physics 0.02 < 0.01 0.01 0.01 0.02 0.01 0.01 0.01

BG ∆t < 0.01 < 0.01 0.03 0.01 0.01 0.02 0.01 0.01

Vertexing 0.03 0.01 0.03 0.05 0.02 0.09 0.05 0.07

Resolution < 0.01 < 0.01 0.03 0.05 0.02 0.02 0.02 0.03

Flavor tagging < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01

Fit bias 0.02 0.02 0.10 0.11 0.07 0.06 0.24 0.22

TSI < 0.01 < 0.01 0.01 0.02 0.02 0.02 0.01 < 0.01

Total 0.09 0.04 0.52 0.35 0.33 0.34 0.51 0.47

Table 6.7: Table of systematic errors (2). The notation “< 0.01” means that the value is
small and less than 0.01, and thus invisible in the number of significant digits shown here. We
calculate the total systematic error including these small contributions.

U−
+ U−

− U−
0 U−,Re

+− U−,Re
+0 U−,Re

−0 U−,Im
+− U−,Im

+0 U−,Im
−0

ρ′ and ρ′′ 0.01 0.02 0.04 0.53 0.29 0.42 0.70 0.31 0.59

SCF 0.02 0.02 0.02 0.09 0.17 0.17 0.13 0.09 0.18

Signal Dalitz 0.01 0.02 0.01 0.27 0.20 0.14 0.30 0.15 0.19

BG Dalitz 0.04 0.03 0.02 0.28 0.32 0.22 0.30 0.20 0.30

Other πππ 0.03 0.03 0.02 0.07 0.08 0.12 0.13 0.08 0.08

BG fraction 0.02 0.04 0.01 0.18 0.17 0.14 0.22 0.13 0.11

Physics 0.01 0.01 <0.01 0.03 0.03 0.03 0.04 0.01 0.04

BG ∆t <0.01 <0.01 <0.01 0.02 0.03 0.02 0.03 0.02 0.03

Vertexing 0.02 0.01 0.05 0.18 0.20 0.17 0.08 0.07 0.11

Resolution 0.01 0.01 <0.01 0.10 0.14 0.28 0.07 0.11 0.26

Flavor tagging 0.01 0.01 <0.01 0.03 0.03 0.03 0.05 0.03 0.02

Fit bias <0.01 0.02 <0.01 0.03 0.09 0.02 0.27 0.08 0.26

TSI 0.03 0.03 0.01 0.06 0.03 0.01 0.05 0.04 0.02

total 0.07 0.08 0.08 0.72 0.60 0.65 0.91 0.47 0.83
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Table 6.8: Table of systematic errors (3). The notation “< 0.01” means that the value is
small and less than 0.01, and thus invisible in the number of significant digits shown here. We
calculate the total systematic error including these small contributions.

I+ I− I0 IRe
+− IRe

+0 IRe
−0 IIm

+− IIm
+0 IIm

−0

ρ′ and ρ′′ 0.02 0.02 0.03 0.82 0.64 0.55 0.46 0.56 0.48

SCF 0.01 0.01 0.01 0.18 0.27 0.10 0.38 0.17 0.14

Signal Dalitz 0.01 0.01 0.01 0.28 0.22 0.14 0.27 0.21 0.30

BG Dalitz 0.01 0.01 0.01 0.29 0.35 0.26 0.28 0.26 0.34

Other πππ 0.02 0.03 0.01 0.13 0.10 0.10 0.10 0.13 0.14

BG fraction 0.01 0.01 0.01 0.13 0.24 0.19 0.16 0.15 0.25

Physics 0.01 0.01 <0.01 0.04 0.05 0.03 0.04 0.03 0.05

BG ∆t <0.01 <0.01 <0.01 0.05 0.04 0.03 0.05 0.04 0.09

Vertexing 0.02 0.01 0.03 0.11 0.24 0.09 0.31 0.36 0.16

Resolution 0.01 0.01 0.01 0.19 0.22 0.15 0.28 0.20 0.23

Flavor tagging <0.01 <0.01 <0.01 0.04 0.07 0.04 0.04 0.07 0.03

Fit bias <0.01 0.01 <0.01 0.11 0.10 0.41 0.25 0.13 0.18

TSI <0.01 <0.01 <0.01 0.09 0.04 0.06 0.05 0.18 0.05

Total 0.04 0.04 0.05 0.98 0.92 0.80 0.89 0.85 0.81
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Chapter 7

Interpretation of the Fit Result

In this chapter, we describe several interpretations of our result of the time-dependent Dalitz
plot analysis. Though the main purpose of this analysis is to constrain the CKM angle φ2,
which is described in Sec. 2, our analysis also gives useful information on the parameters related
to the quasi-two-body processes of B0 → ρ+π−, ρ−π+, and ρ0π0, as written in Sec. 1.

1 Quasi-Two-Body Parameters

Among the 27 coefficients determined by the time-dependent Dalitz plot fit, those of the
non-interfering terms, U+

+ , U+
− , U+

0 , U−
+ , U−

− , U−
0 , I+, I−, and I0 can be interpreted as

the CP -violation and non-CP -violation parameters of the quasi-two-body decay processes of
B0 → ρ+π−, B0 → ρ−π+, and B0 → ρ0π0. In the following, we extract the quasi-two-body
parameters from the result of the time-dependent Dalitz plot analysis.

1-1 Parameters Related to B0 → ρ±π∓

Since ρ±π∓ are not CP eigenstates, the time-dependent decay rates of the processes B0 →
ρ±π∓ are described by Eq. (2.96). We can calculate the CP -violation parameters in the
equation from the several of the 27 coefficients determined by the time-dependent Dalitz plot
fit as

C+ =
U−

+

U+
+

, C− =
U−
−

U+
−

, S+ =
2I+

U+
+

, S− =
2I−

U+
−

, ACP
ρπ =

U+
+ − U+

−

U+
+ + U+

−

, (7.1)

and

C ≡ C+ + C−

2
, ∆C ≡ C+ − C−

2
, S ≡ S+ + S−

2
, ∆S ≡ S+ − S−

2
. (7.2)

As described in Sec. 3-4 of chapter 2, ACP
ρπ , C, and S are CP -violation parameters, while ∆C

and ∆S can be non-zero even without CP violation, The charge asymmetry, ACP
ρπ , is a time-

and flavor-integrated CP -violation parameter that can be interpreted as

ACP
ρπ =

Γ(B0, B0 → ρ+π−) − Γ(B0, B0 → ρ−π+)

Γ(B0, B0 → ρ+π−) + Γ(B0, B0 → ρ−π+)
. (7.3)
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Table 7.1: Correlation matrix of the quasi-two-body parameters, with statistical and systematic
errors combined.

ACP
ρπ C ∆C S ∆S

ACP
ρπ +1.00

C −0.17 +1.00

∆C +0.10 +0.16 +1.00

S +0.01 −0.02 −0.00 +1.00

∆S −0.00 −0.01 −0.02 +0.29 +1.00

From our measurement listed in Table 6.2, we obtain

ACP
ρπ = −0.12± 0.05± 0.04 , (7.4)

C = −0.13± 0.09± 0.05 , (7.5)

∆C = +0.36± 0.10± 0.05 , (7.6)

S = +0.06± 0.13± 0.05 , and (7.7)

∆S = −0.08± 0.13± 0.05 , (7.8)

where first and second errors are statistical and systematic, respectively. The correlation matrix
is shown in Table 7.1.

One can transform the parameters into the direct CP violation parameters A+−
ρπ and A−+

ρπ

defined as

A+−
ρπ ≡ −

ACP
ρπ + C + ACP

ρπ ∆C
1 + ∆C + ACP

ρπ C , and (7.9)

A−+
ρπ ≡ +

ACP
ρπ − C −ACP

ρπ ∆C
1 − ∆C −ACP

ρπ C , (7.10)

which are more convenient for interpretation since

A+−
ρπ =

Γ(B0 → ρ−π+) − Γ(B0 → ρ+π−)

Γ(B0 → ρ−π+) + Γ(B0 → ρ+π−)
, and (7.11)

A−+
ρπ =

Γ(B0 → ρ+π−) − Γ(B0 → ρ−π+)

Γ(B0 → ρ+π−) + Γ(B0 → ρ−π+)
. (7.12)

We obtain

A+−
ρπ = +0.21± 0.08± 0.04 , and (7.13)

A−+
ρπ = +0.08± 0.16± 0.11 , (7.14)

with a correlation coefficient of +0.47. Our result differs from the case with no direct CP
asymmetry (A+−

ρπ = 0 and A−+
ρπ = 0) by 2.3 standard deviations (Fig. 7.1). More data would

be useful to clarify whether direct CP violation is present.

1-2 Parameters Related to B0 → ρ0π0

Evidence for B0 → ρ0π0 Decay Channel

The existence of the decay channel B0 → ρ0π0 has been a matter of argument due to the
discrepancy between the branching fractions reported by Belle and BaBar. Though the dis-
crepancy is becoming smaller as the data increase, there is still a difference of 1.7σ between
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Figure 7.1: Contour plot of the confidence level for the direct CP violation parameters A+−
ρπ

vs. A−+
ρπ .

them [57, 58]:

B(B0 → ρ0π0)Belle = 3.12+0.88
−0.82

+0.60
−0.76 (×10−6) , (7.15)

B(B0 → ρ0π0)BaBar = 1.4± 0.6 ± 0.3 (×10−6) . (7.16)

In our analysis, non-zero U+
0 corresponds to the existence of the B0 → ρ0π0 decay channel.

As listed in Table 6.2, we obtain

U+
0 = +0.29± 0.05± 0.04 , (7.17)

which significantly differs from zero. Since the likelihood curve deviates from a Gaussian as
shown in Fig. 7.2, we calculate the significance by the convolution of the likelihood curve and a
Gaussian that describes the systematic error. We obtain a result that excludes U+

0 = 0 by the
significance of 4.8σ. This is the most significant evidence for the B0 → ρ0π0 decay channel at
present.

To compare our result with the dedicated branching fraction measurements, we use the
ratio of the branching fractions, B(B0 → ρ0π0)/B(B0 → ρ±π∓). The result of the Dalitz plot
analysis is related to the ratio as

B(B0 → ρ0π0)

B(B0 → ρ±π∓)
=

U+
0

U+
+ + U+

−

. (7.18)

Our measurement yields

B(B0 → ρ0π0)

B(B0 → ρ±π∓)
= 0.130± 0.022± 0.020 . (7.19)
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Figure 7.2: The likelihood curve (solid line) as a function of U+
0 . The dotted curve shows a

Gaussian curve corresponding the statistical error we quote.

The branching fraction measurements of Belle and BaBar yields

B(B0 → ρ0π0)Belle

B(B0 → ρ±π∓)WA
=

3.12+0.88
−0.82

+0.60
−0.76

24.0± 2.5
= 0.130+0.049

−0.046 , and (7.20)

B(B0 → ρ0π0)BaBar

B(B0 → ρ±π∓)WA
=

1.4 ± 0.6± 0.3

24.0± 2.5
= 0.058± 0.029 , (7.21)

where we use the world average [54, 55] for the denominator. Our result supports the branching
fraction measurement of Belle. The Dalitz plot analysis by BaBar also favors rather large
contribution from B0 → ρ0π0 [59], being consistent with our result:

B(B0 → ρ0π0)

B(B0 → ρ±π∓)

∣∣∣∣
BaBar,Dalitz

= 0.103± 0.018± 0.019 . (7.22)

CP Violation Parameters

We also measure the CP violation parameters of B0 → ρ0π0. Since ρ0π0 is a CP eigenstate,
its time-dependent decay rate is described by Eq. (2.92). The CP violation parameters Aρ0π0

and Sρ0π0 are calculated as

Aρ0π0 = −U
−
0

U+
0

, and Sρ0π0 =
2I0

U+
0

. (7.23)

We obtain

Aρ0π0 = −0.49± 0.36± 0.28 , and (7.24)

Sρ0π0 = +0.17± 0.57± 0.35 , (7.25)

with the correlation coefficient of −0.08. This is the first measurement of Sρ0π0 . Our measure-
ment of Aρ0π0 is consistent with and better than the previous measurement from Belle based
on a data set corresponding to 386× 106BB̄ pairs [57]:

Aρ0π0 = −0.53+0.67
−0.84

+0.10
−0.15 . (7.26)
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2 Constraint on φ2

We constrain the CKM angle φ2 from our analysis following the procedure described in Ref. [19].
With three B0 → (ρπ)0 decay modes, we have 9 free parameters including φ2:

9 = (6 complex amplitudes = 12 d.o.f.) + φ2

−(1 global phase) − (1 global normalization)− (1 isospin relation = 2 d.o.f.) ,
(7.27)

where we make use of an isospin relation that relates neutral B decay processes only [17,
18]. Parameterizing the 6 complex amplitudes with 9 free parameters, we form a χ2 function
using the 26 measurements of our time-dependent Dalitz plot analysis as constraints. We first
optimize all the 9 parameters to obtain a minimum χ2, χ2

min; we then scan φ2 from 0◦ to 180◦

optimizing the other 8 parameters, whose resultant minima are defined as χ2(φ2); and ∆χ2(φ2)
is defined as ∆χ2(φ2) ≡ χ2(φ2) − χ2

min. Performing a toy MC study following the procedure
described in Ref. [60], we obtain the 1 − C.L. plot from the ∆χ2(φ2)

1; the result is shown in
Fig. 7.3 as a dotted curve2.

To incorporate all available knowledge, we combine our analysis with the information of
the related charged B decay processes. We use the following world average branching fractions
and asymmetries: B(B0 → ρ±π∓), B(B+ → ρ+π0), A(B+ → ρ+π0), B(B+ → ρ0π+), and
A(B+ → ρ0π+) [54, 55], which are not correlated with our 26 observables. With the 31 mea-
surements above, we perform a full combined Dalitz and isospin(pentagon) analysis. Having 5
related decay modes, we have 12 free parameters including φ2:

12 = (10 complex amplitudes = 20 d.o.f.) + φ2

−(1 global phase) − (4 isospin relations = 8 d.o.f.) .
(7.28)

The detail of χ2 formation can be found in appendix B. The obtained χ2
min is 10.2, which is

reasonable for 31(measurements) − 12(free parameters) = 19 degrees of freedom. Following
the same procedure as above, we obtain the 1 − C.L. plot in the Fig. 7.3 as a solid curve. We
obtain

68◦ < φ2 < 95◦ (7.29)

as the 68.3% confidence interval consistent with the SM expectation. A large SM-disfavored
region (0◦ < φ2 < 5◦, 23◦ < φ2 < 34◦, and 109◦ < φ2 < 180◦) also remains.

1∆χ2(φ2) is usually expected to follow a χ2 distribution with one degree of freedom and thus the cumulative
χ2 distribution for one degree of freedom is usually used to convert ∆χ2(φ2) into a 1 − C.L. plot. A toy
MC study shows, however, that this is not the case for B → ρπ, and an analysis with this assumption yields
confidence intervals with undercoverage. Thus, we perform a dedicated toy MC study to obtain the confidence
interval with correct coverage.

2A 1 − C.L. plot reads as follows. Figure 7.4 shows an example of the plot of 1 − C.L. vs. φ2. To calculate
a confidence interval for a confidence level of C.L. = x, one reads the intersection of a horizontal line of
1−C.L. = 1−x and the filled region, or the region where the plotted curve is above the line of 1−C.L. = 1−x.
For example, a confidence interval for 68.3% C.L. is obtained by the intersection of a line 1 − C.L. = 0.317
and the filled region, leading to 70◦ < φ2 < 110◦ in this example. Note that a confidence level can only be
defined for an interval (confidence interval) of φ2 and not for a specific value of φ2. Thus, a statement like the
following is misleading: the confidence level for φ2 = 90◦ is 0. A correct statement is the confidence level for
the confidence interval of 70 ◦ < φ2 < 110◦ is 68.3%.
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Figure 7.3: 1 − C.L. vs. φ2. Dotted and solid curves correspond to the result from the time-
dependent Dalitz plot analysis only and that from Dalitz and isospin (pentagon) combined
analysis, respectively.
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Figure 7.4: An example of 1 − C.L. vs. φ2 plot with a central value of φ2 = 90◦ and a 1σ
error of 20◦. Dotted (blue) and dot-dashed (green) horizontal error bars correspond to the
confidence intervals for the confidence levels of 68.3% and 90%, respectively.
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Chapter 8

Discussions and Conclusions

1 Test of Standard Model by φ2 Measurement

As described in chapter 1, the comparison of the direct measurement and indirect measurement,
or the standard model (SM) expectation, of a parameter in the CKM model is a good test of
SM. In this section, we perform the SM test using φ2 as the test parameter, where the direct
measurement incorporates our analysis of B → ρπ.

