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Abstra
t

We present the measurement of the Mi
hel parameters of � lepton �̄ and �� in the radiative leptoni


de
ay �

�

! `

�

��̄
 using 703 fb

�1

of 
ollision data 
olle
ted with the Belle dete
tor at the KEKB

e

+

e

�


ollider. The Mi
hel parameter is a fundamental property of unstable 
harged leptons and


hara
terizes the dynami
s of leptoni
 de
ays. The experimental values of �̄ and �� parameters may

reveal the presen
e of new physi
s beyond the Standard Model.

The Mi
hel parameters are measured by an unbinned maximum likelihood method where �̄ and

�� are �tted to the kinemati
 distribution of e

+

e

�

! �

+

�

�

! (�

+

�

0

�̄)(`

�

��̄
) (` = e or �). Using

the muon mode, �̄ and �� are simultaneously �tted to the spe
tra to be �̄

�

= �1:3 � 1:5 � 0:8 and

(��)

�

= 0:8 � 0:5 � 0:3. In the ele
tron mode, taking into a

ount the suppression of �̄ sensitivity

from the small mass of daughter ele
tron, we extra
t (��)

e

by �xing �̄ value to the Standard Model

predi
tion of �̄

SM

= 0. The measured value is (��)

e

= �0:4 � 0:8 � 0:9. The �rst error is statisti
al

and the se
ond is systemati
. This is the �rst measurement of these parameters. These results are


onsistent with the Standard Model predi
tions within their un
ertainties and give a 
onstraint on the


oupling 
oeÆ
ient of the generalized weak intera
tion.

We also measured the bran
hing ratio of the radiative leptoni
 de
ays under the photon energy

threshold of E

�




> 10 MeV in the � rest frame to be B(�

�

! e

�

��̄
) = (1:82 � 0:02 � 0:10) � 10

�2

and B(�

�

! �

�

��̄
) = (3:68 � 0:02 � 0:15) � 10

�3

. These results are 
onsistent with the leading

order Standard Model predi
tion. In the next-leading order, there are e�e
ts from multiple photon

emission, whi
h is not implemented in the 
urrent event generator. An improvement of generator is

required to make 
omparison at the next-leading order.
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Chapter 1

Introdu
tion

1.1 The Standard Model

Everything in our universe is believed to be made from fundamental parti
les. Their intera
tions or

for
es are des
ribed by an ex
hange of other parti
les. Su
h parti
les are des
ribed so as not to have

their sizes as well as internal stru
tures thereby they are 
alled elementary parti
les. The quantum

�eld theory (QFT) is a physi
al framework whi
h treats an entity of su
h a parti
le as an ex
itation

of �eld in the spa
e-time, relying on both the quantum me
hani
s and the spe
ial relativity�most

su

essful theories of physi
s in the twentieth 
entury.

In prin
iple, in the framework of QFT, people 
an freely build new theories: arbitrary types of

parti
les and rules of intera
tions 
an form one theory. However, there are few theories whi
h 
an

reasonably predi
t real behaviors of known parti
les. The Standard Model (SM) is known to be the

strongest predi
table theories of QFT, in whi
h twelve types of fermions (
orresponding to matters)

are governed by three types of for
es. The for
es are mediated by 
orresponding bosons. The masses

of these parti
les are uniquely determined by strengths of ea
h 
oupling to the �eld of Higgs boson.

Below we give a summary of the SM.

Types of elementary parti
les

� Higgs boson is a spin-0 parti
le to give other parti
les masses.

� There are three types of for
es: ele
tromagneti
 intera
tion, 
harged and neutral weak inter-

a
tions and strong intera
tion. These for
es are mediated by spin-1 parti
les and play roles

in 
an
ellations of position-dependent phases. The invarian
e under the phase transformation

is 
alled gauge invarian
e, hen
e these parti
les are also 
alled gauge bosons. These gauge

bosons are named photon 
 for the ele
tromagneti
, W

�

and Z bosons for the 
harged and

neutral weak intera
tions and gluon g for the strong for
e.

� Matters are made from spin-

1

2

parti
les whi
h are 
ategorized into two groups: six types of

quarks and six types of leptons. The quark has 
harges of all for
es above and is able to

parti
ipate in all intera
tions. Whereas the lepton does not have a 
harge of strong for
e but has

a weak 
harge, a

ordingly it parti
ipates in the weak intera
tions. The three quarks have +2=3

ele
tromagneti
 
harges and other three have �1=3. Three leptons whi
h have ele
tromagneti



harges +1 are 
alled 
harged leptons and are able to intera
t via ele
tromagneti
 for
e while

the other three do not and are 
alled neutrinos. The three types are also 
alled �avors.

� Ex
ept the neutral parti
les 
, Z and g, all parti
les have their 
orresponding anti-parti
les,

whi
h have opposite quantum numbers.
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Important 
hara
teristi
s

� Parti
les have a property 
alled 
hirality, whose eigenvalue is 1 or -1. In the massless limit,

it is well known that the 
hirality equals to heli
ity that is de�ned as h =

�

S � n, where

�

S is a

normalized ve
tor of spin and n is a unity ve
tor of the parti
le movement. The positive and

negative heli
ities are 
alled right-handed and left-handed, respe
tively.