1-1 Direct Measurements of φ2

The direct measurement of the CKM angle φ2 is possible by using the isospin analysis [16] of
the decay modes B → ππ and B → ρρ, as well as the analysis of B → ρπ. Figures 8.1 and 8.2
show the constraint on φ2 obtained by the isospin analysis using the world averages [54, 55] of
the CP -violating asymmetries and branching fractions of B → ππ and B → ρρ, respectively.
As 68.3% confidence intervals, they give

0◦ < φππ
2 < 7◦, 83◦ < φππ

2 < 105◦, 115◦ < φππ
2 < 155◦, 165◦ < φππ

2 < 180◦, (8.1)

and
0◦ < φρρ

2 < 18◦, 72◦ < φρρ
2 < 112◦, 158◦ < φρρ

2 < 180◦. (8.2)

By combining the constraints from B → ππ and B → ρρ, the number of discrete solutions in
the constraint from B → ππ decreases from four to three:

0◦ < φππ,ρρ
2 < 7◦, 83◦ < φππ,ρρ

2 < 105◦, 165◦ < φππ,ρρ
2 < 180◦. (8.3)

We combine this result with our result of B → ρπ shown in Fig. 8.3, which gives a 68.3%
confidence interval of

0◦ < φρπ
2 < 5◦ , 23◦ < φρπ

2 < 34◦ , 68◦ < φρπ
2 < 95◦ , 109◦ < φρπ

2 < 180◦ . (8.4)

Figure 8.4 shows the combined result. By the addition of our analysis, the constraint improves,
in particular for the solution of φ2 ∼ 90◦:

0◦ < φ2 < 4◦, 83◦ < φ2 < 95◦, 167◦ < φ2 < 180◦. (8.5)

From the Fig. 8.4, one may consider the solution of φ2 ∼ 180◦ is better favored than that of
φ2 ∼ 90◦. However, the difference is insignificant, corresponding to the significance of 0.16σ.
Thus, at current statistics we cannot conclude that one of the solutions is more favored than
the other.
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Figure 8.1: 1 − C.L. vs. φ2 obtained by using B → ππ decay modes.
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Figure 8.2: 1 − C.L. vs. φ2 obtained by using B → ρρ decay modes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  30  60  90  120  150  180

1−
C

.L
.

φ2 (degrees)

C.L.=68.3%

Figure 8.3: 1 − C.L. vs. φ2 obtained from our B → ρπ analysis.
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Figure 8.4: 1−C.L. vs. φ2 obtained by combining the constraints from B → ππ, B → ρπ, and
B → ρρ (solid curve). Dashed, dotted, and dot-dashed curves correspond to the constraints
from B → ρπ, B → ππ, and B → ρρ, respectively.

1-2 Comparison of the Direct and Indirect Measurements of φ2

As described in chapter 1, the CKM-picture allows us to calculate φ2 as SM expectation
from the measurements other than the direct measurements. The indirect measurement of
φ2 is mainly determined by the constraints from sin 2φ1 and |VtdV

∗
tb|/|VcdV

∗
cb|, as illustrated

in Fig. 1.1. The former is from the measurement of the CP violation in the “golden mode,”
B0 → J/ψK0, at B-factories. The latter is decomposed as

|VtdV
∗
tb|

|VcdV ∗
cb|

=
|VtdV

∗
tb|

|VtsV ∗
tb|

1

|Vus|
· |Vts|
|Vcb|

1

|V ∗
tb|

|Vus|
|Vcd|

. (8.6)

Here the following relations hold by the unitary and hierarchal properties of the CKM matrix
(See Eq. (2.11)):

|Vts|
|Vcb|

∼ 1

|V ∗
tb|

∼ |Vus|
|Vcd|

∼ 1 . (8.7)

Consequently,
|VtdV

∗
tb|

|VcdV ∗
cb|

∼ |VtdV
∗
tb|

|VtsV ∗
tb|

1

|Vus|
, (8.8)

where each factor is obtained by the measurement of Bd-Bd mixing parameter

∆md ∼ |VtdV
∗
tb|2 , (8.9)

the measurement of Bs-Bs mixing parameter

∆ms ∼ |VtsV
∗
tb|2 , (8.10)

and the measurements of the kaon decays (|Vus|). The detailed description can be found
elsewhere [60]. Note that the important aspect in the measurement of |VtdV

∗
tb|/|VcdV

∗
cb| is to

take the ratio of ∆md and ∆ms, which leads to a sizable improvement of the precision by the
cancellation of the theoretical uncertainty of QCD calculation. The dominant uncertainty of
|VtdV

∗
tb|/|VcdV

∗
cb| comes from the theoretical calculation of the SU(3) breaking effect between

Bd and Bs.
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The global fit using all the available measurements as of the summer 2006, except for the
direct measurements of φ2, yields [11]

φind.
2 =

(
100.0+4.5

−7.3

)
◦ .

On the other hand, the CKM-favored solution from direct measurements is

83◦ < φdir.
2 < 95◦ .

They have an overlapped region and thus they are consistent with each other; the CKM-
picture of CP violation is confirmed to be correct by the comparison of the direct and indirect
measurements of φ2 at the precision of σφ2 ∼ 7◦.

2 Conclusions

In summery, we performed a time-dependent Dalitz plot analysis of B0 → π+π−π0 decays
based on a 414fb−1 data sample that contains 449 × 106BB̄ pairs collected on the Υ(4S)
resonance with the Belle detector at the KEKB energy-asymmetric e+e− collider.

Combining the time-dependent Dalitz plot observables obtained from our analysis with the
information on charged B decay modes, we perform a full Dalitz and isospin analysis for the
first time and obtain a constraint on the CKM angle φ2,

68◦ < φ2 < 95◦ ,

as the 68.3% confidence interval consistent with the standard model (SM). A large SM-
disfavored region (0◦ < φ2 < 5◦, 23◦ < φ2 < 34◦ and, 109◦ < φ2 < 180◦) also remains.
This result is combined with the measurements from B → ππ and B → ρρ and gives the 68.3%
confidence interval of

0◦ < φ2 < 4◦, 83◦ < φ2 < 95◦, 167◦ < φ2 < 180◦ ,

where our analysis of B → ρπ plays an essential role for the improvement of the precision. This
result is compared with the SM expectation of φ2 =

(
100.0+4.5

−7.3

)
◦, and found to be consistent

with it; the CKM-picture of the CP violation in the quark sector is confirmed to be correct at
the precision of σφ2 ∼ 7◦.

The time-dependent Dalitz plot observables are also interpreted as quasi-two-body CP -
violation parameters in B0 → ρ±π∓. We obtain

ACP
ρπ = −0.12± 0.05± 0.04 ,

C = −0.13± 0.09± 0.05 ,

∆C = +0.36± 0.10± 0.05 ,

S = +0.06± 0.13± 0.05 , and

∆S = −0.08± 0.13± 0.05 ,

where the first and second errors correspond to statistical and systematic errors, respectively.
From ACP

ρπ , C, and ∆C above, direct CP -violation parameters in the B0 → ρ±π∓ process are
calculated to be

A+−
ρπ = +0.21± 0.08± 0.04 , and

A−+
ρπ = +0.08± 0.16± 0.11 .

The CP -violation parameters of the B0 → ρ0π0 process are also obtained to be

Aρ0π0 = −0.49± 0.36± 0.28 , and

Sρ0π0 = +0.17± 0.57± 0.35 ,

where Sρ0π0 is measured for the first time.
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Appendix A

Detailed Study of the PDF for
Each Component

1 Correctly Reconstructed Signal

The PDF for correctly reconstructed signal is described by Eq. (6.12). In this section, we
discuss the ∆E-Mbc PDF, Ptrue(∆E,Mbc; pπ0), efficiency over the Dalitz plot, εl(m′, θ′), and
correction factor for it, ε′(pπ0), which is a product of ε′π0(pπ0) and ε′FF(pπ0) described in the
followings. We also comment on possible detector resolution effect in Dalitz plot.

1-1 ∆E-Mbc PDF

We model the ∆E-Mbc PDF by binned histogram. Since the resolution of π0 energy measure-
ment is dependent on the momentum of π0 in the laboratory frame, the width of the ∆E-Mbc

distribution, in particular ∆E, is dependent on the π0 momentum, which we take into account
as described in the following. We also take account of the MC-data difference.

On the Correlation between ∆E and Mbc

Since the final state π+π−π0 includes π0, the tail part of the ∆E-Mbc tends to be correlated
and the correlation is dependent on the π0 momentum, pπ0 , as shown in Fig. A.1. We adopt
to use binned histogram for the ∆E-Mbc to take account of this correlation.
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Figure A.1: MC ∆E-Mbc distribution of correctly reconstructed signal, for (a) 0.0 GeV/c <
pπ0 < 1.0 GeV/c, (b) 1.0 GeV/c < pπ0 < 2.0 GeV/c, (c) 2.0 GeV/c < pπ0 < 3.0 GeV/c, and (d)
3.0 GeV/c < pπ0 < 4.0 GeV/c.
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Dependence on π0 Momentum

As shown in figures A.2 and A.3, ∆E-Mbc distribution of correctly reconstructed signal is
dependent on the momentum of π0, pπ0 . This have to be taken into account since pπ0 is
strongly correlated with the square Dalitz plot variable m′, as shown in Fig. A.4; otherwise,
this effect could cause bias in the fit.

First, we subdivide the MC sample into π0 momentum regions with 0.2 GeV/c widths. For
each region, we prepare ∆E-Mbc PDF’s, Pip

(∆E,Mbc), where ip the index over the pπ0 with
the correspondence of

ip =

[
pπ0 (GeV/c) − 0.1

0.2

]
, (A.1)

where [x] is the floor function, or the greatest integer function. Note that pπ0 > 0.1 GeV/c is
required in the event selection. We normalize Pip

(∆E,Mbc) in the grand signal region:

∫∫

GS

d∆E dMbc Pip
(∆E,Mbc) = 1 . (A.2)

With the Pip
(∆E,Mbc) above, we define the Ptrue(∆E,Mbc; pπ0) as an interpolation in the

pπ0 direction:

Ptrue(∆E,Mbc; pπ0) =
fp Pjp

(∆E,Mbc) + (1 − fp)Pjp+1(∆E,Mbc)

fp njp
+ (1 − fp)njp+1

, (A.3)

where

jp =

[
pπ0 (GeV/c) − 0.2

0.2

]
, (A.4)

fp =
0.2 · (jp + 2) − pπ0 (GeV/c)

0.2
, (A.5)

njp
=

∫∫

SR

d∆E dMbc Pjp
(∆E,Mbc) . (A.6)

Here, the last equation defines the integral over the signal region. The above expression is only
valid for 0.2 GeV/c < pπ0 < 3.6 GeV/c; outside the region, we define Ptrue(∆E,Mbc; pπ0) as

Ptrue(∆E,Mbc; pπ0) =





Pjp=0(∆E,Mbc)

njp=0
(pπ0 < 0.2 GeV/c) ,

Pjp=17(∆E,Mbc)

njp=17
(pπ0 > 3.6 GeV/c) .

(A.7)

The denominator of Eq. (A.3) guarantees the required normalization condition:

∫∫

SR

d∆E dMbcPtrue(∆E,Mbc; pπ0) = 1 . (A.8)

Correction for the Data-MC Difference (Fudge Factor)

There are differences between data and MC, mainly due to 1) the difference of tracking error
and 2) the difference of the energy spread of e+e− beams. To take account of the difference,
we apply correction factors, which we call Fudge Factor.

We use B0 → D−ρ+(D− → K+π−π−) and B0 → D∗−ρ+ (D∗− → D0π−, D0 → K+π−)
decay modes, which have large branching fractions and high purity, as control samples to obtain
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Figure A.2: MC ∆E distribution of correctly reconstructed signal, for (a) 0.0 GeV/c < pπ0 <
1.0 GeV/c, (b) 1.0 GeV/c < pπ0 < 2.0 GeV/c, (c) 2.0 GeV/c < pπ0 < 3.0 GeV/c, and (d)
3.0 GeV/c < pπ0 < 4.0 GeV/c.
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Figure A.3: MC Mbc distribution of correctly reconstructed signal, for (a) 0.0 GeV/c < pπ0 <
1.0 GeV/c, (b) 1.0 GeV/c < pπ0 < 2.0 GeV/c, (c) 2.0 GeV/c < pπ0 < 3.0 GeV/c, and (d)
3.0 GeV/c < pπ0 < 4.0 GeV/c.
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Figure A.4: Correlation between the π0 momentum, pπ0 , and the square Dalitz plot variable
m′.
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the Fudge Factor. Comparing the distributions of data and MC, we obtain the difference of
widths and mean values defined as

∆µ ≡ µData − µMC , (A.9)

∆σ ≡ σData/σMC , (A.10)

for both of ∆E and Mbc. Table A.1 lists the values with their statistical uncertainties.
With the obtained Fudge Factor, we define the corrected ∆E-Mbc PDF. First, we define

the corrected PDF for each pπ0 region as

P ′
ip

(∆E′,Mbc
′) =

1

N ′
ip

Pip
(∆E,Mbc) , (A.11)

where

Mbc
′ ≡ Mbc −mB0 − ∆µMbc

∆σMbc
+mB0 , (A.12)

∆E′ ≡ ∆E − ∆µ∆E

∆σ∆E
. (A.13)

We determine the normalization factor N ′
ip

such that the corrected PDF satisfy

∫∫

GS

d∆E dMbc P
′
ip

(∆E ′,Mbc
′) = 1 . (A.14)

Then, the corrected ∆E-Mbc PDF is defined in the same way as Eqs. (A.3) and (A.3), but
Pjp

(∆E,Mbc) and njp
are replaced with P ′

ip
(∆E′,Mbc

′) and n′
jp

, where

n′
jp

=

∫∫

SR

d∆E dMbc P
′
jp

(∆E′,Mbc
′) . (A.15)

Table A.1: Fudge Factor obtained by the control sample study.

DS-I DS-II

∆µ∆E (MeV) 0.3 ± 1.1 −0.9± 1.4

∆σ∆E 1.18 ± 0.05 1.18± 0.07

∆µMbc (MeV/c2) 0.38 ± 0.11 0.36± 0.13

∆σMbc 0.93 ± 0.03 0.97± 0.04

1-2 Dalitz Plot PDF

The smearing and distortion of the Dalitz plot distribution are understood by the detector
resolution and the efficiency dependent on the Dalitz plot position. As discussed in the fol-
lowings, the effect of the former is negligibly small. As for the latter, we obtain the efficiency
from MC-generated events and apply corrections to take account of data-MC difference.
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On the Detector Resolution of Dalitz Plot

The measurement precision of the Dalitz plot variables is so good that we can ignore the finite
resolution of it. Figure A.5 shows the resolution. It is good enough compared to the width of
ρ, whose typical spread is ∼ 0.05 in the square Dalitz plot. Using MC, we confirm the fit result
is not biased even if we ignore the smearing in Dalitz plot due to the detector resolution.

The main reason of the good resolution is that we do not use the energy of π0 to calculate
the Dalitz plot variables. As implied in Eqs. (4.20) and (4.21), we only use 1) the four-momenta
of π+ and π−, and 2) the flight direction of π0 in the rest mass frame of π+π−. The usual Dalitz
plot variables, s+, s−, and s0, are calculated from the square Dalitz plot variables following
appendix C, which corresponds to exploiting the relation of

s+ + s− + s0 = mB0
2 + 2mπ+

2 +mπ0
2 (A.16)

instead of using the π0 energy.
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Figure A.5: Residual distribution of the square Dalitz plot variables of m′ (left) and θ′ (right)
obtained from MC. The resolution is dependent on m′; the upper and lower plots correspond
to the region of 0.1 < m′ < 0.2 and 0.7 < m′ < 0.8, respectively.

Efficiency

Since the acceptance is not constant over the Dalitz plot, we need to take account of it as a
Dalitz plot dependent efficiency, ε(m′, θ′), which is shown in Fig. A.6. As shown in Fig. A.7, the
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efficiency curve is also dependent on the quality of the flavor tagging, r, and thus we introduce
the dependence on the r-bin as ε(m′, θ′; l).

In practice, the efficiency is entangled with the event fraction of each r-region, F l, and
we treat them together. As illustrated in Fig. A.8, it can be understood by two steps: first,
the events are distributed into the six r-bins by flavor tagging with the fractions of F l, and
secondly, the detection efficiency ε(m′, θ′; l) is multiplied. Our concern is only with the relation
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Figure A.6: The Dalitz-dependent efficiency summed over all the tagging quality region. The
blue colored low efficiency regions correspond to the kinematic regions where one of the three
pions have low momentum.

between the original number of events, N , and the detected number of events, F lε(m′, θ′; l)N ;
we do not need the intermediate information of F lN . That is, we only have to know about
the product F lε(m′, θ′; l) and do not have to disentangle it.

We obtain the F lε(m′, θ′; l) from MC-generated events. With the number of generated
events at the Dalitz plot position of (m′, θ′), Ngen(m

′, θ′), and that of reconstructed events at
(m′, θ′) in l-th r-bin, Nrec(m

′, θ′, l), we calculate it as

F lε(m′, θ′; l) =
Nrec(m

′, θ′, l)

Ngen(m′, θ′)
. (A.17)

As a technical aspect, we use a MC generator that distributes the events flatly over the square
Dalitz plot, i.e., Ngen(m

′, θ′) ∼ N(constant), to minimize the statistical fluctuation of the MC
with a limited computational resource.

On the Charge Asymmetry of Efficiency

The Dalitz-dependent efficiency obtained from MC has charge asymmetry; it has a significant
deviation from the following relation

ε(m′, θ′; l) = ε(m′, 1 − θ′; l) . (A.18)

Note that the replacement θ′ → 1 − θ′ corresponds to π± → π∓. The asymmetry defined as

ε(m′, θ′; l) − ε(m′, 1 − θ′; l)

ε(m′, θ′; l) + ε(m′, 1 − θ′; l)
(A.19)
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tends to have negative value for θ′ > 0.5 and ∼ 3% at most. We use the asymmetric efficiency
for the nominal fit and quote twice of the difference between the cases with and without the
charge asymmetry as the systematic error.

Efficiency Correction for Data-MC Difference

As described above, we rely on MC to determine the Dalitz-dependent efficiency, and the
difference between data and MC should be taken into account. In particular, the electro-
magnetic cascade shower process is hard to reproduce perfectly, while the detection of charged
tracks is well reproduced by MC. Thus, we introduce an efficiency correction factor dependent
on the momentum of π0, ε′π0(pπ0). We introduce the dependence on π0 momentum, which
is correlated with the square Dalitz plot variable m′ as shown in Fig. A.4 [], since an overall
efficiency difference is not important in our Dalitz plot analysis.

The correction factor is defined as

ε′π0(pπ0) =
εData(pπ0)

εMC(pπ0)
, (A.20)

and obtained using the control samples of the following decay modes:

• B+ → π+D0 (D0 → KSπ
0),

• B0 → π+D∗− (D0 → KSπ
0),

• B+ → ρ+D0 (D0 → K+π−, D0 → K+π−π−π+, D0 → KSπ
+π−),

• B0 → ρ+D− (D− → K+π−π−, D− → KSπ
−), and

• B0 → ρ+D∗− (D0 → K+π−, D0 → K+π−π−π+, D0 → KSπ
+π−),

where D∗− → D0π− is only used for the D∗ decay. We choose the modes where the decay
chain including π0 consists of two-body decays only. This guarantees that the MC-generated
pπ0 distribution is exactly the same as the distribution of data, except for the uncertainty of
the longitudinal fraction of the B0 → V V decays. Figure A.9 shows the correction factor,
where the uncertainty in each pπ0 region is ∼ 10% at largest. It turns out that the systematic
error due to this uncertainty is very small.
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Figure A.9: The efficiency correction factor ε′(pπ0) for DS-I (left) and DS-II (right) obtained
by the control sample study. The vertical axis corresponds to ε′π0(pπ0).
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Efficiency Correction for Fudge Factor Effect

The Fudge Factor for the ∆E-Mbc PDF, combined with the pπ0 dependence of the ∆E-Mbc

PDF, requires an efficiency correction. Figure A.10 illustrates the reason. In the region of high
pπ0 , the ∆E distribution is wide and part of the distribution is outside of the signal region,
which corresponds to an inefficiency due to the signal region cut. Note that this inefficiency
is taken into account since we calculate the Dalitz-dependent efficiency after the signal region
cut applied, but with MC condition, i.e., no Fudge Factor applied in the calculation. By the
application of the Fudge Factor, the ∆E distribution becomes wider, since ∆σ∆E > 1, and
the inefficiency is larger than the case without the Fudge Factor correction. This amounts to
∼ 4% difference of the efficiency between the data and MC conditions, or with and without
the Fudge Factor correction. In the region of low pπ0 , on the other hand, the ∆E distribution
is so narrow that both of the distributions with and without Fudge Factor are totally inside
the signal region; there is no efficiency difference due to the Fudge Factor. Consequently, the
Fudge Factor effect causes the efficiency difference between data and MC that is dependent on
pπ0 , which is to be corrected.

We calculate the correction factor, ε′FF(pπ0), as follows. The efficiency of the signal region
cut εSR(pπ0) is

εSR(pπ0) =

∫∫
SR
d∆E dMbc Ptrue(∆E,Mbc; pπ0)∫∫

GS d∆E dMbc Ptrue(∆E,Mbc; pπ0)

=
1∫∫

GS d∆E dMbc Ptrue(∆E,Mbc; pπ0)
,

(A.21)

where the second equality is due to the normalization condition of Eq. (A.8). From Eqs. (A.2)
and (A.3), the efficiency for MC condition, i.e., without the Fudge Factor correction, is

εMC
SR (pπ0) = fp njp

+ (1 − fp)njp+1 . (A.22)

The corresponding efficiency for the data condition, i.e., with the Fudge Factor correction, is
calculated in the same manner to be

εData
SR (pπ0) = fp n

′
jp

+ (1 − fp)n
′
jp+1 . (A.23)

Thus, the correction factor ε′FF(pπ0) is

ε′FF(pπ0) =
εData
SR (pπ0)

εMC
SR (pπ0)

=
fp n

′
jp

+ (1 − fp)n
′
jp+1

fp njp
+ (1 − fp)njp+1

.

(A.24)

On the Integration over the Dalitz Plot

Since pπ0 is correlated with m′, the correlation has to be taken into account in the integration
of Eq. (6.16). For this purpose, we define the efficiency correction averaged over the pπ0 defined
as

ε′(m′) ≡
∫
dpπ0ε′(pπ0)P (pπ0 ;m′) , (A.25)

where P (pπ0 ;m′) is pπ0 distribution for the givenm′, corresponding to Fig. A.4. It is normalized
as ∫

dpπ0P (pπ0 ;m′) = 1 (∀m′) . (A.26)

In the integration of Eq. (6.16), we replace the ε′(pπ0) with the ε′(m′) defined above, to take
account of the correlation.
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Figure A.10: Schematic illustration of the effect of Fudge Factor for high (left) and low (right)
pπ0 regions. Solid and dotted curves correspond to the distributions with and without the
Fudge Factor correction, respectively. The arrows indicate the borders of the signal region.

Efficiency for Each Resonance

As typical values of the efficiency, we give the efficiencies for B0 → ρ+π−, B0 → ρ−π+, and
B0 → ρ0π0 in Table A.2. The efficiency difference between B0 → ρ+π− and B0 → ρ−π+ is
due to the charge asymmetry.

Table A.2: Efficiency for each ρπ resonance.
DS-I

ρ+π− 7.9%

ρ−π+ 8.2%

ρ0π0 9.1%

DS-II

ρ+π− 8.5%

ρ−π+ 8.7%

ρ0π0 9.4%

2 SCF

The PDF for SCF is described by Eq. (6.17). In this section, we discuss 1) the Dalitz plot
PDF, which is described by Eq. (6.22); 2) the ∆E-Mbc PDF with the dependence on Dalitz
plot, Pi(∆E,Mbc; si) with i = CR, NR; and 3) the ∆t PDF of Eq. (6.19).

2-1 Dalitz Plot PDF

Figure A.11 shows the distribution of SCF events in the Dalitz plot, where the distribution is
clearly separated into three parts. As discussed in Sec. 2-1 of chapter 6, the SCF is categorized
into CR and NR SCF’s, depending on the charge of the wrongly reconstructed track; π± (π0)
is wrongly reconstructed in CR (NR) SCF. The CR SCF can be subdivided into two by the
sign of the wrong π±; we call them CR(+) and CR(−) using the charge of the wrong track. In
total, we have three categories, NR, CR(+), and CR(−), corresponding to the three clusters in
Fig. A.11. The reason of the clustering is that the SCF events concentrate on the Dalitz plot
positions where the wrongly reconstructed tracks have low momentum.

This localization of the SCF events leads to the fact that the fraction of SCF is dependent
on the original distribution in Dalitz plot. Table A.3 lists the typical fractions of SCF’s for
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each (ρπ)0 resonance components. One can see that B0 → ρ0π0 yields very small fraction of
NR SCF, for example, which is because the π0 from B0 → ρ0π0 has high momentum.
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Figure A.11: Dalitz plot distribution of the SCF’s.

Table A.3: Fractions of the SCF events with respect to the correctly reconstructed events.
DS-I

CR NR

ρ+π− 3.8% 22%

ρ−π+ 3.7% 21%

ρ0π0 6.5% 0.3%

DS-II

CR NR

ρ+π− 3.5% 21%

ρ−π+ 3.4% 20%

ρ0π0 6.1% 0.3%

Migration in Dalitz Plot and Resolution Function

As written in Sec. 2-1 of chapter 6, we describe the migration effect of the SCF events by the
resolution functions Ri(m

′
obs, θ

′
obs;m

′
gen, θ

′
gen) with i = CR, NR. The resolution function gives

the distribution of reconstructed Dalitz plot positions, (m′
obs, θ

′
obs), for a given generated (or

correct) Dalitz plot position before the migration, (m′
gen, θ

′
gen), of which Figs. A.12 and A.13

show some examples for several (m′
gen, θ

′
gen). By definition, the resolution function satisfies the

following normalization condition:

∫∫
dm′

obs dθ
′
obsRi(m

′
obs, θ

′
obs;m

′
gen, θ

′
gen) = 1 (∀m′

gen, ∀θ′gen) . (A.27)

In addition to the migration, we also have to take account of the detection efficiency for
SCF. Not all of the events are reconstructed as SCF. Much of the events are not detected due
to inefficiency, and the primary fraction of the detected events are correctly reconstructed; and
only small fractions of the events become SCF. We treat this effect using efficiency functions
dependent on the original Dalitz plot position, εi(m

′
gen, θ

′
gen) with i = CR, NR, which are

shown in Fig. A.14.
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Products of the resolution functions and the efficiency functions describe the relation be-
tween the original Dalitz plot distribution and the observed Dalitz plot distribution of SCF’s.
We calculate the products using MC-generated events as

Ri(m
′
obs, θ

′
obs;m

′
gen, θ

′
gen) · εi(m′

gen, θ
′
gen) =

N i
obs(m

′
obs, θ

′
obs)

Ngen(m′
gen, θ

′
gen)

(i = CR, NR) , (A.28)

whereNgen(m
′
gen, θ

′
gen) and N

CR(NR)
obs (m′

obs, θ
′
obs) are number of events generated at (m′

gen, θ
′
gen)

and the number of events observed at (m′
obs, θ

′
obs) as CR (NR) SCF, respectively. One can

easily confirm the validity of Eq. (6.22) by Eq. (A.28). We confirm there is no significant
dependence of the efficiency and resolution functions on the flavor tagging quality r. For SCF,
we assume no charge asymmetry, i.e., we assume the following relation

Ri(m
′
obs,θ

′
obs;m

′
gen, θ

′
gen) · εi(m′

gen, θ
′
gen)

= Ri(m
′
obs, 1 − θ′obs;m

′
gen, 1− θ′gen) · εi(m′

gen, 1 − θ′gen) .
(A.29)

2-2 ∆E-Mbc PDF

Figures A.15 and A.16 show the ∆E-Mbc distributions for CR and NR SCF’s, respectively.
As expected, the distributions are broader than that of correctly reconstructed signal. As
discussed in the followings, we find significant dependence of the ∆E-Mbc distribution, ∆E in
particular, on the Dalitz plot variables and take account of it.

Dependence on the Dalitz Plot in CR SCF

Examining several parameter transformations, we find that s− [s+] is the parameter that is
highly correlated with the ∆E-Mbc distribution of CR(+) [CR(−)] SCF. This is because s−
[s+] has one-by-one correspondence with the energy of π+ [π−], which is wrongly reconstructed
in CR(+) [CR(−)] SCF.

Since CR(+) and CR(−) SCF’s are clearly separated in Dalitz plot as shown in Fig. A.11,
the following relation is satisfied:

sCR ≡ max(s+, s−) =

{
s− for CR(+) ,

s+ for CR(−) ,
(A.30)

which allows us to parameterize the ∆E-Mbc distribution of CR SCF by the above defined sCR.
Figure A.17 shows the dependence of the ∆E distribution on sCR. We prepare the ∆E-Mbc

PDF dependent on sCR, PCR(∆E,Mbc; sCR), in the same manner as the Ptrue(∆E,Mbc; pπ0)
described in Sec. 1-1.

Dependence on the Dalitz Plot in NR SCF

We prepare the ∆E-Mbc distribution of NR SCF in the same way as CR SCF. Here, ∆E-Mbc

PDF is parameterized by
sNR ≡ s0 , (A.31)

and defined as PNR(∆E,Mbc; sNR). Figure A.18 shows the dependence of ∆E distribution
on sNR. Note that the tendency of the dependence is different from that of CR SCF. This is
because the energy of π0 is not used to calculate the Dalitz plot variables, while the energy of
π± is used.
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Figure A.12: Migration effect of CR SCF. The plot (a) shows the generated position, and (b-1)
and (b-2) show the reconstructed position after the migration. The events generated at the
positions of P1 and P2 in (a) migrate and distribute as (b-1) and (b-2), respectively.
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Figure A.13: Migration effect of NR SCF. The plot (a) shows the generated position, and (b-1)
and (b-2) show the reconstructed position after the migration. The events generated at the
positions of P1 and P2 in (a) migrate and distribute as (b-1) and (b-2), respectively. Note that
m′ is unchanged by the migration of NR SCF, since we only use the four-momenta of π+ and
π− to calculate m′.
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Figure A.14: The Dalitz plot efficiency of SCF, εi(m
′
gen, θ

′
gen), for CR (left) and NR (right).
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Figure A.15: The distributions of (a) ∆E-Mbc, (b) Mbc projection, and (c) ∆E projection for
CR SCF.
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Figure A.16: The distributions of (a) ∆E-Mbc, (b) Mbc projection, and (c) ∆E projection for
NR SCF.
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Figure A.17: ∆E distributions of CR SCF for (a) sCR < 24 GeV2, (b) 24 GeV2 < sCR <
25 GeV2, and (c) 25 GeV2 < sCR.
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Figure A.18: ∆E distributions of NR SCF for (a) sNR < 24 GeV2, (b) 24 GeV2 < sNR <
25 GeV2, and (c) 25 GeV2 < sNR.
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2-3 ∆t PDF

As described in Sec. 2-1 of chapter 6, the results of vertex reconstruction and the flavor tag-
ging for NR SCF is exactly the same as the correctly reconstructed signal, since the wrongly
reconstructed track, π0, is not used either of the vertex reconstruction or the flavor tagging.
In CR SCF, on the other hand, the wrongly reconstructed track, π±, is used for both of them
and thus the results are deviated due to the wrong track. In the followings, we describe how
we treat this effect.

Vertexing

Low momentum charged tracks are exchanged between BCP and Btag in CR SCF. This always
makes the two vertices approach to each other and effectively reduce the B lifetime in the PDF
of Eq. (6.19). To take account of it, we introduce an effective lifetime, τCR, which we determine
by fitting MC sample. Figure A.19 shows the fit result, which yields

τCR =

{
1.172± 0.012 ps for DS-I ,

1.052± 0.014 ps for DS-II .
(A.32)

Note that the effect in the vertex reconstruction is not large, since the exchanged tracks have
low momenta and thus generally have large errors in the tracking parameters; the exchanged
tracks have low significance in vertex reconstruction. Thus, the model only with the modified
effective B lifetime is good enough for current statistics.
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Figure A.19: ∆t distributions of CR SCF for DS-I (left) and DS-II (right), overlayed with the
fit results.

Wrong Tag Fraction

The wrong reconstruction of the charged track affects flavor tagging as well as vertex recon-
struction, since the exchanged track is used for the flavor tagging in the tag-side. Note that
the exchanged track has low momentum and thus it is explicitly used for flavor tagging as the
information of the slow pion category. (See Sec. 2 of chapter 4.) Table A.4 shows the wrong-tag
fractions, wl

CR, and wrong-tag fraction differences, ∆wl
CR, calculated using MC. As discussed

in the followings, ∆wl
CR have opposite sign for CR(+) SCF and CR(−) SCF, while wl

CR are
common; the signs of ∆wl

CR shown in the table correspond to those for CR(+) SCF.
As shown in Fig. A.20, the wrong-tag fraction differences for CR SCF have significantly

non-zero values in contrast to those for correctly reconstructed signal, and have opposite sign
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for CR(+) and CR(−). This can be understood as follows1. In CR(+) SCF, π+ mesons with
low momenta are exchanged between BCP and Btag. As described in Sec. 2 of chapter 4, the
slow π+ in tag-side is used to tag the Btag to be B0. Consequently, Btag of CR(+) SCF tends
to be tagged as B0 irrespective of the true flavor of Btag; the wrong-tag fraction is larger when
Btag = B0 than when Btag = B0. Thus, w+ > w− and ∆w > 0.

Table A.4: Wrong-tag fractions, wl
CR, and wrong-tag fraction differences, ∆wl

CR, for CR(+)
SCF. For CR(−) SCF, wl

CR are the same as CR(+), while ∆wl
CR have opposite sign.

DS-I

l wl
CR ∆wl

CR

1 0.450± 0.007 0.040± 0.014

2 0.324± 0.008 0.071± 0.016

3 0.219± 0.009 0.090± 0.017

4 0.157± 0.008 0.055± 0.016

5 0.103± 0.007 0.065± 0.013

6 0.031± 0.003 0.028± 0.006

DS-II

l wl
CR ∆wl

CR

1 0.465± 0.009 0.037± 0.017

2 0.341± 0.010 0.059± 0.020

3 0.218± 0.010 0.101± 0.021

4 0.156± 0.010 0.089± 0.019

5 0.096± 0.008 0.077± 0.017

6 0.035± 0.004 0.044± 0.007

 0
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CR average

Figure A.20: Wrong-tag fraction differences for CR SCF, in comparison to those of default
values, i.e., the values for correctly reconstructed signal.