� Of all for
es, only 
harged weak intera
tion 
an 
hange the �avor of parti
le. Moreover, it

violates the symmetry of 
hirality, i.e., only negative-
hirality parti
les and anti-parti
les are

a
tive in the 
harged weak intera
tion.

� Strong for
es have a potential proportional to distan
e V(r) / kr: in other words, the strength

of 
oupling be
omes large in low energy or weak in high energy, so 
alled asymptoti
 freedom.

This means that a system whi
h has two free distant quarks is unstable, hen
e, in terms of

energy, it is more bene�
ial to 
reate qq̄ pair (q represent a quark) from va
uum to form two

qq̄ binding states (or mesons). For this reason, neither the free quark nor its fra
tional 
harge

has not been dis
overed yet (quark 
on�nement).

� In addition, be
ause of the asymptoti
 freedom, theoreti
al 
al
ulations using perturbation

te
hnique are less a

urate for low energy behaviors of strong intera
tion. In su
h energy

s
ale, therefore, a pre
ise 
omparison between a value observed by experiment and theoreti
al

predi
tion is diÆ
ult.

1.1.1 Sear
h for physi
s beyond the Standard Model

In 2012, at Conseil Européen pour la Re
her
he Nu
léaire (CERN), Higgs boson was dis
overed

by experiments at the large hadron 
ollider (LHC) from proton-proton 
ollision data [1, 2℄. The

existen
e of the Higgs boson, though many resear
her had believed in it, made a validity of the SM

de
isive. The SM 
an explain almost all of parti
le phenomena that o

ur in our universe. Various

quantum behaviors of parti
les are within a predi
tion of this framework. Many physi
ist, however,

believe that the SM to be neither 
omplete nor ultimate theory whi
h des
ribes nature be
ause there

are several strong fa
ts that are in
onsistent with the SM. The observation of nonzero mass of neu-

trinos dis
overed by the neutrino os
illation [3, 4℄, the unknown sour
e of the gravitational potential

(dark matter), the asymmetry of amounts between matter and antimatter and the unnaturally small

mass of Higgs boson (so 
alled hierar
hy problem) [5℄, all of them are not well explained in the

framework of the SM.

For the reason noted above, physi
ists are trying to �nd an in
onsisten
y of the SM or physi
s

beyond the SM (BSM). At least from existing observations, the e�e
t from physi
s BSM in various

behaviors of parti
les appears to be small. This may imply that a new parti
le, whi
h is responsible

for phenomena BSM, has a very large mass. In fa
t, using the LHC, people a
hieved very high-

energeti
 environment of 10 TeV or 10

14

K by a

elerating and 
olliding protons and are attempting

to dire
tly unveil the appearan
e BSM. Another approa
h is to pre
isely measure the properties of

already known phenomena. Based on observations of a huge number of intera
tions of parti
les at

relatively low energy, possible e�e
ts from the physi
s BSM are pre
isely veri�ed.

1.2 Sear
h for physi
s beyond the Standard Model in 
harged

leptons

In the SM, there are three �avors of 
harged leptons: e; � and �. The ele
tron e has the smallest

mass in all parti
les that have ele
tromagneti
 
harges, hen
e the 
harge 
onservation does not allow

6



ele
trons to de
ay. The stability of ele
trons opens various experimental possibilities to measure

their properties. The muon � and tau � have masses (105:65837545 � 0:0000024) MeV=


2

and

(1776:86 � 0:12) MeV=


2

, respe
tively [7℄, and 
an de
ay into lighter parti
les. The tests of these

de
ays also give us additional information from the physi
s BSM.

In terms of sear
h BSM based on the pre
ision measurement of parti
le properties, experiments

using the 
harged leptons turn out to o�er beautiful laboratories. The ina
tivity of 
harged leptons to

the strong intera
tion enables us to pursue ex
ellent pre
ision in the theoreti
al 
al
ulation. Various

properties of these de
ays, des
ribed by the ele
troweak se
tor of the SM, are pre
isely 
al
ulated,

therefore, experimental results 
an be de�nitely 
ompared with theoreti
al predi
tions. Moreover,

unlike quarks, the 
harged leptons 
an exist in bare states and we are able to dire
tly test the nature of

elementary parti
les. Though neutrinos also share this nature, it is diÆ
ult to do similar measurement

due to the small rea
tion rate.

The � parti
le

There have been varieties of experiments to measure � properties. Most notably, at Brookhaven Na-

tional Laboratory (BNL), the E821 experiment measured an anomalous magneti
 moment of the �

using polarized beam with amazing pre
ision (0.7 ppm!) [6℄ and as a result exhibited a signi�
ant de-

viation from the SM predi
tion by 3� level. Not only the anomalous magneti
 moment but a variety

of properties of � have been measured for more than one 
entury. Its relatively long lifetime (� 2 �s)

and availability of thereby large number of pure � (moreover sometimes polarized) sample enables

us to perform ex
ellent pre
ision experiments for �: it may not be overstate that we understand the

muon very well.

The � parti
le

On the other hand, in spite of its equally interesting 
hara
teristi
s, various properties of � lepton

are not so pre
isely measured, parti
ularly due to its te
hni
al diÆ
ulties of experiment. Theoreti
al

treatment of � is as simple as that of � 
ase, but the short lifetime of � (� 0:3 ps) does not allow


ompetitive measurement in terms of absolute pre
ision.