On the Flavor Asymmetry of Efficiency

In addition to the wrong-tag fraction difference, we also find the efficiency of the CR SCF has
significant flavor asymmetry2, which is shown in Fig. A.21. After investigation, we find that
the bias in the fit due to this effect is negligibly small and thus we ignore it.

1Here, we only discuss CR(+) for simplicity. The same discussion can be applied to CR(−) flipping the sign
of charges.

2Note that the effect of flavor-asymmetric efficiency cannot be absorbed by the degree of freedom of the
wrong-tag fraction difference. The time-dependent decay width including the flavor-asymmetric efficiency is

dΓ

d∆t
=

1

N

e−|∆t|/τ
B0

4τB0

n

1 − qtag
ˆ

∆w − ∆ε′(1 − 2w)
˜

+
ˆ

qtag(1 − 2w − ∆w∆ε′) + ∆ε′
˜

·
ˆ

A cos(∆md∆t) + S cos(∆md∆t)
˜

o

,

(A.33)
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The reason of the smallness of the bias is as follows. There also exists small flavor asymmetry
of efficiency for correctly reconstructed events in the Dalitz plot region where the CR SCF
events reside. The efficiency asymmetry has opposite sign compared to that of CR SCF and
they cancels with each other. Note that the number of events of correctly reconstructed signal
is much larger than that of CR SCF and the small asymmetry is sufficient to cancel the large
asymmetry in the CR SCF. We try all of the following options

1. ignoring both of the asymmetries of correctly reconstructed signal and CR SCF,

2. taking account of one of them, and

3. taking account of both of them,

and find the option 1 has as small bias as the option 3, while the option 2 results in a significant
bias. To keep our analysis as simple as possible, we take the option 1.

The efficiency asymmetries described above can be understood by the property of Btag

decays. In a sizable fraction of events with Btag = B0, the decay chain of Btag includes D∗+,
which yields slow π+. Having a low momentum π+ in tag-side, which is to be exchanged, is
a necessary condition to produce a CR(+) SCF event, and thus the efficiency for CR(+) SCF
is larger in the cases with Btag = B0 than in the cases with Btag = B0. Since the efficiency
increase of the SCF leads to the efficiency decrease of the correctly reconstructed signal, the
tendency is opposite for the correctly reconstructed signal. The same discussion can apply to
the CR(−) SCF with flipped sign of charges.
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Figure A.21: Flavor asymmetry of efficiency for CR SCF.

3 Continuum Background

The PDF for continuum component is described by Eq. (6.26). In this section, we explain
the ∆E-Mbc PDF, P l

qq(∆E,Mbc), the Dalitz plot PDF with the dependence on ∆E-Mbc,

where

N = 1 +
∆ε′A

1 + (τB0∆md)2
, (A.34)

∆ε′ ≡
ε+ − ε−

ε+ + ε−
. (A.35)

Here, ε+(−) is the efficiency for the events with Btag = B0(B0).
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Pqq(m
′, θ′; ∆E,Mbc), the Dalitz-dependent flavor asymmetry, Al

qq(m
′, θ′; ∆E,Mbc), and the

∆t PDF, Pqq(∆t). Except for the ∆E-Mbc PDF, we obtain the PDF’s from the data in the
∆E-Mbc sideband region and the dependence on the ∆E-Mbc is carefully discussed.

3-1 ∆E-Mbc PDF

Finding no significant correlation between ∆E and Mbc, we factorize the ∆E-Mbc PDF and
describe it as a product of ∆E PDF and Mbc PDF:

P l
qq(∆E,Mbc) = P l

qq(∆E) · Pqq(Mbc) . (A.36)

We adopt 1-st order polynomials and ARGUS parameterization [61] to model the ∆E and Mbc

PDF’s:

P l
qq(∆E) =

1

N l
∆E

(
1 + pl

1 · ∆E
)
, (A.37)

Pqq(Mbc) =
1

NMbc

x p(x) exp
[
αp(x)2

]
, (A.38)


 p(x) ≡

√

1 −
(

x

Ebeam

)2



where N l
∆E and NMbc

are the normalization factors determined such that
∫

SR

d∆E P l
qq(∆E) = 1 (∀l) , (A.39)

∫

SR

dMbc Pqq(Mbc) = 1 . (A.40)

Parameters pl
1 and α parameterize the shapes of the PDF’s and are determined by the fit to

data as listed in table 5.2. In ∆E distribution, we find the distribution of continuum component
significantly depends on the flavor tagging quality and thus introduce the dependence on it,
while no dependence is found in the Mbc distribution and thus a common α is used for all
regions. Figures A.22 and A.23 show the Mbc and ∆E projection plots for each flavor tagging
quality bin, l, where one can confirm the (no)dependence on l.

3-2 Dalitz Plot PDF

The Dalitz plot PDF for continuum component is modeled using data in part of ∆E-Mbc

sideband region, −0.1 GeV < ∆E < 0.2 GeV and 5.2 GeV/c2 < Mbc < 5.26 GeV/c2, where the
contribution from the components other than continuum is expected to be very small. The
“purity” of continuum events in this region is 96%, with negligible contamination of 4% BB
background and < 1% SCF.

Since both the Dalitz plot and ∆E-Mbc are kinematic variables, the Dalitz plot distribution
of continuum component has sizable dependence on ∆E-Mbc, which has to be taken into
account. Figure A.24 shows the dependence of the m′ distribution on ∆E. Another axis
of square Dalitz plot, θ′, does not show significant dependence. This can be understood by
the fact that the size of phasespace for the π+π−π0 system is dependent on ∆E and Mbc.
In square Dalitz plot, the size of the phasespace, which corresponds to the rest mass of the
π+π−π0 system, is related to the maximum value of m0. The maximum is mmax

0 ≡ mB0 −mπ0

when ∆E ∼ 0 and Mbc ∼ mB0 , as written in Sec. 4-1 of chapter 4. However, the continuum
background component does not satisfy this condition of ∆E ∼ 0 andMbc ∼ mB0 , in particular
in the ∆E-Mbc sideband region. In such a case, the maximum of m0 is

mmax,qq
0 = M3π −mπ0 , (A.41)
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Figure A.22: Projection plot of Mbc distribution for each tagging quality region. The notation
of the histograms is the same as Fig. 5.9.
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Figure A.23: Projection plot of ∆E distribution for each tagging quality region. The notation
of the histograms is the same as Fig. 5.9.
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where M3π is the rest mass of the π+π−π0 system. Using ∆E and ∆Mbc ≡ Mbc −mB0 , the
M3π is written as

M3π =

√
E3π

2 − |~p3π|2

=

√
mB0

2 + 2Ebeam∆E + 2mB0∆Mbc + ∆E2 + ∆Mbc
2

= mB0 + ∆E + ∆Mbc + O
(

∆E2

mB0
2

)
+ O

(
∆Mbc

2

mB0
2

)
+ O

(
∆E · (Ebeam −mB0)

mB0
2

)
,

(A.42)

where (E3π , ~p3π) is the four-momentum of π+π−π0 system and

E3π = Ebeam + ∆E , (A.43)

|~p3π|2 = E2
beam −Mbc

2 , (A.44)

by definitions of ∆E and Mbc. Ignoring the second order contributions, the maximum of m0

is
mmax,qq

0 = mB0 + ∆E + ∆Mbc −mπ0 . (A.45)

Replacing the mmax
0 in Eq. (4.20) with above defined mmax,qq

0 , we define the phasespace-scaled
square Dalitz plot variable m′

scale by Eq. (6.33). As shown in Fig. A.25, the Dalitz plot
distribution in terms of the m′

scale is independent of ∆E-Mbc.
Using data in the part of the ∆E-Mbc sideband region, we prepare a ∆E-Mbc independent

PDF of P(m′
scale, θ

′). Based on the PDF, we define the PDF in terms of (m′, θ′) with the
dependence on ∆E-Mbc by Eq. (6.35).
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Figure A.24: m′ distribution of sideband data. The three plots correspond to the data in
−0.1 GeV < ∆E < 0.0 GeV (left), 0.0 GeV < ∆E < 0.1 GeV (middle), and 0.1 GeV < ∆E <
0.2 GeV (right).

3-3 Dalitz-Dependent Flavor Asymmetry

As written in Sec. 2-2 of chapter 6, the continuum component has significant flavor asymmetry
dependent on the Dalitz plot, where the size is ∼ 20% at maximum. We infer that this is due to
the jet-like topology of the continuum. Though there is the hadronization process, basically the
two mesons that originate from the first-produced qq have the highest momenta and opposite
charges. Note that it is impossible to include both of the high-momentum tracks to reconstruct
the fCP = π+π−π0, since ∆E becomes too large to be inside the signal region. Consequently,
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Figure A.25: m′
scale distribution of sideband data. The three plots correspond to the data in

−0.1 GeV < ∆E < 0.0 GeV (left), 0.0 GeV < ∆E < 0.1 GeV (middle), and 0.1 GeV < ∆E <
0.2 GeV (right).

the fake BCP and Btag share the two oppositely-charged tracks with high momenta one-by-
one; the highest momentum tracks in CP -side and tag-side tends to have opposite charge. To
support the inference, we define following asymmetry

Aqq
C ≡ NOC −NSC

NOC +NSC
, (A.46)

where NOC(SC) is the number of events where the highest momentum tracks in CP -side and

tag-side have opposite (same) charges. Figure A.26 shows the Aqq
C in the sideband region,

where Aqq
C exhibits significantly positive values.
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Figure A.26: The track charge asymmetry Aqq
C for each flavor tagging quality region.

This tendency leads to the Dalitz-dependent flavor asymmetry. CP -side has high momen-
tum π− (π+) in the region of θ′ > 0.5 (θ′ < 0.5). Since AC > 0, the highest momentum pion in
tag-side in the corresponding event is π+ (π−). Due to the decay processes like B0 → D(∗)−π+,
the high momentum π+ (π−) in tag-side makes the Btag to be tagged as B0 (B0). Consequently,
the continuum events in the region θ′ > 0.5 (θ′ < 0.5) tends to be tagged as qtag = +1(−1).

133



APPENDIX A. DETAILED STUDY OF THE PDF FOR EACH COMPONENT

We model the asymmetry by the ∆E-Mbc independent Dalitz plot, (m′
scale, θ

′), by polyno-
mials as

Al
qq(m

′
scale, θ

′) = A(m′
scale) ·Al(θ′) , (A.47)

with

A(m′
scale) = 1 +Bm′

m′ + Cm′

m′2 , (A.48)

Al(θ′) = Bθ′

l

[
(θ′ − 0.5) +Dθ′

(θ′ − 0.5)3
]
, (A.49)

where the dependence on the flavor tagging quality l is described by Bθ′

l . Note that the
coefficients of (θ′ − 0.5)0, (θ′ − 0.5)2, · · · are set to be zero, corresponding to the assumption of
no CP -violation in the continuum component. We determine the coefficients of the polynomials
by the fit to the data in the part of ∆E-Mbc sideband region, −0.1 GeV < ∆E < 0.2 GeV and
5.2 GeV/c2 < Mbc < 5.26 GeV/c2. Table A.5 lists the fit result. As shown in Fig. A.27, the
fit result describes the distribution well. We also try fitting the coefficients of (θ′ − 0.5)0 and
(θ′ − 0.5)2, which are set to be zero in the nominal fit, resulting in zero-consistent values.
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Figure A.27: Projection plots of the square Dalitz plot for sideband data in each flavor tagging
quality region, overlayed with the histograms of fitted flavor asymmetry. Histograms and data
points with blue (red) color correspond to qtag = +1 (−1).

3-4 ∆t PDF

The ∆t distribution of continuum component, Pqq(∆t), is modeled by the following empirical
PDF:

Pqq(∆t) = [Pqq ⊗Rqq ](∆t)

≡
∫
d∆t′Pqq(∆t− ∆t′)Rqq(∆t

′) ,
(A.50)
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Table A.5: Parameters of the Dalitz-dependent flavor asymmetry of the continuum component.

DS-I

Name Value

Bm′

+0.2± 0.4

Cm′ −4.4+1.5
−1.3

Bθ′

1 −0.04± 0.09

Bθ′

2 +0.30+0.15
−0.13

Bθ′

3 +0.29+0.18
−0.15

Bθ′

4 +0.55+0.22
−0.18

Bθ′

5 +0.71+0.25
−0.21

Bθ′

6 +0.87+0.20
−0.19

Dθ′ −2.0+1.3
−0.9

DS-II

Name Value

Bm′

+1.1± 0.3

Cm′ −4.4± 0.9

Bθ′

1 +0.17+0.07
−0.06

Bθ′

2 +0.36+0.10
−0.09

Bθ′

3 +0.52+0.13
−0.11

Bθ′

4 +0.67+0.14
−0.13

Bθ′

5 +1.08+0.20
−0.18

Bθ′

6 +0.76+0.13
−0.12

Dθ′ −2.2+0.7
−0.5

where

Pqq(∆t) = fδδ(∆t− µδ) + (1 − fδ) exp

[
−|∆t− µτ |

τ

]
, (A.51)

Rqq(∆t) = (1 − ftail)G(∆t;Smain · σvtx) + ftailG(∆t;Stail · σvtx) , (A.52)

with

G(x;σ) =
1√
2πσ

exp

[
− x2

2σ2

]
, (A.53)

σvtx =
√
σCP

2 + σtag
2 . (A.54)

Here, σCP and σtag are the event-by-event errors of CP -side and tag-side vertices, respec-
tively. Parameters fδ, µδ, τ , µτ , ftail, Smain, and Stail parameterize the shape of the PDF.
Since the distribution has significant dependence on the number of tracks used for the vertex
reconstruction, we divide the events into the following two categories:

Single-track Either of the vertices of BCP or Btag or both are reconstructed by a single track.

Multi-track Both of the vertices are reconstructed by multiple tracks.

Different set of parameters are used for the two categories. We determine the parameters by
the fit to the data in the sideband region. Figure A.28 shows the fit result and Table A.6 lists
the determined parameters. We also confirm that the parameters has no significant dependence
on ∆E-Mbc or the Dalitz plot.

4 BB Background

The BB background component is described by a linear combination of the PDF’s of the decay
modes that contribute as background for π+π−π0 final state as in Eq. (6.38). Table A.7 lists
the modes we take account of and their estimated number of events in the signal region, where
the world average branching fractions [54, 55] are used for the estimation. We assume the
PDF’s are factorisable:

Pk(~x) = P l
k(∆E,Mbc;m

′, θ′; ∆t, qtag)

= F l
k · Pk(∆E,Mbc) · P l

k(m′, θ′; ∆t, qtag) ,
(A.55)
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Table A.6: Parameters of ∆t PDF for continuum component determined by the fit to sideband
data.

DS-I

Single-track Multi-track

Smain 0.965+0.042
−0.045 1.076+0.028

−0.031

Stail 2.289+0.503
−0.382 2.347+0.173

−0.169

ftail 0.130+0.074
−0.047 0.220+0.037

−0.033

µδ −0.007+0.045
−0.042 −0.045+0.010

−0.010

fδ 0.684+0.087
−0.107 0.940+0.017

−0.020

τ 0.964+0.200
−0.184 1.838+0.268

−0.207

µτ +0.014+0.139
−0.131 −0.035+0.216

−0.210

DS-II

Single-track Multi-track

Smain 1.034+0.032
−0.032 1.083+0.036

−0.039

Stail 5.277+0.925
−0.617 2.136+0.115

−0.108

ftail 0.071+0.015
−0.014 0.368+0.051

−0.047

µδ 0.096+0.038
−0.038 −0.003+0.007

−0.007

fδ 0.447+0.056
−0.058 0.816+0.019

−0.020

τ 0.868+0.077
−0.072 1.315+0.070

−0.063

µτ −0.049+0.055
−0.059 −0.006+0.053

−0.053
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Figure A.28: ∆t distributions overlayed with the fit results for (a) DS-I single-track, (b) DS-II
single-track, (c) DS-I multi-track, and (d) DS-II multi-track.

136



APPENDIX A. DETAILED STUDY OF THE PDF FOR EACH COMPONENT

where k is the index over the decay modes. In the followings, we describe in particular the
treatment of P l

k(m′, θ′; ∆t, qtag).
The treatment is different for the CP -eigenstate, flavor-specific, and charged modes, since

they exhibit different characteristics in the Dalitz plot and ∆t distributions. Figure A.29
shows the Dalitz plot distributions for B0 → ρ+ρ−, B0 → D−π+, and B+ → ρ+π0, as typical
examples of CP -eigenstate, flavor-specific, and charged modes, respectively. As can be seen
there, the Dalitz plot distribution of the flavor-specific (charged) mode significantly depends on
the flavor (charge) of the B that is mis-reconstructed as BCP , while the CP -eigenstate mode
does not have such dependence by definition. Thus, we model the Dalitz plot distribution
of flavor-specific (charged) modes, Pflv

k , with the dependence on the flavor (charge) of the B
wrongly reconstructed as BCP , qflv, with the following symmetry

Pflv
k (m′, θ′; qflv) = Pflv

k (m′, 1 − θ′;−qflv) , (A.56)

while the Dalitz plot distribution of CP -eigenstate modes, PCP
k , has no such dependence and

satisfy the following symmetry condition

PCP
k (m′, θ′) = PCP

k (m′, 1 − θ′) . (A.57)

The ∆t distributions of flavor-specific and charged modes also have the dependence on the
flavor or charge of the BCP , as shown in Fig. A.30. The following mixing PDF, P l

mix(∆t, qtag, qflv),

(lifetime PDF with flavor asymmetry, PC,l
life (∆t, qtag, qflv)) is used for the flavor-specific (charged)

modes

P l
mix(∆t, qtag, qflv) =

1

8τB0

e−|∆t|/τ
B0

{
1 − qtag∆wl − qflvqtag(1 − 2wl) cos(∆md∆t)

}
, (A.58)

PC,l
life (∆t, qtag, qflv) =

1

8τBB

e−|∆t|/τ
BB

{
1 − qflvqtag

(
1 − 2wC

l

)}
, (A.59)

where qflv, τBB , and wC
l are the flavor (charge) of the B wrongly reconstructed as BCP , the

effective lifetime for the charged mode, and the effective wrong-tag fraction for the charged
mode, respectively. The effective-lifetime, τBB , could be different from the true lifetime of
B+ due to the same reason as the CR SCF (Sec. 2-3), since at least one charged track has
to be wrongly assigned to BCP or Btag for charged modes to mimic the π+π−π0 final state;
we determine the τBB by the fit to MC-generated events. The wrong-tag fraction for charged
modes, wC

l , can be different from the nominal wrong tag fraction, wl, which is for neutral B
decays, and we determine the wC

l using MC, too. Table A.8 lists the determined parameters.
For CP -eigenstate modes, we use the CP -violating time-dependent PDF

P l
CP (∆t, qtag) =

1

4τB0

e−|∆t|/τ
B0

{
1 − qtag∆wl

+ qtag(1 − 2wl)
[
A cos(∆md∆t) + S sin(∆md∆t)

]}
,

(A.60)

where A = 0 and S = sin 2φ with the corresponding weak phase of φ.
With the Dalitz plot and time-dependent PDF’s described above, we define the Dalitz-∆t

PDF’s for the CP -eigenstate, flavor-specific, and charged modes by

P l
k(m′, θ′; ∆t, qtag) = PCP

k (m′, θ′)P l
CP (∆t, qtag) , (A.61)

P l
k(m′, θ′; ∆t, qtag) =

∑

qflv=±1

Pflv
k (m′, θ′; qflv)P l

mix(∆t, qtag, qflv) , (A.62)

P l
k(m′, θ′; ∆t, qtag) =

∑

qflv=±1

Pflv
k (m′, θ′; qflv)PC,l

life (∆t, qtag, qflv) , (A.63)

respectively.
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Table A.7: The decay modes taken into account as the BB background, with the expected
numbers of events inside signal region, Nev, among the 2,824 events.

b→ u, d, s decay modes b→ c decay modes

Mode Nev Mode Nev

ρ+ρ− 11.2 D0π+ 31.6

ρ+ρ0 8.9 D−π+ 21.5

a1(1260)±π∓ 9.7 D0ρ+ 7.0

ρ0π+ 34.4 D∗0π+ 2.1

ρ+π0 13.5 D−ρ+ 0.4

K∗
0 (1430)0π+ 3.3 D0π0 2.5

K∗
0 (1430)+π− 10.5 J/ψπ0 2.5

K∗(892)+π− 8.3 Other charged 1.4

ρ−K+ 34.7 Other flavor-specific 6.0

π+π0 3.9

ηπ+π− 0.2

K0π+ 3.7

K+π+π− 0.1

π0η′(958) 2.3

K∗(892)0π0 2.8

K0π0 0.6

K+π0 1.7

ω(782)π+ 0.8

η′(958)K+ 0.5

ρ0K+ 1.4

K∗(892)0γ 5.6

Table A.8: Parameters used for the ∆t PDF of charged mode BB background.
DS-I

Name Value

τBB 1.53 ± 0.06 (ps)

wC
1 0.41 ± 0.03

wC
2 0.32 ± 0.04

wC
3 0.23 ± 0.04

wC
4 0.24 ± 0.04

wC
5 0.12 ± 0.03

wC
6 0.02 ± 0.01

DS-II

Name Value

τBB 1.38± 0.04 (ps)

wC
1 0.42± 0.02

wC
2 0.33± 0.03

wC
3 0.25± 0.03

wC
4 0.14 +0.03

−0.02

wC
5 0.07± 0.02

wC
6 0.04± 0.01
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Figure A.29: The Dalitz plot distributions of (a) B0 → ρ+ρ−, (b) B0 → D−π+, and (c)
B+ → ρ+π0, as examples of the BB background of CP -eigenstate, flavor-specific, and charged
modes, respectively. The points colored red (blue) correspond to the events with BCP = B0

(B0) and BCP = B+ (B−) in the figures (b) and (c), respectively.
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Figure A.30: The ∆t distributions of BB background component of flavor-specific (left) and
charged (right) categories overlayed with the PDF curves, where red (blue) histograms and
curves correspond to qtagqflv = −1 (+1). The upper and lower plots correspond to good tag
(r > 0.5) and poor tag (r < 0.5) regions, respectively.
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5 Outlier

As described in Ref. [46], the resolution function includes an overall very-bad-resolution com-
ponent Pol(∆t), which we call outlier, to take account of a very long tail that is observed both
in data and MC. We model the outlier by a Gaussian with σ ∼ 30 ps and its fraction among
all component, fol, is ∼ 10−4 (∼ 10−2) for the events with the vertices reconstructed using
multiple (single) tracks. When ∆t is the only observable for the fit, the total PDF including
the outlier component, Ptot(∆t), is

Ptot(∆t) = (1 − fol)P (∆t) + folPol(∆t) , (A.64)

where P (∆t) is the PDF for the main part including both of signal and background contribu-
tions, which is analogous to the P (~x) in Eq. (6.8).

In our time-dependent Dalitz plot analysis, the treatment is more complex than that de-
scribed above. The outlier is understood to be the events with wrongly reconstructed tracks
used in the vertex reconstruction. Here, the wrong reconstruction means wrong association
with the SVD hits and the other information, such as momentum and dE/dx, are correctly
measured. Thus, we model the outlier PDF such that its ∆E-Mbc, Dalitz plot, and flavor-
tagging part is the same as the main part; the ∆E-Mbc, Dalitz plot, and flavor-tagging part
of the outlier PDF, Pol(∆E,Mbc;m

′, θ′; qtag, l), is

Pol(∆E,Mbc;m
′, θ′; qtag, l) =

∫
d∆t P (~x) , (A.65)

where P (~x) is the PDF of the main part defined in Eq. (6.8). Using this PDF, the total PDF
including the outlier part, Ptot(~x), is written as

Ptot(~x) = (1 − fol)P (~x) + folPol(∆E,Mbc;m
′, θ′; qtag, l)Pol(∆t) . (A.66)

We use this Ptot(~x) for the fit.
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Appendix B

Method of φ2 Constraint

1 Formalism

We define amplitudes as

A+ ≡ A(B0 → ρ+π−) , (B.1)

A− ≡ A(B0 → ρ−π+) , (B.2)

A0 ≡ A(B0 → ρ0π0) , (B.3)

A+0 ≡ A(B+ → ρ+π0) , (B.4)

A0+ ≡ A(B+ → ρ0π+) , (B.5)

and

A+ ≡ p

q
A(B0 → ρ+π−) , (B.6)

A− ≡ p

q
A(B0 → ρ−π+) , (B.7)

A0 ≡ p

q
A(B0 → ρ0π0) , (B.8)

A−0 ≡ p

q
A(B− → ρ−π0) , (B.9)

A0− ≡ p

q
A(B− → ρ0π−) . (B.10)

These amplitudes are obtained from 1) 26 measurements determined in the time-dependent
Dalitz plot analysis as well as 2) branching fractions and asymmetry measurements, and give
a constraint on φ2.

Equations (4.25)-(4.28) define the relations between the amplitudes for the neutral modes
and the parameters determined in the time-dependent Dalitz plot analysis. The relations
between the branching fractions and asymmetries, and the amplitudes are

B(ρ±π∓) = c ·
(
|A+|2 + |A−|2 + |A+|2 + |A−|

)
· τB0 , (B.11)

B(ρ+π0) = c ·
(
|A+0|2 + |A−0|2

)
· τB+ , (B.12)

B(ρ0π+) = c ·
(
|A0+|2 + |A0−|2

)
· τB+ , (B.13)

A(ρ+π0) =
|A−0|2 − |A+0|2
|A−0|2 + |A+0|2 , (B.14)
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A(ρ0π+) =
|A0−|2 − |A0+|2
|A0−|2 + |A0+|2 , (B.15)

where c is a constant and the lifetimes τB0 and τB+ are introduced to take account of the
total width difference between B0 and B+. Note that we do not use quasi-two-body param-
eters related to neutral modes except for B(ρ±π∓), since they are included in the Dalitz plot
parameters.

The amplitudes are expected to follow SU(2) isospin symmetry to a good approximation
[17, 18]

A+ +A− + 2A0 = Ã+ + Ã− + 2Ã0

=
√

2(A+0 +A0+) =
√

2(Ã−0 + Ã0−) ,
(B.16)

A+0 −A0+ −
√

2(A+ −A−) = Ã−0 − Ã0− −
√

2(Ã− − Ã+) , (B.17)

where
Ãκ ≡ e−2iφ2Aκ , Ã−0 ≡ e−2iφ2A−0 , and Ã0− ≡ e−2iφ2A0− . (B.18)

Note that there is an inconsistency in equation (B.17) between Ref. [17] and Ref. [18]; we
follow the treatment of Ref. [17], which we believe is correct.

2 Parameterization

Here we give two examples of the parameterization of the amplitudes. The first example may be
more intuitive, while the second example is well behaved in the fit. The results are independent
of the parameterizations with respect to the constraint on φ2.

2-1 Amplitude parameterization

We can parameterize the amplitudes as follows [17]

A+ = e−iφ2T+ + P+ , (B.19)

A− = e−iφ2T− + P− , (B.20)

A0 = e−iφ2T 0 − 1

2
(P+ + P−) , (B.21)

√
2A+0 = e−iφ2T+0 + P+ − P− , (B.22)√
2A0+ = e−iφ2(T+ + T− + 2T 0 − T+0) − P+ + P− , (B.23)

and

A+ = e+iφ2T− + P− , (B.24)

A− = e+iφ2T+ + P+ , (B.25)

A0 = e+iφ2T 0 − 1

2
(P+ + P−) , (B.26)

√
2A−0 = e+iφ2T+0 + P+ − P− , (B.27)√
2A0− = e+iφ2(T+ + T− + 2T 0 − T+0) − P+ + P− , (B.28)

where the overall phase is fixed with the convention ImT+ = 0. Thus, there are 6 complex
amplitudes, T+, T−, T 0, P+, P−, and T+0, corresponding to 11 degrees of freedom; and φ2,
corresponding to 12 degrees of freedom in total. This parameterization automatically satisfies
the isospin relations without losing generality, i.e., the isospin relations are the only assumption
here.
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2-2 Geometric parameterization

We can parameterize the amplitudes using the geometric arrangement of Fig. B.1 that satisfies
the isospin relation of equation (B.16). This figure is equivalent to Fig. 3 of Ref. [18], except
that the sides corresponding to B0 → ρ−π+ and B0 → ρ0π0 are swapped. This difference
is not physically significant. We apply this modification only to obtain a better behaved
parameterization; the parameterization here uses the angles ω− and θ− related to the process
B0(B0) → ρ−π+, which are better behaved than those related to B0(B0) → ρ0π0.

Figure B.1: Complex pentagons formed from the B → ρπ decay amplitudes.

To parameterize the amplitudes, we use φ2 and the following 11 geometric parameters:

ω+, ω−, ω
′, θ+, θ−, b+, b−, b

′, a+, a−, L, (B.29)

where b and a imply branching fraction and asymmetry, respectively. In terms of these param-
eters, the amplitudes can be described as follows

A+ = ei(ω++θ+/2)
√
b+(1 − a+)/2 , (B.30)

Ã+ = ei(ω+−θ+/2)
√
b+(1 + a+)/2 , (B.31)

A− = ei(ω−+θ−/2)
√
b−(1 − a−)/2 , (B.32)

Ã− = ei(ω−−θ−/2)
√
b−(1 + a−)/2 , (B.33)

A0 = (L−A+ −A−)/2 , (B.34)

Ã0 = (L− Ã+ − Ã−)/2 , (B.35)
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A0+ = eiω′√
b′/2 , (B.36)

A+0 =
L√
2
−A0+ , (B.37)

Ã0− =
L

2
√

2
−
[
A+0 −A0+ −

√
2(A+ −A−) +

√
2(Ã− − Ã+)

]
/2 , (B.38)

Ã−0 =
L√
2
− Ã0− . (B.39)

Equation (B.38) exploits the isospin relation of equation (B.17), which Fig. B.1 does not

incorporate geometrically. The phase φ2 enters when the Ã’s are converted into A’s with
equation (B.18). When we perform the analysis only with the time-dependent Dalitz plot
observables and without the information from charged decay modes, we remove the parameters
ω′ and b′ from the fit and fix L to be a constant.

This geometric parameterization has a substantial advantage in terms of required computa-
tional resources, compared to the parameterization based on the T and P amplitudes described
in the previous section. In the procedure to constrain φ2, the minimum χ2 has to be calcu-
lated for each value of φ2. To avoid local minima, initial values of the parameters for the
minimization have to be scanned and this inflates the computing time, which increases expo-
nentially with the number of parameters. However, the number of parameters to be scanned
decreases in the geometric parameterization. Among 11 parameters except for φ2, five of them,
b+, b−, b

′, a+, and a−, are related to the branching fractions and asymmetries. Since in most
cases they do not have multiple solutions, we do not have to scan the initial values of them. In
addition, the optimum initial value for L can also be determined using other parameters and
b0, the nominal branching fraction of B0 → ρ0π0, from the following relation

b0 =
∣∣∣L− eiω+

√
b+/2− eiω−

√
b−/2

∣∣∣
2

, (B.40)

up to a two-fold ambiguity. Here b0 is calculated using the input parameters as

b0 =
U+

0

U+
+ + U+

−

· B(ρ±π∓)

c · τB0

, (B.41)

based on equations (4.25) and (B.11). The explicit solution for the optimal initial value of L is

L = Reγ ±
√
b0 − (Imγ)2

(
γ ≡ eiω+

√
b+/2 + eiω−

√
b−/2

)
. (B.42)

When b0 − (Imγ)
2
< 0, there is no real-valued solution and L = Reγ is the optimum initial

value. With the optimum values calculated above, the initial value of L does not have to be
scanned, except for the two fold ambiguity. Consequently, the number of parameters to be
scanned in this parameterization is only five, corresponding to ω+, ω−, ω

′, θ+, and θ−, while all
of 11 or maybe 10 parameters have to be scanned in the T and P amplitude parameterization.
This leads to a substantial reduction of the computational resources required.
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Appendix C

Useful Equations Related to
Square Dalitz Plot

In this appendix, we derive some relations between the usual Dalitz Plot and the square Dalitz
plot. Since the normal Dalitz Plot variables are Lorentz invariant, it is convenient to consider
in the ρ0 rest frame as in the figure C.1, where the Square Dalitz Plot variables are defined. We

Figure C.1: Kinematics in the ρ0 rest frame.

follow the definitions in Sec. 4-1 of chapter 4. The parameter transformation from the Dalitz
plot to the mass and helicity of ρ± is also discussed.