Nevertheless, measurements of the � de
ay is one of the most sensitive probes to the e�e
ts

BSM. The large mass of the � allows us to expe
t an enhan
ement of the sensitivity on the BSM. For

instan
e, the two Higgs doublet model (2HDM), one of the bran
hes of the supersymmetri
 models,

predi
ts an existen
e of the 
harged Higgs and the magnitude of their 
ouplings is proportional to

mass of a lepton. As a result, in 
omparison with � de
ays, we 
an expe
t the gain of sensitivity by

a fa
tor of (m

�

=m

�

)

2

� 300.

The large mass of the �makes it possible to de
ay into both leptons and hadrons. The former one

is 
alled leptoni
 de
ay and a

ounts for approximately 35% of all tau de
ays. The rest de
ays of

the � 
ontain hadrons in the �nal state and are 
alled hadroni
 de
ay.

Taking into a

ount the sensitivities to the e�e
ts from physi
s BSM, we 
hose the � lepton for

the theme of study. In this thesis, we des
ribe the method in detail.

1.3 Mi
hel Parameters

The measurement of Mi
hel parameters is one of the most established strategies for the veri�
ation

of the de
ay of 
harged leptons. The formalism was developed in the 
ourse of the 
lari�
ation of

the (weak) 
harged intera
tion.

Sin
e the dis
overy of weak for
e, physi
ist have been trying to unveil its unique dynami
 nature

spending long time. Before moving to main topi
, we review the history.
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1.3.1 History of test of the 
harged 
urrent

The weak intera
tion was �rst proposed by Fermi [8, 9℄ to explain the beta de
ay of the nu
leus. He

in
orporated an idea of the neutrino, whi
h had been suggested by Pauli, and su

eeded to explain

the 
ontinuous momentum spe
trum of the daughter ele
tron. In 1957, C. S. Wu found that the weak

for
e did not respe
t the symmetry of the parity in the beta de
ay from

60

Co [10℄. The angular distri-

bution of the ele
tron from the polarized 
obalt nu
lei suggested the maximal violation of parity in

the 
ouplings, i.e., the intera
tion results in the asymmetri
 
ouplings between left-handed and right-

handed parti
les. The stru
ture of the 
oupling 
ontains the ve
tor and axial-ve
tor 
ontributions

almost in the same magnitudes with opposite signs, so it is 
alled V � A intera
tion.

Be
ause of its unique properties, over more than one 
entury there have been various attempts

to reveal the nature of the weak intera
tion. In 1949, Ruderman and Finkelstein predi
ted that a

ratio of de
ay rates B(�

+

! e

+

�)=B(�

+

! �

+

�) was suppressed by four order of magnitude if the

weak intera
tion o

urs through the V � A stru
ture [11℄. The V � A type 
urrent permits only

negative-heli
ity parti
les to parti
ipate in the weak intera
tion, whi
h results in the violation of

angular momentum 
onservation in �

+

! `

+

� in the massless limit m

`

! 0 (` = e, or �). This

well known me
hanism is often 
alled heli
ity suppression. In 1958, the ele
tron de
ay of pion

�

+

! e

+

� was �rst observed [12℄ and then a re
ent experimental value using stopped �

+

, B(�

+

!

e

+

�)=B(�

+

! �

+

�) = (1:2346 � 0:0035 � 0:0036) � 10

�4

[13℄ well supports its theoreti
al predi
tion

(1:233 � 0:004) � 10

�4

[14℄.

More general tests of the Lorentz stru
ture of the weak intera
tion have been performed in the

de
ay of �

�

! e

�

��̄ and �

�

! `

�

��̄ by the measurement of Mi
hel parameters.

1.3.2 Mi
hel formalism

The most general Lorentz-invariant derivative-free matrix element of leptoni
 � de
ay

�

�

�

! `

�

��̄

y

is represented as [17℄

M =

�

�

�

�

`

`

=

4G

F

p

2

X

N=S ;V;T

i; j=L;R

g

N

i j

h

u

i

(`)�

N

v

n

(�

`

)

i h

u

m

(�

�

)�

N

u

j

(�)

i

; (1.1)

where G

F

is the Fermi 
onstant, i and j are the 
hirality indi
es for the 
harged leptons, n and m are

the 
hirality indi
es of the neutrinos, ` is e or �, �

S

= 1, �

V

= 


�

and �

T

= i
(



�




�

� 


�




�

)
=2

p

2 are,

respe
tively, the s
alar, ve
tor and tensor Lorentz stru
tures in terms of the Dira
 matri
es 


�

, and

g

N

i j

are the 
orresponding dimensionless 
ouplings. The 
hirality indi
es n and m are not summed

in Eq. (1.1) be
ause they are uniquely �xed for given i, j and the intera
tion type. In the SM, �

�

de
ays into `

�

ex
lusively via the W

�

ve
tor boson with the V � A Lorentz stru
ture, i.e., the only

non-zero 
oupling is g

V

LL

= 1. Experimentally, only the squared matrix element is observable and so

bilinear 
ombinations of the g

N

i j

are a

essible. Of all su
h 
ombinations, four Mi
hel parameters�

�, �, Æ and ��
an be measured by the leptoni
 de
ay of the � when the �nal state neutrinos are not