1 Transformation From Usual Dalitz Plot to Square Dalitz

Plot

First we derive the square Dalitz plot variables m0 and θ0(≡ θ−0) as functions of the usual
Dalitz Plot variables (s+, s−). By Eq. (2.157), the m0 is expressed as

m0 =
√
s0 =

√
M2 − (s+ + s−) . (C.1)

(
M2 ≡ m2

B0 + 2m2
π+ +m2

π0

)
(C.2)
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Since we are in the rest frame of ρ0, the four momenta p+, p−, and p0 in this frame are

p+ ≡ (E+, ~p+) = (
m0

2
,−~p−) , (C.3)

p− ≡ (E−, ~p−) = (
m0

2
, ~p−) , (C.4)

p0 ≡ (E0, ~p0) . (C.5)

Since

s+ = (E− + E0)
2 − (~p0 − ~p−)2 , (C.6)

s− = (E− + E0)
2 − (~p0 + ~p−)2 , (C.7)

the E0 can be calculated as

E0 =
s+ + s− − 2(m2

π+ +m2
π0)

4E−
(C.8)

=
s+ + s− − 2(m2

π+ +m2
π0)

2
√
M2 − (s+ + s−)

. (C.9)

The product ~p− · ~p0 can be expressed using θ0 as

~p− · ~p0 = |~p−||~p0| cos θ0 . (C.10)

Subtracting the equation (C.7) from (C.6) and using the equation (C.10), cos θ0 is

cos θ0 =
s+ − s−
4|~p−||~p0|

, (C.11)



 |~p−| =

√
M2 − 4m2

π+ − (s+ + s−)

2



 , (C.12)

(
|~p0| =

√
E0

2 −m2
π0

)
. (C.13)

These three equations, together with the equations (C.1) and (C.9), describe the parameter
transformation of (s+, s−) 7→ (m0, cos θ0). �

Then we calculate the Jacobian of this transformation. As one can see in the equations
above, the combinations of s+ and s− that appear in m0 and cos θ0 are only s1 ≡ s+ + s− and
s2 ≡ s+ − s−. It is thus convenient to divide the transformation into two steps,

(s+, s−) 7→ (s1, s2) (C.14)

and
(s1, s2) 7→ (m0, cos θ0) , (C.15)

for the calculation of the Jacobian. The Jacobian of the first transformation is quite trivial:

∂(s1, s2)

∂(s+, s−)
=

(
+1 +1

+1 −1

)
. (C.16)

Since m0 only depends on s1 but not on s2, the Jacobian of the second transformation is

∂(m0, cos θ0)

∂(s1, s2)
=

(
∂m0/∂s1 0

∂ cos θ0/∂s1 ∂ cos θ0/∂s2

)
. (C.17)
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Thus we only have to calculate ∂m0/∂s1 and ∂ cos θ0/∂s2 to obtain the determinant of the
Jacobian, which is what we need. They are

∂m0

∂s1
=

1

2

−1√
M2 − (s+ + s−)

= − 1

2m0
(C.18)

and
∂ cos θ0
∂s2

=
1

4|~p−||~p0|
. (C.19)

The determinant of the Jacobian for the transformation (s+, s−) 7→ (m0, cos θ0) is

∣∣∣∣
∂(m0, cos θ0)

∂(s+, s−)

∣∣∣∣ =
1

4|~p−||~p0|m0
, (C.20)

and thus
ds+ ds− = 4|~p−||~p0|m0 dm0 d(cos θ0) .� (C.21)

The Jacobian for the transformation (s+, s−) 7→ (m′, θ′) is

∣∣∣∣
∂(m′, θ′)

∂(s+, s−)

∣∣∣∣ =
1

4|~p−||~p0|m0
· dm

′

dm0

dθ′

d(cos θ0)
, (C.22)

and thus

ds+ ds− = 4|~p−||~p0|m0
dm0

dm′

d cos θ0
dθ′

dm′ dθ′ , (C.23)

where
d cos θ0
dθ′

= −π sin θ0 (C.24)

and
dm0

dm′
= −m

max
0 −mmin

0

2
π sinπm′ (C.25)

since

cosπm′ = 2
m0 −mmin

0

mmax
0 −mmin

0

− 1 .� (C.26)

2 Transformation to the Mass and Helicity of ρ±

It is also convenient to have equations for transformations into the m and θ in the ρ± rest
frames: (s+, s−) 7→ (m±, cos θ±). Though we only consider the ρ+ rest frame here as in the
figure C.2, it can easily converted into the ρ− rest frame by swapping the sign + and −. In
this frame, the Dalitz Plot variables are m+ and θ+(≡ θ+−). The four momenta p+, p−, and
p0 in this frame are

p+ ≡ (E+, ~p+) , (C.27)

p0 ≡ (E0, ~p0) = (E0,−~p+) , (C.28)

p− ≡ (E−, ~p−) . (C.29)

The essential difference from the equations (C.3)-(C.5) is that E+ 6= E0 due to the mass
difference between π+ and π0. Since

s+ = (E+ +E0)
2 = m+

2 , (C.30)

s− = (E− +E0)
2 − (~p− − ~p+)2 , (C.31)

s0 = (E− +E+)2 − (~p− + ~p+)2 , (C.32)
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Figure C.2: Kinematics in the ρ+ rest frame.

following relation holds

s− + s0 = 3m2
π+ +m2

π0 + 2E−(E0 +E+) . (C.33)

Using this relation and the equation (2.157), the E− is calculated as

E− =
s− + s0 − (3m2

π+ +m2
π0)

2(E0 +E+)
(C.34)

=
M2 − 3m2

π+ −m2
π0 − s+

2
√
s+

. (C.35)

Using the following relations

E0 =
√
mπ0

2 + |~p+|2 , (C.36)

E+ =
√
mπ+

2 + |~p+|2 , (C.37)

and the equation (C.30), the |~p+| is described by s+ as

|~p+|2 =
s+

2 +
(
mπ+

2 −mπ0
2
)2

4s+
− m2

π+ +m2
π0

2
. (C.38)

From the equation (C.31), cos θ+ is

cos θ+ =
s− −

(
mπ+

2 +mπ0
2
)
− 2E−E0

2|~p−||~p+|
, (C.39)

(
|~p−| =

√
E−

2 −mπ+
2

)
. (C.40)

These equations, together with the equations (C.30), (C.35), and (C.36), describe the trans-
formation (s+, s−) 7→ (m+, cos θ+). �

Then we calculate the Jacobian of this transformation. Since m+ only depends on s+ but
not on s−, the Jacobian has the shape of

∂(m+, cos θ+)

∂(s+, s−)
=

(
∂m+/∂s+ 0

∂ cos θ+/∂s+ ∂ cos θ+/∂s−

)
. (C.41)
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Thus we only need ∂m+/∂s+ and ∂ cos θ+/∂s− to obtain the Jacobian’s determinant. They
are easily calculated as

∂m+

∂s+
=

1

2m+
(C.42)

and
∂ cos θ+
∂s−

=
1

2|~p−||~p+|
. (C.43)

The determinant of the Jacobian is
∣∣∣∣
∂(m+, cos θ+)

∂(s+, s−)

∣∣∣∣ =
1

4|~p−||~p+|m+
(C.44)

and thus
ds+ ds− = 4|~p−||~p+|m+ dm+ d(cos θ+) . (C.45)

These results have exactly the same forms as the equations (C.20) and (C.21).1 �

1Note that the definition of the ~p+ in the equations (C.20) and (C.21) is different from that in the equations
(C.44) and (C.45).
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Appendix D

Formulas Related to ρ
Kinematics

1 Equivalence of Two Expressions for T κ
J=1

As mentioned in Sec. 1-1 of chapter 6, there are two equivalent expressions for T κ
J=1, which

take account of the helicity distribution of B0 → ρκ(→ πiπj)πκ(=k):

T κ
1 = −4|~pj ||~pk| cos θjk , (D.1)

and

T κ
1 = ski − sjk +

(mB0
2 −mπk

2)(mπj
2 −mπi

2)

sij
. (D.2)

In this section, we derive the equivalence.
Since the former is defined in the rest frame of πiπj and the latter is evidently a Lorentz-

invariant expression, it is convenient to consider in the rest frame of πiπj (Fig. D.1). In this
system, the four-momenta of three pions are

pi = (Ei, ~pi) = (Ei,−~pj) ,

pj = (Ej , ~pj) ,

pk = (Ek , ~pk) ,

(D.3)

Figure D.1: The relation between three pions in the rest frame of ρκ.
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which leads to

ski − sjk = (pk + pi)
2 − (pj + pk)2

= (mπk
2 +mπi

2 + 2pk · pi) − (mπj
2 +mπk

2 + 2pj · pk)

= mπi
2 −mπj

2 + 2pk · p̂ ,
(D.4)

(
p̂ ≡ pi − pj = (Ei −Ej , −2~pj)

)
(D.5)

and

mB0
2 = (pi + pj + pk)2

= (pi + pj)
2 + 2pk · (pi + pj) + pk

2

= (Ei +Ej)
2 + 2Ek(Ei + Ej) +mπk

2 .

(D.6)

Equations (D.4) and (D.6) leads

sij · (ski − sjk) + (mB0
2 −mπk

2)(mπj
2 −mπi

2)

= (Ei +Ej)
2 ·
(
mπi

2 −mπj
2 + 2pk · p̂

)

+
[
(Ei +Ej)

2 + 2Ek(Ei +Ej)
]
·
(
mπj

2 −mπi
2
)

= (Ei +Ej)
2 ·
[
mπi

2 −mπj
2 + 2Ek(Ei −Ej) − (−4~pk · ~pj)

]

+
[
(Ei +Ej)

2 + 2Ek(Ei +Ej)
]
·
(
mπj

2 −mπi
2
)

= (Ei +Ej)
2 · 4(~pk · ~pj)

+ 2Ek(Ei +Ej)
[
(Ei +Ej)(Ei −Ej) +

(
mπj

2 −mπi
2
)]

= sij · 4(~pk · ~pj) ,

(D.7)

where the last equality is from

Ei
2 −Ej

2 =
(
mπi

2 + |~pi|2
)
−
(
mπj

2 + |~pj |2
)

= mπi
2 −mπj

2 . (D.8)

Thus,

ski − sjk +
(mB0

2 −mπk
2)(mπj

2 −mπi
2)

sij
= 4(~pk · ~pj) , (D.9)

and it is equivalent to the right hand side of equation (D.1), except for the meaningless sign
of −1. �

2 Breit-Wigner Function of Gounaris-Sakurai Parame-

terization

In this section, we review the relativistic Breit-Wigner function proposed by Gounaris and
Sakurai [51]. The Gounaris-Sakurai Breit-Wigner function BW (s) for a resonance with a mass
M and width Γ decaying to two pions is

BW (s) =
M2(1 + d · Γ/M)

M2 − s+ f(s) − iMΓ(s)
, (D.10)

where

f(s) =
ΓM2

pπ
3(M2)

{
pπ

2(s)
[
h(s) − h(M2)

]
+ (M2 − s) pπ

2(M2)
dh

ds

∣∣∣∣
s=M2

}
, (D.11)
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h(s) =
2

π

pπ(s)√
s

ln

√
s+ 2pπ(s)

2mπ
, (D.12)

and the energy dependence of the width if P -wave type:

Γ(s) = Γ ·
[
pπ(s)

pπ(M2)

]3 [
M2

s

]1/2

. (D.13)

Here, pπ(s) is the pion momentum in the rest frame of the resonance calculated as

pπ(s) =

√
s

4
−mπ

2 (D.14)

and d is a normalization factor chosen to satisfy BW (0) = 11:

d =
3

π

mπ
2

pπ
2(M2)

ln
M + 2pπ(M2)

2mπ
+

M

2π pπ(M2)
− mπ

2M

π pπ
2(M2)

. (D.15)

1Though this normalization is not essential in our analysis, pion form factor is in general required to satisfy
this condition of normalization.
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Appendix E

Putting Constraint on the ρ
Lineshape Variation

As discussed in Sec. 1 of chapter 6, B0(B0) → (ρπ)0 consists of six decay processes of

B0 → ρ+π− ,

B0 → ρ−π+ ,

B0 → ρ0π0 ,

B0 → ρ+π− ,

B0 → ρ−π+ ,

B0 → ρ0π0 ,

and the lineshape of ρ can be different for all these processes. In the nominal fit, however, we
assume Eq. (6.7), i.e., the common lineshape for all the six processes. Since this assumption
is not well grounded, we have to estimate the systematic error due to this assumption. In this
appendix, we describe the detailed procedure of the systematic error estimation.

1 Formalism

We rewrite the exact equation without the assumption, Eq. (6.6), using the nominal lineshape
parameters of β and γ as

(

F
)κ
π (s) = BWρ(770) + (β + ∆

(

β
)

κ)BWρ(1450) + (γ + ∆
(
γ

)

κ)BWρ(1700) , (E.1)

where

∆
(

β
)

κ ≡ (

β
)

κ − β , and (E.2)

∆
(
γ

)

κ ≡ (
γ

)

κ − γ , (E.3)

describe the deviations of (
(

β
)

κ,
(
γ

)

κ) from (β, γ).
For convenience, we define fρ

κ , fρ′

κ and fρ′′

κ as

fρ(n)

κ ≡ T κ
JBWρ(n)(sκ) . (E.4)

The functions fκ and fκ are then

(

f
)

κ = favg
κ + ∆

(

β
)

κf
ρ′

κ + ∆
(
γ

)

κf
ρ′′

κ , (E.5)
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where
favg

κ ≡ fρ
κ + βfρ′

κ + γfρ′′

κ . (E.6)

Since all of the diagrams can be classified into two types, the ones with weak phase φ2

and the others with weak phase 0, the amplitudes Aκ(Aκ) can be written as (See Sec. 4-1 of
chapter 2)

Aκ = e−iφ2 T κ + P κ , (E.7)

Aκ = e+iφ2 T κ + P κ , (E.8)

where (+,−, 0) = (−,+, 0), i.e., T+ = T−, T− = T+, etc. Note that the amplitudes T and
P does not simply describe one tree and penguin diagrams but represents several diagrams
with common weak phases. Since strong interaction does not violate CP , the lineshapes can
be attributed to each T and P amplitudes and thus

fκA
κ = e−iφ2 fT

κ T
κ + fP

κ P
κ , (E.9)

fκA
κ = e+iφ2 fT

κ T
κ + fP

κ P
κ , (E.10)

where f
T (P )
κ is

fT (P )
κ = favg

κ + ∆βT (P )
κ fρ′

κ + ∆γT (P )
κ fρ′′

κ . (E.11)

Equations (E.7), (E.8), (E.9), and (E.10) lead to the following relations

∆βκ =
e−iφ2 ∆βT

κ T
κ + ∆βP

κ P
κ

e−iφ2 T κ + P κ
, (E.12)

∆βκ =
e+iφ2 ∆βT

κ T
κ + ∆βP

κ P
κ

e+iφ2 T κ + P κ
, (E.13)

∆γκ =
e−iφ2 ∆γT

κ T
κ + ∆γP

κ P
κ

e−iφ2 T κ + P κ
, (E.14)

∆γκ =
e+iφ2 ∆γT

κ T
κ + ∆γP

κ P
κ

e+iφ2 T κ + P κ
. (E.15)

Assuming the isospin relation1

P 0 = −1

2

(
P+ + P−

)
(E.16)

holds for radial excitations as well as ρ(770), ∆βP
0 and ∆γP

0 can be described as

∆βP
0 =

∆βP
+P

+ + ∆βP
−P

−

P+ + P−
, (E.17)

∆γP
0 =

∆γP
+P

+ + ∆γP
−P

−

P+ + P−
. (E.18)

To summarize, the deviations of the lineshape from the nominal one are described with 10
complex valued parameters: ∆βT

+,−,0,∆β
P
+,−,∆γ

T
+,−,0,∆γ

P
+,−, corresponding to 20 real valued

degrees of freedom. The purpose here is to put constraint on these parameters and to estimate
the impact of the deviation on the final result.

2 Procedure

Here we describe the procedure. It proceeds by three steps, as

1With Eqs. (E.7) and (E.8), this relation is equivalent to the first equality of Eq. (2.141).
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1. Obtaining constraint on the parameters related to the deviation in higher resonance part
by time-integrated (and flavor-integrated) Dalitz Plot fit,

2. Putting constraint on the 10 complex parameters, ∆βT
+,−,0,∆β

P
+,−,∆γ

T
+,−,0,∆γ

P
+,−, from

the fit result of the first step, assuming T κ, P κ, and φ2 obtained by our nominal time-
dependent Dalitz plot fit, and

3. Estimating the systematic errors from the variation of the 10 complex parameters.

3 First step: obtaining constraint by real data fit

With the assumption of one common lineshape for all amplitudes, the time-integrated (and
flavor-integrated) Dalitz Plot PDF is described as (See Sec. 4-3 of chapter 2)

dΓ

ds+ds−
∝

∑

κ∈{+,−,0}

|fκ|2
(
|Aκ|2 + |Aκ|2

)

+ 2
∑

κ<σ∈{+,−,0}

Re[fκf
∗
σ ]Re

[
AκAσ∗ +AκAσ∗

]

− 2
∑

κ<σ∈{+,−,0}

Im[fκf
∗
σ ]Im

[
AκAσ∗ +AκAσ∗

]
.

(E.19)

The effect of the lineshape variation appears as corrections to either the first line (non-
interfering terms) or the second and third lines (interfering terms). To obtain the information
relevant to the higher resonance deviations, we fit 39 additional parameters that parameterize
the corrections together with nominal 8 (= 9− 1) time-integrated Dalitz plot coefficients. The
39 parameters can be classified into the two categories: 15 quasi-two-body related parameters
and 24 interference related parameters.