�

The dis
ussion here holds also for � when the daughter lepton ` is 
hanged to e.

y

Unless otherwise stated, use of 
harge-
onjugate modes is implied throughout the thesis.
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�

�

�




`

�

`

�

�

�




`

�

`

�

�

�




`

�

`

Figure 1.1: Radiative de
ay. The last diagram arises from the radiation from W boson but this is

suppressed by the very small fa
tor of (m

�

=m

W

)

2

� 5 � 10

�4

.

observed [18℄:

� =

3

4

�

3

4

�

�

�

�

g

V

LR

�

�

�

2

+

�

�

�

g

V

RL

�

�

�

2

+ 2

�

�

�

g

T

LR

�

�

�

2

+ 2

�

�

�

g

T

RL

�

�

�

2

+<

�

g

S

LR

g

T�

LR

+ g

S

RL

g

T�

RL

�

�

; (1.2)

� =

1

2

<

�

6g

V

RL

g

T�

LR

+ 6g

V

LR

g

T�

RL

+ g

S

RR

g

V�

LL

+ g

S

RL

g

V�

LR

+ g

S

LR

g

V�

RL

+ g

S

LL

g

V�

RR

�

; (1.3)

� = 4<

�

g

S

LR

g

T�

LR

� g

S

RL

g

T�

RL

�

+

�

�

�

g

V

LL

�

�

�

2

+ 3

�

�

�

g

V

LR

�

�

�

2

� 3

�

�

�

g

V

RL

�

�

�

2

�

�

�

�

g

V

RR

�

�

�

2

+5

�

�

�

g

T

LR

�

�

�

2

� 5

�

�

�

g

T

RL

�

�

�

2

+

1

4

�

�

�

�

g

S

LL

�

�

�

2

�

�

�

�

g

S

LR

�

�

�

2

+

�

�

�

g

S

RL

�

�

�

2

�

�

�

�

g

S

RR

�

�

�

2

�

; (1.4)

�Æ =

3

16

�

�

�

�

g

S

LL

�

�

�

2

�

�

�

�

g

S

LR

�

�

�

2

+

�

�

�

g

S

RL

�

�

�

2

�

�

�

�

g

S

RR

�

�

�

2

�

�

3

4

�

�

�

�

g

T

LR

�

�

�

2

�

�

�

�

g

T

RL

�

�

�

2

�

�

�

�

g

V

LL

�

�

�

2

+

�

�

�

g

V

RR

�

�

�

2

� <

�

g

S

LR

g

T�

LR

+ g

S

RL

g

T�

RL

�

�

: (1.5)

Parametrized by these values, the di�erential de
ay width of �

�

! `

�

��̄ is expli
itly given by

d�(�

�

! `

�

��̄)

dE

�

`

d


�

`

=

4G

2

F

m

�

E

3

max

(2�)

4

q

x

2

� x

2

0

"

x(1 � x) +

2�

9

(4x

2

� 3x � x

2

0

)

+�x

0

(1 � x) � �

n

�

l

� S

�

�

3

q

x

2

� x

2

0

 

1 � x +

2Æ

3

�

4x � 4 +

q

1 � x

2

0

�

! #

; (1.6)

where E

max

= (m

2

�

+ m

2

`

)=2m

�

is the maximum energy of lepton in the tau rest frame, x = E

�

`

=E

max

is a normalized lepton energy, x

0

= m

`

=E

max

, and n

�

`

� S

�

�

is the 
osine of angle between the tau

spin and lepton dire
tion. Thus the Mi
hel parameters 
hara
terize spe
tra of lepton momentum and

dire
tion. Moreover, as Eq. (1.6) shows � and �Æ appear with n

�

l

� S

�

�

, it is thus these two variables

determine the lepton angular dependen
e vs tau-spin dire
tion.

1.4 Further tests of the V � A intera
tion in � de
ays

The Feynman diagrams des
ribing the radiative leptoni
 de
ay of the � are presented in Fig 1.1. The

last amplitude turned out to be suppressed by the very small fa
tor of (m

�

=m

W

)

2

� 5 � 10

�4

[26℄ and


an be negle
ted. Then, as shown in Refs. [27, 28, 29℄, the presen
e of a radiative photon in the �nal

state (or sometimes 
alled inner bremsstrahlung) exposes three more Mi
hel parameters, �̄, �

00

and

��, whi
h are expli
itly given by

�̄ =

�

�

�

g

V

RL

�

�

�

2

+

�

�

�

g

V

LR

�

�

�

2

+

1

8

�

�

�

�

g

S

RL

+ 2g

T

RL

�

�

�

2

+

�

�

�

g

S

LR

+ 2g

T

LR

�

�

�

2

�

+ 2

�

�

�

�

g

T

RL

�

�

�

2

+

�

�

�

g

T

LR

�

�

�

2

�

; (1.7)

�

00

= <

n

24g

V

RL

(g

S �

LR

+ 6g

T�

LR

) + 24g

V

LR

(g

S �

RL

+ 6g

T�

RL

) � 8(g

V

RR

g

S �

LL

+ g

V

LL

g

S �

RR

)

o

; (1.8)

�� =

�

�

�

g

V

RL

�

�

�

2

�

�

�

�

g

V

LR

�

�

�

2

+

1

8

�

�

�

�

g

S

RL

+ 2g

T

RL

�

�

�

2

�

�

�

�

g

S

LR

+ 2g

T

LR

�

�

�

2

�

+ 2

�

�

�

�

g

T

RL

�

�

�

2

�

�

�

�

g

T

LR

�

�

�

2

�

: (1.9)

9



Table 1.1: Mi
hel parameters of the � lepton

Name SM Spin Experimental Comments and Ref.

value 
orrelation result

y

[7℄

� 0 no 0:057 � 0:034 [19℄

� 3=4 no 0:74979 � 0:00026 [20℄

� 1 yes 1:0009

+0:0016

�0:0007

[21℄

Æ 3=4 yes 0:75047 � 0:00034 [20℄

� 0 no 0:02 � 0:08 [22℄

�� 0 yes 0:00 � 0:01 
al
. from �

0

value [23℄

y

Experimental results represent average values obtained by the parti
le data group (PDG) [7℄. The most

pre
ise results are referen
ed here.

The formula of di�erential de
ay width for the radiative de
ay, whi
h 
orresponds to Eq. (1.6) in

�

�

! `

�

��̄ 
ase, be
omes more 
ompli
ated and we postpone its des
ription until Chapter 5. Never-

theless, these new Mi
hel parameters also a�e
t the spe
tra of daughter parti
les.

Similarly to � and �, both �̄ and �

00

appear as spin-independent terms in the di�erential de
ay

width. Sin
e all terms in Eq. (1.7) are non-negative, the upper limit on �̄ provides a 
onstraint on

ea
h 
oupling 
onstant. The value of �

00

is suppressed by a fa
tor of m

`

=m

�

� 0:03% for an ele
tron

daughter and � 6% for a muon daughter and so diÆ
ult to measure with the statisti
s available so

far. In this study, we use the SM value �

00

= 0.

To measure ��, whi
h appears in the spin-dependent part of the di�erential de
ay width, we

must determine the spin dire
tion of the �. This spin dependen
e is extra
ted using the spin-spin


orrelation with the partner � in the event (it is explained in detail in the next 
hapter).

The information on Mi
hel parameters is summarized in Tables 1.1 and 1.2 for muon and tau,

respe
tively. �̄ and �� parameters have been already measured in �

�

de
ay (note that �� parameter

is indu
ed from �

0

parameter). Using the statisti
ally abundant data set of ordinary leptoni
 de
ays,

previous measurements had determined the Mi
hel parameters �, �, Æ and � to an a

ura
y of a few

per
ent and in agreement with the SM predi
tion. Taking into a

ount this measured agreement, the

smaller data set of the radiative de
ay and its limited sensitivity, we fo
us in this analysis only on the

extra
tion of �̄ and �� by �xing �, �, Æ and � to the SM values. This represents the �rst measurement

of the �̄ and �� parameters of the � lepton.

1.5 Physi
s motivation

As introdu
ed in Se
. 1.3, the relationships between the 
oupling 
onstants g

N

i j

and the Mi
hel param-

eters intri
ately intertwine ea
h other. Consequently, an intuitive understanding of the 
onne
tion to

a spe
i�
 model BSM is a room for dis
ussion. For example, it is known that � is dire
tly asso
iated

with the 
harged Higgs model. In the SM, only g

V

LL

= 1 is nonzero and other g

N

i j

being zero, hen
e

from Eq. (1.3) we obtain � � 0:5 � <fg

S

RR

g. Sin
e the 
harged Higgs mediates the radiative leptoni


de
ay of the � as a s
alar-type intera
tion, the measurement of � is regarded as the veri�
ation of the


oupling of Higgs to the right-handed �. The same analogy holds for �

00

: �

00

� 8 � <fg

S

RR

g. On the


ontrary, other Mi
hel parameters appear as the 
omplex 
ombinations of many 
ontributions BSM.

Nevertheless, there are a few 
omments for the new Mi
hel parameters, �̄ and ��. First, the

ordinary Mi
hel parameters (�, �, Æ and �) 
an be measured blindly to the polarization of outgoing

lepton. Conversely, the measurement of the new parameters �̄ and �� in the �

�

! `

�

��̄
 is equivalent
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Table 1.2: Mi
hel parameters of the � lepton

Name SM Spin Experimental Comments and Ref.

value 
orrelation result

y

[7℄

� 0 no 0:013 � 0:020 [24℄

� 3=4 no 0:745 � 0:008 [25℄

� 1 yes 0:995 � 0:007 measured in hadroni
 de
ays [24℄

�Æ 3=4 yes 0:746 � 0:021 [25℄

� 0 no not measured from radiative de
ay (RD)

�� 0 yes not measured from RD

�

00

0 no not measured from RD, suppressed by m

`

=m

�

y

Experimental results represent average values obtained by the parti
le data group (PDG) [7℄. The most

pre
ise results are referen
ed here.

to the veri�
ation of the 
ouplings of ea
h 
hirality of the daughter lepton. The angular distribution

of the photon vs the movement of the daughter lepton provides the information of the polarization

of the lepton. In fa
t, a

ording to Ref. [30℄, the �� is related to another Mi
hel-like parameter

�

0

= �� � 4�� + 8�Æ=3. Be
ause the probability that the �

�

de
ays into the right-handed 
harged

daughter lepton Q

�

`

R

is given by Q

�

`

R

= (1 � �

0

)=2 [31℄, the measurement of �� provides a further


onstraint on the V �A stru
ture of the weak 
urrent.

y

It is known that veri�
ation of the asymmetri


nature of the 
hirality has a strong impa
t on the theory BSM like right-left symmetri
 model [32, 33℄.