3-1 15 quasi-two-body related parameters

With the lineshape variation, the quasi-two-body term becomes

|fκ|2|Aκ|2 + |fκ|2|Aκ|2 . (E.20)

We take following parametrization2 to describe the deviation of |fκ|2 from |favg
κ |2

2The deviation of the |fκ|2 term from the average lineshape favg
κ is

|fκ|
2 − |favg

κ |2

= |∆βκ|
2 |fρ′

κ |2 + |∆γκ|
2 |fρ′′

κ |2

+2Re[∆βκ] Re[fρ′

κ favg∗
κ ] − 2Im[∆βκ] Im[fρ′

κ favg∗
κ ]

+2Re[∆γκ] Re[fρ′

κ favg∗
κ ] − 2Im[∆γκ] Im[fρ′′

κ favg∗
κ ]

+2Re[∆βκ∆γ∗
κ] Re[fρ′

κ fρ′′∗
κ ] − 2Im[∆βκ∆γ∗

κ] Im[fρ′

κ fρ′′∗
κ ] . (E.21)

The deviation of the |fκ|
2 can also be written in the same way. Ideally, the parametrization to exploit the

information to the full is something like

|fκ|
2|Aκ|2 + |fκ|

2|Aκ|2

= |favg
κ |2 U+

κ + |fρ′

κ |2 U2+
κ + |fρ′′

κ |2 U3+
κ

+2Re[fρ′

κ favg∗
κ ] U21+,Re

κ − 2Im[fρ′

κ favg∗
κ ]U21+,Im

κ

+2Re[fρ′′

κ favg∗
κ ]U31+,Re

κ − 2Im[fρ′′

κ favg∗
κ ] U31+,Im

κ

+2Re[fρ′′

κ fρ′∗
κ ]U32+,Re

κ − 2Im[fρ′′

κ fρ′∗
κ ]U32+,Im

κ , (E.22)
where U+

κ is the nominal non-interfering Dalitz plot Dalitz Plot coefficients of Eq. (4.25) and the other 8 U xx +
κ

parameters are related to the deviation. It is technically difficult to fit with this parametrization, however,
since some of the function shapes are very similar with one another, as shown in the figure E.1.
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Figure E.1: Function shapes of each quasi-two-body terms.

|fκ|2|Aκ|2 + |fκ|2|Aκ|2 =
(
|Aκ|2 + |Aκ|2

) [
|favg

κ |2 + pcorr
κ

]
, (E.23)

where pcorr
κ is a correction term written as

pcorr
κ = |T κ

J |2
5∑

i=1

ciκp
corr
i (sκ) , (E.24)

pcorr
i (s) =

{
1 m2

i < s < m2
i+1

0 otherwise
, (E.25)

and T κ
J is the helicity term. This treatment corresponds to model the deviation from the

average by a binned histogram PDF. As the binning, or as the definition of mi, we take the
following values

mi ≡ 0.9 + 0.2× (i− 1) (GeV) . (E.26)

We fit the bins of i = 1-5, corresponding to the region of 0.9 <
√
s < 1.9(GeV), for each of

three ρ charges, κ. Thus, the number of the additional coefficients to be fitted, ci
κ, is 15 in

total.

3-2 24 interference related parameters

With the lineshape deviation, the interference terms become

2Re
[
fκf

∗
σA

κAσ∗ + fκf
∗
σA

κAσ∗
]
. (E.27)

Neglecting interference between correction terms, this term can be expanded as (here we omit
the factor 2 common to all terms)

Re
[
fκf

∗
σA

κAσ∗ + fκf
∗
σA

κAσ∗
]

= Re[favg
κ favg∗

σ ]U+,Re
κσ − Im[favg

κ favg∗
σ ]U+,Im

κσ

+Re[fρ′

κ f
avg∗
σ ]U+,Re

2κσ − Im[fρ′

κ f
avg∗
σ ]U+,Im

2κσ

+Re[fρ′′

κ favg∗
σ ]U+,Re

3κσ − Im[fρ′′

κ favg∗
σ ]U+,Im

3κσ

+Re[favg
κ fρ′∗

σ ]U+,Re
κ2σ − Im[favg

κ fρ′∗
σ ]U+,Im

κ2σ

+Re[favg
κ fρ′′∗

σ ]U+,Re
κ3σ − Im[favg

κ fρ′′∗
σ ]U+,Im

κ3σ , (E.28)
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where U
+,Re(Im)
κσ are the interfering coefficients of Eq. (4.26) and the other 8 parameters are

newly introduced coefficients defined as

U
+,Re(Im)
2κσ = Re(Im)

[
∆βκA

κAσ∗ + ∆βκA
κAσ∗

]
(E.29)

U
+,Re(Im)
3κσ = Re(Im)

[
∆γκA

κAσ∗ + ∆γκA
κAσ∗

]
(E.30)

U
+,Re(Im)
κ2σ = Re(Im)

[
∆β∗

σA
κAσ∗ + ∆β∗

σA
κAσ∗

]
(E.31)

U
+,Re(Im)
κ3σ = Re(Im)

[
∆γ∗σA

κAσ∗ + ∆γ∗σA
κAσ∗

]
. (E.32)

We fit these new 8 U
+,Re(Im)
xx parameters in each of 3 interference regions. Consequently,

number of new parameters related to interference is 24 in total.

3-3 Fit result

We perform a time-integrated Dalitz Plot fit, where the 39 parameters described above are
fitted together with the nominal 8 parameters as nuisance parameters; 47 parameters are fitted
simultaneously. Table E.1 shows the fit result of the 39 parameters. Figures E.2 show the mass
distributions.
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Figure E.2: The mass plots of m+(left), m−(middle), and m0(right), as a result of the 39
parameter fit. The step at m = 1.5(GeV) is due to Dalitz veto.

4 Second step: putting constraint on the 10 complex pa-

rameters

Using the fitted 39 parameters and assuming T κ, P κ, φ2 obtained in our nominal time-
dependent Dalitz plot fit, we put a constraint on the 10 complex parameters (model parame-
ters): ∆βT

+,−,0,∆β
P
+,−,∆γ

T
+,−,0,∆γ

P
+,−. The method here is a χ2 fit. The χ2 is defined as

χ2 = (~xfit − ~xmodel)
T E−1(~xfit − ~xmodel) , (E.33)

where ~xfit and E are the central values and the error matrix of the fitted 39 parameters. ~xmodel

is parameters corresponding to the ~xfit, calculated based on the 10 complex valued model
parameters, ∆βT

+,−,0,∆β
P
+,−,∆γ

T
+,−,0,∆γ

P
+,−.

Among the 39 elements of ~xmodel, 24 interference related terms are simply calculated using
Eqs. (E.7), (E.8), (E.12)-(E.15), (E.17), (E.18), and (E.29)-(E.32). As for the quasi-two-body
related 15 parameters, on the other hand, we need to perform numerical calculations to relate
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Table E.1: Fit results and errors of the 39 parameters.

U+,Re
+2− −0.06± 0.35 c0+ −1.59± 0.82

U+,Re
+3− +0.07± 0.14 c1+ +0.48± 0.82

U+,Re
2+− −0.04± 0.35 c2+ +0.39± 0.61

U+,Re
3+− +0.26± 0.13 c3+ −0.90± 1.09

U+,Im
+2− −0.15± 0.28 c4+ −0.77± 0.75

U+,Im
+3− +0.01± 0.12 c0− +1.04± 0.98

U+,Im
2+− +0.86± 0.30 c1− +1.01± 0.70

U+,Im
3+− −0.30± 0.16 c2− +0.33± 0.54

U+,Re
+20 −0.22± 0.25 c3− −0.72± 0.78

U+,Re
+30 +0.13± 0.11 c4− +0.85± 0.81

U+,Re
2+0 +0.38± 0.31 c00 +1.44± 2.51

U+,Re
3+0 −0.13± 0.11 c10 +0.88± 1.94

U+,Im
+20 −0.32± 0.21 c20 +0.61± 1.70

U+,Im
+30 +0.07± 0.10 c30 +3.15± 2.98

U+,Im
2+0 −0.16± 0.22 c40 −4.19± 2.14

U+,Im
3+0 −0.08± 0.12

U+,Re
−20 −0.34± 0.29

U+,Re
−30 +0.04± 0.11

U+,Re
2−0 −0.05± 0.35

U+,Re
3−0 +0.00± 0.11

U+,Im
−20 −0.17± 0.24

U+,Im
−30 −0.13± 0.11

U+,Im
2−0 −0.14± 0.27

U+,Im
3−0 +0.03± 0.12
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the 10 complex valued model parameters to the measured quantities, ci
κ. Since they are the

differences between |fκ|2|Aκ|2 + |fκ|2|Aκ|2 and (|Aκ|2 + |Aκ|2)|favg
κ |2 in the mass region of

mi
2 < sκ < mi+1

2, ciκ in the ~xmodel can be related as

ciκ =
1

mi+1
2 −mi

2

∫ mi+1
2

mi
2

ds
|Aκ|2(|F κ

ππ(s)|2 − |F avg
ππ (s)|2) + |Aκ|2(|F κ

ππ(s)|2 − |F avg
ππ (s)|2)

|Aκ|2 + |Aκ|2
,

(E.34)
where F xx

ππ are defined in the same way as fxx
κ .3

By minimizing the χ2, we obtain the fitted value and 1σ allowed region of the 10 complex
valued model parameters. Table E.2 show the fit result.

Table E.2: Fit result of 10 complex (20 real valued) lineshape deviation parameters.

∆βT,Re
+ +0.11± 0.19 ∆γT,Re

+ +0.09± 0.10

∆βT,Im
+ +0.27± 0.20 ∆γT,Im

+ −0.07± 0.13

∆βT,Re
− +0.19± 0.30 ∆γT,Re

− −0.01± 0.13

∆βT,Im
− +0.19± 0.21 ∆γT,Im

− −0.10± 0.18

∆βT,Re
0 +0.11± 0.19 ∆γT,Re

0 +0.11± 0.09

∆βT,Im
0 +0.45± 0.16 ∆γT,Im

0 −0.14± 0.08

∆βP,Re
+ −1.71± 1.29 ∆γP,Re

+ +0.36± 0.74

∆βP,Im
+ −0.64± 1.51 ∆γP,Im

+ +0.89± 0.85

∆βP,Re
− +2.41± 1.00 ∆γP,Re

− −0.88± 0.67

∆βP,Im
− −0.17± 1.17 ∆γP,Im

− −0.84± 0.51

5 Third step: estimating the systematic errors

With the fitted 10 complex valued (20 real valued) parameters and 1σ errors, we generate
random numbers, which correspond to the 10 complex parameters, taking account of the cor-
relation. For each one of the parameter sets, we generate a toy MC sample and fit them; we
generate 200 sets of the ∆βT

+,−,0,∆β
P
+,−,∆γ

T
+,−,0,∆γ

P
+,− and we generate 20 k events corre-

sponding to each set. In total, we obtain 200 toy MC samples, with different lineshapes for
each sample. Each sample is fitted with the common lineshape assumption, where f avg

κ is used
as the common lineshape. We then make the residual distributions of the 26 coefficients of the
time-dependent Dalitz plot fit.

In the calculation of the residuals, we do not simply calculate the residual using the original
input parameters of the toy MC, but we optimize the parameters so that the residual get small.
In the original formalism, the amplitudes are those of ρ(770). For example, the amplitude of
B0 → ρ+π− is

A+f+ = A+(fρ
+ + β+f

ρ′

+ + γ+f
ρ′′

+ ) . (E.37)

3Explicitly,
F avg

ππ (s) ≡ BWρ(770)(s) + βBWρ(1450)(s) + γBWρ(1700)(s) , (E.35)

which is analogous to the equation (E.6), and

(

F
)
κ
ππ(s) ≡ F avg

ππ (s) + ∆
(

β
)

κBWρ(1450)(s) + ∆
(
γ

)
κBWρ(1700)(s) , (E.36)

which is analogous to the equation (E.5).
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The underlying meaning of this formalism is that the decay amplitudes of B0 → ρ+π−, B0 →
ρ′+π−, and B0 → ρ′′+π− are A+, A+β+, and A+γ+, respectively. Comparison of the fit result
with the input A+, i.e. to calculate the residual with A+ as an input, is to see if the amplitude
of ρ(770 ) is correctly measured or not. This leads to the overestimation of the residual in some
cases, which include ours.

Figure E.3 shows an example for such cases. We suppose the left (right) figure is the
lineshape of B0 (B0) → ρ0π0, and the purpose here is the measurement of direct CP violation
in this process. The amplitudes of the decays can be written as

A(B0 → ρ0π0) = A0f0 = A0(fρ
0 + β0f

ρ′

0 ) , (E.38)

A(B0 → ρ0π0) = A0f0 = A0(fρ
0 + β0f

ρ′

0 ) , (E.39)

where we ignore ρ′′ for simplicity. Although the hight of ρ contributions (red line) are exactly
the same in two figures (i.e., |A0| = |A0|), what we really observe (green line), which is the
sum of ρ and ρ′ contributions in this case, is different due to the difference of ρ′ contribution.
Thus, applying a mass cut of

√
s < 1.0 for example, one will observe a direct CP violation in

this situation. One may say, however, that this observation of direct CP violation is a bias
due to the lineshape difference between B0 decay and B0 decay, since |A0| = |A0|, and there
is no direct CP violation if one pick up the contribution from ρ(770) alone. On the other
hand, one can also say that this observation of direct CP violation is correct, since there is
certainly difference between B0 and B0 decay amplitudes once the contributions from ρ and ρ′

are put together. This difference of two interpretations comes from two different standpoints:
1) to measure the amplitudes of ρ(770) alone or 2) to measure the amplitudes in total without
discriminating ρ(770) and its radial excitations.
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Figure E.3: Lineshapes with constructive interference between ρ and ρ′ (left) and destructive
interference (right). Here, only the phase of β is different for the two and |β| is common.

The question is which standpoint we should take. Our standpoint is similar to the second
one. This is because what we like to measure is φ2, not the amplitude of ρ, and the weak
phase of the higher resonance decay amplitudes is φ2, being the same as the ρ. That is, we do
not need to discriminate the ρ from ρ′ and ρ′′ since they all are described with φ2 in the same
way. In addition, we can expect the Isospin relation, on which we rely in putting constraint
on φ2, also holds for ρ′ and ρ′′ as well as ρ. Thus, in using Isospin relation, we do not have to
discriminate ρ, ρ′, and ρ′′. To summerize, although we use ρ resonance region and there are ρ′

and ρ′′ contributions in this region, we do not have to distinguish them from ρ contribution.
The next question is how to calculate the residual in MC studies, or how to define the input

amplitudes to be used for the residual calculation, when we are on this standpoint. Since we
are only interested in φ2, the definition of the other parameters are completely arbitrary. In
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other words, two sets of the amplitudes are looked upon to be identical as long as they yield
the same φ2. Thus, as the amplitudes to be compared with the MC fit result to calculate

the residual, we can choose
(

A
)
′κ that differs from amplitudes of ρ(770),

(

A
)
κ, and close to the

amplitudes of ρ + ρ′ + ρ′′ yielding the same φ2 as
(

A
)
κ. To calculate the optimum

(

A
)
′κ, we

optimize the amplitudes T ′ and P ′ that parameterize
(

A
)
′κ as

A′κ = e−iφ2 T ′κ + P ′κ , (E.40)

A
′κ = e+iφ2 T ′κ + P ′κ , (E.41)

where φ2 is the same as that of
(

A
)
κ. Here, we optimize the T ′ and P ′ so that the residual

becomes minimum.4 In this optimization, we minimize χ2 defined as

χ2 ≡
∑

i

(xi
fit − xi

model)
2

σi
2

, (E.43)

where xi
fit is the 26 parameters fitted with MC, xi

model is the 26 parameters calculated from
T ′, P ′, and φ2. As the σi, we use the statistical errors of our nominal time-dependent Dalitz
plot fit.

The resultant amplitude is used for the residual calculation; the xi
fit − xi

model in the fit
result is defined to be the residual for each MC sample. The widths (root mean square) and
the biases of the residual distributions are used as the systematic errors from the lineshape
variation. Here, the number of events in each MC sample, 20 k, is large enough and the
statistical fluctuation is negligible.

4Since we rely on Isospin relation in the φ2 constraint, the P ′ have to satisfy the Isospin relation

P ′0 = −
1

2
(P ′+ + P ′−) . (E.42)

This reduce the degree of freedom to be 10 real valued parameters. Further, since global normalization and
phase are arbitrary, the number of parameters to be optimized is 8 in total.
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Appendix F

Unbinned Extended Maximum
Likelihood Fit

1 Formalism

In an usual unbinned maximum likelihood fit, the likelihood function is defined as

L(~p) =
N∏

i

P (~xi; ~p) , (F.1)

where ~x, ~p, i, and N are the set of event-by-event variables, parameters to be fitted, an index
over the events, and the number of events, respectively. Here, P (~x; ~p) is an event-by-event PDF
normalized to be unity. In the unbinned extended maximum likelihood fit, we add another
term to incorporate the Poisson distributed property of the number of events N :

L(~p) =
ν(~p)N e−ν(~p)

N !

N∏

i

P (~x; ~p) , (F.2)

where ν(~p) is the estimated, or fitted, number of events.

2 Likelihood Function for Time-integrated ∆E-Mbc and

Dalitz Plot Fit

As described in Sec. 3, the event-by-event PDF for the time-integrated ∆E-Mbc and Dalitz
plot fit is different for the events in the signal region and the sideband region. Thus, we define
the extended likelihood function separately for signal region (LSR) and sideband region (LSB)
as

LSR =
νSR

NSR e−νSR

NSR!