Se
ond, as is mentioned before, the �̄ is a sum of non-negative terms, hen
e the upper limit of the

�̄ 
onstrains the value of ea
h 
omponent. As summarized in �-Lepton de
ay parameters in Ref. [7℄,

some of the g

N

i j

in
luded in Eq. (1.7) are not well measured for the � de
ay:

jg

V

RL

j < 0:52 (95% C:L); (1.10)

jg

T

RL

j < 0:51 (95% C:L); (1.11)

jg

S

RL

j < 2:01 (95% C:L); (1.12)

jg

S

LR

j < 0:95 (95% C:L): (1.13)

The measurement of the �̄ is very powerful way to 
onstrain these 
ouplings. Moreover, �̄ is also

related to another Mi
hel-like parameter �

00

= 16�=3 � 4�̄ � 3, whi
h represents the angular depen-

den
e of the longitude spin of the daughter lepton (see e.g. Ref [34℄). Although �

00

has been already

measured for � de
ay, that of � is not yet known.

Finally, these six Mi
hel parameters deliver independent information. Figure 1.2 summarizes the

matrix of the 
orrelation 
oeÆ
ients of these Mi
hel parameters 
al
ulated by �tting the parameters

to the spe
tra of Monte Carlo events for �

�

! e

�

��̄
 (the detailed method of this evaluation is ex-

plained in Chapter 5). The 
orrelations of the Mi
hel parameters between the ordinary and radiative

ones, i.e., �, �, Æ, � and �̄, �� are suÆ
iently small and this implies a potential impa
t on the 
onstraint

of g

N

i j

in terms of the 
onstru
tion of theories.

1.6 Produ
tion of � leptons

In Table 1.3, information of possible � de
ay data 
olle
ted by various experiments is listed. To

pre
isely measure the properties of the � lepton, there are two requirements: the observation of large

y

Similarly, the probability that the right handed � 
ouples the daughter lepton is given by Q

�

R

= [1+ (3��16�Æ)=9℄=2.
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Figure 1.2: Correlation 
oeÆ
ients between the Mi
hel parameters.

Table 1.3: List of available � data

Experiment Integrated luminosity (fb

�1

) Beam energies

ARGUS 0.5 E

ee

= 9.4-10.6 GeV

CLEO-II 4.7 E

ee

= 10.6 GeV

CLEO-
 0.8 E

ee

= 3.8 GeV

Babar 467 E

ee

= 10.0-10.6 GeV

Belle 980 E

ee

= 9.5-10.9 GeV

LHCb > 2:0 E

pp

= 13 TeV (2015-2016)

number of � de
ays and 
lean environment in the dete
tion of daughter parti
les. A

ounting for not

only number of events but also 
lean environment of lepton 
ollider, the Belle experiment possesses

the best � data for its pre
ision measurement.

The Belle experiment, whi
h was operated for more than ten years from 1999 to 2010 at Tsukuba

Ibaraki Japan, is a proje
t using an ele
tron-positron 
ollider KEKB and Belle dete
tor. The proje
t

was originally organized to aim for an observation of the sour
e of CP violation in the de
ays of B

mesons based on huge number of events. Indeed, Belle su

eeded to un
over the me
hanism of the

CP asymmetry in the 
ontext of the SM. At the same time, however, the Belle experiment 
olle
ted

data from huge number of � de
ays produ
ed by e

+

e

�

! �

+

�

�

pro
ess. We use this ex
ellent

environment to reveal the fundamental nature of � lepton.

12



Chapter 2

Radiative leptoni
 de
ay �

�

! `

�

��̄


In order to measure the Mi
hel parameters, �̄ and ��, the probability density fun
tion (PDF) is �tted

to the de
ay spe
tra of �

�

! `

�

��̄
 de
ay (` = e or �). Using �

+

! �

+

�

0

�̄ de
ay as a spin analyzer

for the partner side of �

+

in e

+

e

�

! �

+

�

�

produ
tion, information of polarization is extra
ted. In this

se
tion, we review the 
hara
teristi
s of the signal de
ay. Detailed method about the �t pro
edure is

explained in Chapter 5.

2.1 De�nition of the radiative de
ay and its distribution

Two kineti
 parameters 
hara
terize the radiative leptoni
 de
ay �

�

! `

�

��̄
. First one is an energy

of the radiative photon E




. Figure 2.1 shows the E




distribution simulated by KKMC and TAUOLA

generators.

�

Here, the E




is de�ned in the 
enter of mass system (CMS) of e

+

e

�

beam.

y

As the

histograms show, the distribution of the photon energy diverges in the limit E




! 0. This 
omes

from the fa
t that the d�=dE

�




has a singularity at E

�




! 0, where E

�




represents the photon energy in

the � rest frame.

For the reason noted above, the ordinary leptoni
 de
ay (no photon) and the radiative de
ay


annot be naturally distinguished. That is to say, the energy threshold is 
on
eptually required: if

E

�




ex
eeds a 
ertain threshold, the event is regarded as the radiative de
ay. A 
onventional 
hoi
e

E

�




= 10 MeV is determined in su
h a way that 
 is realisti
ally measured by experiment and at

the same time bran
hing ratio be
omes reasonable fra
tion. In addition, if we apply typi
al photon

energy threshold � 100 MeV in the laboratory frame (su
h veto is ne
essary to ex
lude variety of

ba
kgrounds), a soft radiative events whose photon energy is less than E

�




< 10MeV is rarely sele
ted

(order of 1%). We use this spe
i�
 value in the whole analysis to de�ne eÆ
ien
y of our radiative

de
ay.

z

The energy threshold of E

�




= 10 is also used to de�ne the bran
hing ratio of radiative de
ay,

whi
h is explained in next subse
tion.

In reality, it is also required to determine lower threshold to generate the radiative de
ays by MC

simulation. The TAUOLA generator adopts the generating-energy threshold E

�


gen

= m

�

=1000, whi
h

should obviously satisfy E

�


gen

< E

�




. Figure 2.2 shows the fra
tion of the radiative pro
ess out of

total amounts of generated leptoni
 de
ays as a fun
tion of E

�




threshold. These plots tell that the

fra
tion of radiative events (used to determine eÆ
ien
y) are 10:6% and 2:6% for ele
tron and muon

modes, respe
tively.

A 
osine of angle between the outgoing lepton and photon 
os�

`


is another important variable in

this analysis. Be
ause the de
ay amplitude is approximately expressed as a sum of

h

�

2

`


+ m

2

l

=E

2

`

i

�n

�

These generators are explained in Se
. 3.4.

y

Otherwise stated, variables without any labels always mean those of the CMS.

z

From theoreti
al point of view, to justify the pre
ision of perturbation te
hnique, the 
hoi
e of smaller value less

than 10 MeV is not reasonable.

13



 (GeV)γE
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1
N

ev
en

ts
/0

.0
1 

G
eV

0

5000

10000

15000

20000

25000

30000

γ ν ν e → τ

 (GeV)γE
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1
N

ev
en

ts
/0

.0
1 

G
eV

0

1000

2000

3000

4000

5000

6000

7000

8000

γ ν ν µ → τ

Figure 2.1: Energy distribution of the radiative photon on the CMS generated by KKMC.
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Figure 2.2: Fra
tion of event having a photon energy above threshold (out of generated leptoni


de
ays): (left) �

�

! e

�

��̄
 and (right) �

�

! �

�

��̄
. The horizontal axis represents photon energy

threshold on the �-rest frame and the verti
al axis indi
ates the ratio. If 
onventional de�nition, E

�




=

10 MeV, is used, the fra
tions are 10:6% and 2:6% for the ele
tron and muon modes, respe
tively.

The �at shape of small-energy region 
omes from the generating-energy threshold E

�


gen

= m

�

=1000.
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Figure 2.3: Distribution of an angle between lepton and photon: (left) �

�

! e

�

��̄
 and (right)

�

�

! �

�

��̄
. The horizontal is 
os�

`


.

for an integer n, the heavier mass of muon exhibits a broad distribution as 
an be seen in Fig. 2.3. The

requirement of maximum-allowed angle between lepton and photon is used to dis
riminate signal

from ba
kground 
ontamination.

2.2 Spin-spin 
orrelation of �

+

�

�

and two-body de
ay �

+

! �

+

�̄!

�

+

�

0

�̄)

τ
+

τ
‐

e
‐

e
+

RH

RH

LH

LH

Figure 2.4: Spin-spin 
orrelation in e

+

e

�

! �

+

�

�

pro
ess. The heli
ities of �

+

�

�

pair are preferably

anti-
orrelated ea
h other. Same 
olor indi
ates same 
ombination.

As mentioned in Se
. 1.3, the measurement of the �� requires the information of the spin of

mother �. This is extra
ted through the 
orrelation of the � and its partner � in e

+

e

�

! �

+

�

�

produ
-

tion. As drawn in Fig. 2.4, the heli
ities of �

+

�

�

pair are anti-
orrelated (against) ea
h other. Sin
e

this pro
ess o

urs through an ex
hange of 
 (spin-1 parti
le), the angular 
onservation permits only

either �

+

R

�

�

L

or �

+

L

�

�

R

states in the high energy limit E

�

! 1, where L and R denote the heli
ities of

taus. In 
ase of beam energy of KEKB a

elerator (approximately E

�

� 5 GeV), 95% of �

+

�

�

pairs

are anti-
orrelated while 5% are 
orrelated.

In the other side of �, or sometimes 
alled tag-side, we use �

+

! �

+

�

0

�̄ de
ay. In general, the

hadroni
 de
ay of the � with two pseudo-s
aler mesons have a quantum number J

P

of either 0

+

or

1

�

. The 
onserved ve
tor 
urrent (CVC) theorem allows only the latter 
hoi
e, hen
e the spin-1

ex
ited state of �(770) as well as its radial ex
itations �(1450), �(1700)... are believed to dominate

this pro
ess. Figure 2.5 shows the invariant mass distribution of the two-pion system for �

+

! �

+

�

0

�̄

pro
ess simulated by the KKMC and TAUOLA generators.
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Figure 2.5: Invariant mass distribution for the two-pion system generated by KKMC and TAUOLA.
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Figure 2.6: Angular dependen
e of �

+

movement in �

+

! �

+

�̄ de
ay: (a) �

�

�

is the angle between

spin dire
tion of tau and �

+

in the �

+

rest frame (b) distribution of 
os�

�

�

. The blue arrow represents

spin of �

+

.