NSR∏

i

P SR

��∆t
(~xSR

i ) , (F.3)

LSB =
νSB

NSB e−νSB

NSB!

NSB∏

i

P SB

��∆t
(~xSB

i )

N − 1
, (F.4)

with the event-by-event variables defined as

~xSR ≡ (∆E,Mbc;m
′, θ′; l) , (F.5)
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~xSB ≡ (∆E,Mbc; l) . (F.6)

Here, νSR andNSR (νSB andNSB) are the observed and estimated number of events in the signal
(sideband) region, respectively; and i is an index over the events. While P SR

��∆t
is normalized to be

unity in the signal region by definition of P (∆E,Mbc;m
′, θ′; ∆t, qtag; l), P

SB

��∆t
is not normalized

and thus divided by the normalization factor N − 1, where N is the integration over the grand
signal region defined as

N ≡
∑

l

∫∫

GS

d∆E dMbc P
SB

��∆t
(∆E,Mbc; l) . (F.7)

Since the numbers of estimated events in the signal region and sideband region are to be
proportional to the integral of the PDF in the corresponding regions, following relation is
satisfied

νSR

νSB
=

∑

l

∫∫

SR

d∆E dMbc

∫∫
dm′dθ′P SR

��∆t
(∆E,Mbc;m

′, θ′; l)

∑

l

∫∫

SB

d∆E dMbc P
SB

��∆t
(∆E,Mbc; l)

=
1

N − 1
. (F.8)

Consequently, the degree of freedom introduced in the “extended” part is only one, i.e., we set
νSR to be a free parameter in the fit and calculate νSB by the relation of equation (F.8).

The total likelihood L is a product of the likelihood functions in the signal region and
sideband region:

L = LSR · LSB . (F.9)

This can be considered as a simultaneous fit of two likelihood fits, with some fit parameters in
common.

163



Appendix G

Putting Limits on the Other
B0 → π+π−π0 Contributions

In this appendix, we describe how we put the upper limits on the contributions from B0 →
π+π−π0 decay processes other than B0 → (ρπ)0. We assume contributions from B0 →
f0(980)π0, B0 → f0(600)π0, B0 → ωπ0, and B0 → π+π−π0 non-resonant. As for B0 →
f0(980)π0, B0 → f0(600)π0, and B0 → π+π−π0 non-resonant, we put the limits using our
data, since there is no measurement or the limits available as world average are poor. The
upper limit for the B0 → ωπ0 is obtained using the world average.

1 Scalar particles: B0 → f0(980)π
0 and B0 → f0(600)π

0

We perform the Dalitz plot fit to constrain the contributions from these decay channels. As-
suming contributions from the B0 → Sπ0, where S is f0(980) or f0(600), the amplitudes of
Eq. (2.158) and (2.159) are rewritten as

A3π = f+A
+ + f−A

− + f0A
0 + fSA

S , and (G.1)
q

p
A3π = f+A

+ + f−A
− + f0A

0 + fSA
S , (G.2)

Here AS (AS) and fS are the complex amplitude and the kinematical term of S, respectively.
The fS consists of the helicity distribution and the Breit-Wigner mass distribution as

fS = TS
J=0F

0
ππ,S , (G.3)

where
TS

J=0 = 1 , (G.4)

and
F 0

ππ,S = BWS(s0) . (G.5)

Here we adopt a relativistic Brit-Wigner of J = 0 for the mass distribution. The time-integrated
part of the decay width is

|A3π |2 + |A3π|2 =
∑

κ∈{+,−,0}

|fκ|2U+
κ + 2

∑

κ<σ∈{+,−,0}

(
Re[fκf

∗
σ ]U+,Re

κσ − Im[fκf
∗
σ ]U+,Im

κσ

)

+|fS|2U+
S + 2

∑

κ∈{+,−,0}

(
Re[fSf

∗
κ ]U+,Re

Sκ − Im[fSf
∗
κ ]U+,Im

Sκ

)
, (G.6)
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with 7 additional U+
Sx parameters in the second line. Note that this is a general expression

without any assumption on the CP violation of B0 → Sπ0 and the relative phase between
B0 → Sπ0 and B0 → (ρπ)0. Among them, U+

S is the parameter that corresponds to the
contribution (decay width) of B0 → Sπ0 and other 6 parameters are nuisance parameters here.
Fit to the data with this PDF yields the results of the tables G.1 and G.2.

Table G.1: Fit result for B0 → f0(980)π0.

Resonance parameters

Mass (GeV) Width(GeV) Reference U+
S B(f0(980)π0)/B(ρ0π0)

0.976 0.061 Belle [62] +0.5+1.1
−1.0 0.03+0.08

−0.07

Table G.2: Fit result for B0 → σπ0.

Resonance parameters

Mass (GeV) Width(GeV) Reference U+
S Br(σπ0)/Br(ρ0π0)

0.541 0.504 BES2 [63] (+2.2+2.5
−2.3) × 102 +0.16+0.18

−0.16

0.513 0.335 CLEO [64] (+0.5+1.7
−1.5) × 102 +0.04+0.13

−0.12

0.478 0.324 E791 [65] (+0.7+2.4
−2.1) × 102 +0.04+0.13

−0.12

2 Vector particle: B0 → ωπ0

In HFAG 2006, 90% C.L. upper limit of B(B0 → ωπ0) is 1.2 × 10−6. In PDG, the Br(ω →
π+π−) = 1.70 ± 0.27%. Thus, 90% C.L. upper limit of B(B0 → ωπ0, ω → π+π−) is ∼
0.03× 10−6.

3 Phasespace: B0 → π+π−π0 non-resonant

To avoid the B0 → (ρπ)0 resonant contribution, We apply the following Dalitz plot cuts:

Region I (low purity region)

1.5 <
√
s+ and 1.5 <

√
s− and 1.5 <

√
s0 (G.7)

and √
s+ < 2.0 or

√
s− < 2.0 or

√
s0 < 2.0 (G.8)

Region II (high purity region)

2.0 <
√
s+ and 2.0 <

√
s− and 2.0 <

√
s0 . (G.9)

We also veto the following region in common for the “Region I” and “Region II”

0.44 < m′ < 0.455 , (G.10)
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Figure G.1: Regions used for the non-resonant measurement in normal Dalitz Plot (left) and
Square Dalitz Plot (right). “Region I” and “Region II” correspond to purple and blue regions,
respectively. Red region is dominated by B0 → DX and white region is dominated by resonant
component; We do not use these regions.

to avoid a contribution from B0 → J/ψπ0. Except for the Daltiz Plot cut, the event selection
almost the same as the B0 → (ρπ)0.1 We perform ∆E-Mbc fits to the data and calculate the
branching fraction assuming all of the B0 → π+π−π0 are the contributions of non-resonant.

Fit results are shown Fig. G.2. Using the calculated efficiencies in Table G.3, we obtain
the branching fractions in Table G.4. By simply symmetrizing the errors and averaging all the
measurements, we obtain following value:

−0.15± 0.62 (×10−6) . (G.11)

Data Set Region Efficiency (%)

DS-I Region I 2.21

DS-I Region II 1.00

DS-II Region I 2.32

DS-II Region II 1.06

Table G.3: Efficiencies.

1Another difference, in addition to the cut in Dalitz plot, is best candidate selection. Since the region does
not contain the kinematic region with low momentum π, the is virtually no contribution from SCF. Thus, we
do not apply best candidate selection.
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Figure G.2: ∆E-Mbc fit results of SVD1 (left) and SVD2 (right). Top and bottom plots
correspond to the “Region I” and “Region II”, respectively.

Data Set Region B.F. (×10−6)

DS-I Region I +1.11+1.38
−1.13

DS-I Region II −0.76+1.31
−0.72

DS-II Region I +1.41+1.20
−0.99

DS-II Region II −1.89+1.03
−1.12

Table G.4: Branching fractions obtained by each fit.
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Appendix H

Techniques to Estimate
Systematic Errors

1 Statistical Uncertainty of Binned Histogram PDF

To estimate the statistical uncertainty of a binned histogram PDF, we use two techniques: a
method using toy MC study and that using random division of the data sample. The former
is more precise but more complex than the latter. We use the former for the Dalitz plot PDF
of continuum events, since its systematic error is sizable. The latter is used for the Dalitz
dependent signal efficiency and the ∆E-Mbc and Dalitz PDF for BB background.

Note that the systematic error due to the binning is taken into account as the fit bias. If
there were a significant effect due to the binning, we would have seen significant fit bias in the
MC fit; we do not find large bias and the small fit bias is included into the systematic error.

1-1 Method Using Toy MC

We model the (scaled) Dalitz PDF of continuum background Pqq(m
′
scale, θ

′) by a binned his-
togram using the events in the sideband region, as described in Sec. 3-2 of appendix A. Since
the number of the sideband events is limited, the Pqq(m

′
scale, θ

′) has uncertainty due to the
limited statistics. In this appendix, we describe the procedure to estimate the systematic error
due to the uncertainty of Pqq(m

′
scale, θ

′).
In this method, we use toy MC corresponding to the sideband events. First, we generate 200

samples of pseudo experiments corresponding to the sideband data. Each pseudo experiment
consists of 13161 events corresponding to DS-I and 25813 events corresponding DS-II, where
the numbers of events are the same as data. Secondly, we prepare the Dalitz PDF of the
continuum background using each of the pseudo experiment samples in the same way as we
do for data; we obtain 200’s of statistically fluctuated PDF’s. Finally, we fit the data with the
same condition as the nominal fit except for the continuum Dalitz PDF, for which we use a
PDF based on the pseudo experiment instead of the nominal PDF based on data sideband. By
fitting the data using the 200 PDF’s we obtain the variations of the fitted parameters due to
the statistical fluctuation of the sideband events. We quote these variations as the systematic
errors due to the statistical fluctuation of the sideband events.

1-2 Method Using Random Division

In this method, we randomly divide the MC sample used to model the PDF into two subsam-
ples. Using the subsamples, we make two PDF’s in the same way as the nominal construction.
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As shown in the following, the difference of the two fit results using these two PDF’s is expected
to distribute such that its width is twice of the systematic uncertainty to be estimated. We
repeat the random division and fits, and make the distribution of the difference of the two fits.
We assign the width of the distribution as the systematic error1.

Provided the number of entries of the i-th bin of the histogram is Ni, its uncertainty is
expected to be

√
Ni. When the number of entries of the i-th bin is N 1

i in one of the subsamples,
another subsample has N2

i = Ni−N1
i entries in the same bin. Assuming binomial distribution,

the variance of the N1
i is

〈
(N1

i −Ni/2)2
〉

=
Ni

2
. (H.1)

Thus, the variance of N1
i −N2

i (= 2N1
i −Ni) is

〈
(N1

i −N2
i )2
〉

= 2Ni . (H.2)

Since the difference of each bin of the histogram PDF behaves as above, the difference of the
fit result does in the same manner.

2 Systematic Error Sourced by Parameters with Large

Correlation

There are parameters that have uncertainties and are fixed in the fit. To estimate system-
atic error due to them, we usually vary the parameters one-by-one by their 1σ uncertainties
(Fig. H.1 left) and quote the difference of the fit result from the nominal one as the systematic
error2. When the uncertainties of several parameters have sizable uncertainties, however, the
procedure described above can be either an over or under estimation. The systematic error
from the nominal lineshape parameters, β and γ, is the case, where four degrees of freedom
(|β|, argβ, |γ|, arg γ) are highly correlated with each other.

In such cases, we have to treat the systematic errors properly, as shown in Fig. H.1 right.
With the variation of the systematic source parameters δ~v from the nominal value, e.g., δ~v =
(δ|β|, δ argβ, δ|γ|, δ arg γ)T , and the error matrix for their uncertainties E, the corresponding
χ2 is written as

χ2 = δ~vT E−1δ~v . (H.3)

Since E−1 is a real-valued symmetric matrix, it can be diagonalized with an orthogonal matrix
U . Note that the matrix U is uniquely determined except for the order of columns since the
eigenvalues are non-zero and have no degeneration in general. Each column of the U is denoted
by ~ei, where i is the index over the columns, and the eigenvalue of E−1 corresponding to ~ei is
λi. The systematic error is estimated by substituting δ~v = ±~ei/

√
λi for each i, which satisfies

χ2 = 1. The fit result is compared with the nominal fit corresponding to δ~v = ~0 and the
difference is quoted as a systematic error.

1This width corresponds to the twice of the expected uncertainty. As a convention, we assign twice of the
expected uncertainty when it is sourced by MC statistics.

2Another standard method is to generate toy MC with varied parameters, fit the MC with the nominal
parameters, and quote the bias of the fit result as systematic error. The treatment of the correlation described
here can be applied for this method, too.
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Figure H.1: Schematic figures of the correlation of the parameters a and b, which have un-
certainties but fixed in the nominal fit. The ellipses correspond to the 1σ contour of the
uncertainty of a and b; they are not circles but ellipses since a and b are correlated with each
other. In the estimation of the systematic error, we usually vary a and b by 1σ separately,
corresponding to the cross points in the left plot. To treat the correlation properly, however,
we should estimate the systematic error using the cross points in the right plot.
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List of Notations

Symbol Defined in Description

V Page 11 CKM matrix

λC Page 12 Cabbibo angle

A, ρ, η Page 12 Parameters of Wolfenstein parameterization

φ1, φ2, φ3 Page 13 Angles of CKM triangle

p, q Page 15 Coefficients that define the mass eigenstates of neutral B

Γ Page 17 The averaged decay width of the neutral B meson

∆md Page 18 The mass difference between the two mass eigenstates of
the neutral B meson

∆t Page 20 Proper time difference between the decays of two B
mesons produced in pair

Btag Page 20 One of the B’s that is used to tag the B0 flavor

qtag Page 20 Flavor charge of the Btag
(

A
)
κ, A±0, A0± Page 27 Complex decay amplitudes of B0(B0) → (ρπ)0 and

B± → ρ±π0, ρ0π±

s+, s−, s0 Page 28 Dalitz plot variables
(

A
)

3π Page 28 Dalitz dependent complex amplitude of
B0(B0) → π+π−π0 decays

f+, f−, f0 Page 28, 81 Complex functions in the Dalitz plot that describe the
kinematics of B0 → ρ+π−, ρ−π+, and ρ0π0

(βγ)Υ(4S) Page 30 Boost factor of the Υ(4S) with respect to the laboratory
frame

RK/π Page 51 Likelihood ratio to discriminate kaons from pions

Re/e Page 54 Electron ID likelihood ratio

Rµ/π,K Page 54 Muon ID likelihood ratio

qtag, r Page 59 Result returned from the flavor tagging algorithm. qtag is
the determined flavor of the Btag and r is the quality of
the determination

l Page 60 Index over the regions of flavor tagging quality

wl
+, wl

− Page 60 Wrong tag fraction for B0 and B0 in each flavor tagging
quality region

wl, ∆wl Page 60 Wrong tag fraction and wrong tag fraction difference

m′, θ′ Page 65 Square Dalitz plot variables

J Page 65 Jacobian for the transformation from usual Dalitz plot
variables to the square Dalitz plot variables
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Symbol Defined in Description

U±
κ , Iκ, U

±,Re(Im)
κσ , I

Re(Im)
κσ Page 67 Parameters to be fitted in the time-dependent

Dalitz plot analysis

∆E Page 71 Energy difference

Mbc Page 71 Beam constrained mass

KLR Page 71 Likelihood ratio to discriminate the
continuum background, calculated by
combining the modified super Fox-Wolfram
and the cos θB

RBC Page 76 Likelihood ratio used for the best candidate
selection

θ+, θ−, θ0 Page 81 Helicity angles of ρ+, ρ−, and ρ0 (Note that
these symbols are used in another meaning in
a different context)

β, γ Page 82 Relative amplitudes of ρ(1450) and ρ(1700)
(

β
)

κ,
(
γ

)

κ Page 82 Relative amplitudes of ρ(1450) and ρ(1700)
with possible mode dependence

sCR, sNR Page 87, 124 Dalitz plot variables that describe the
dependence of the ∆E-Mbc PDF of SCF well

θ+, θ− Page 143 Phases related to the strong interaction

Ãκ, Ã−0, Ã0− Page 142 e−2iφ2Aκ, e−2iφ2A−0, e−2iφ2A0−

C, ∆C, S, ∆S, ACP
ρπ Page 103, 23 CP -violation parameters of the

quasi-two-body process B0 → ρ±π∓

A+−
ρπ , A−+

ρπ Page 104, 23 Direct CP -violation parameters of the
quasi-two-body process B0 → ρ±π∓

Aρ0π0 , Sρ0π0 Page 106 CP -violation parameters of the
quasi-two-body process B0 → ρ0π0
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List of Abbreviations

Name Defined in Description

SM Page 6 Standard Model

CKM Page 6 Cabbibo-Kobayashi-Maskawa

UT Page 13 Unitarity Triangle

IP Page 30 Interaction point

DS-I, DS-II Page 32 Data sets with old and new silicon vertex detector
configurations

PDF Page 51 Probability Density Function

SDP Page 65 Square Dalitz Plot

SCF Page 72 Self Cross Feed

CR, NR Page 86 Charged track Replaced and Neutral track Replaced (SCF’s)
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