The spin dire
tion of �

+

a�e
ts the angular distribution of �

+

parti
le. As Fig. 2.6 shows, the �

+

are preferably generated into the opposite dire
tion of the tau spin. This situation 
an be explained

by a superposition of two amplitudes of a and b:

jai = j0i 


�

�

�

�

�

1

2

+

: A

a

= haj+i ; (2.1)

jbi = j1i 


�

�

�

�

�

1

2

+

: A

b

= hbj+i ; (2.2)

where the bra
kets in the right hand side represent heli
ities of �

+

meson and �̄, j+i represents the

initial state of �

+

polarized in +z dire
tion, andA

a

andA

b

are the 
orresponding amplitudes of ea
h


hannel whose maximums have a relation given by jA

max

a

=A

max

b

j =

p

2m

�

=m

�

[35℄. As illustrated

in Fig. 2.7, the amplitudes of a and b be
ome maximum (minimum) at �

�

�

= � (0) and �

�

�

= 0 (�),
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Figure 2.7: Two spin 
on�gurations of �

+

and �̄: (a) the angular momentum perfe
tly 
onserves

when �

�

� = � while violates when �

�

� = 0: (b) the situation be
omes opposite. As a result, (a) and

(b) have angular dependen
es of sin �

�

�

=2 and 
os �

�

�

=2, respe
tively.

respe
tively, and in fa
t it is known that the angular dependen
es are given by sin �

�

�

=2 and 
os �

�

�

=2.

Observed probability is thus 
al
ulated to be

P(�) / 1 �

jA

max

a

j

2

� jA

max

b

j

2

jA

max

a

j

2

+ jA

max

b

j

2


os �

�

�

= 1 �

m

2

�

� 2m

2

�

m

2

�

+ 2m

2

�


os �

�

�

� 1 � 0:43 
os �

�

�

: (2.3)

This linear dependen
e on 
os �

�

�

is seen in the �gure.

This rho de
ay is 
hosen be
ause of its large bran
hing fra
tion B(�

+

! �

+

�

0

�̄) = (25:52 �

0:09)% [7℄ and relatively simple form-fa
tor, whi
h results in an easy implementation of the PDF.

As a matter of fa
t, taking into a

ount the magnitude of polarizations and bran
hing fra
tions,

Ref. [35℄ reports that �

+

! �

+

�

0

�̄ exhibits the largest sensitivities of all � de
ays on the polarization

measurement.

As explained above, through the spin-spin 
orrelation in e

+

e

�

! �

+

�

�

produ
tion and the angular

distribution of pions from rho de
ay, information of �

�

spin is indire
tly extra
ted only to measure

the �� parameter.

2.3 Bran
hing ratio of �

�

! `

�

��̄
 de
ays

Before starting this proje
t to measure the Mi
hel parameters, the most a

urate experimental values

of the bran
hing ratio of �

�

! `

�

��̄
 de
ay were the measurement by the CLEO experiment [36℄.

Using 4:68 fb

�1

of e

+

e

�

annihilation data, the CLEO obtained

B

EX:

CLEO

(�

�

! e

�

��̄
)

E

�




>10 MeV

= (1:75 � 0:06 � 0:017) � 10

�2

; (2.4)

B

EX:

CLEO

(�

�

! �

�

��̄
)

E

�




>10 MeV

= (3:61 � 0:16 � 0:35) � 10

�3

; (2.5)

where the �rst un
ertainty is statisti
al and se
ond is systemati
. This measurement was renewed in

2015 by BaBar experiment using mu
h more abundant statisti
s of 431 fb

�1

e

+

e

�


ollision data to

give [37℄,

B

EX:

BaBar

(�

�

! e

�

��̄
)

E

�




>10 MeV

= (1:847 � 0:015 � 0:052) � 10

�2

; (2.6)

B

EX:

BaBar

(�

�

! �

�

��̄
)

E

�




>10 MeV

= (3:69 � 0:03 � 0:10) � 10

�3

: (2.7)

These measurements are in good agreement with the theoreti
al 
al
ulations, whi
h rely on the for-

mula given by [38, 39℄.

On the other side, as reported by Ref. [40℄ in 2015, the renewal of theory found a deviation

between these experimental values and the up-to-date theoreti
al predi
tion. In this update, the next

leading order quantum ele
trodynami
s (QED) 
orre
tion was newly taken into a

ount, where up

to order-�

2

e�e
ts were in
luded. The additional �-
orre
tion gives not only the loop 
orre
tion, but
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also another infrared divergen
e in the �nal result. Therefore, the 
on
eptual treatment of photon

di�ers from that of single emission: a 
ombination of one visible photon and one invisible photon

(


soft

; 


vis:

) is 
ategorized as an ex
lusivemode while a 
ombination where at least one visible photon

exists (


vis:

; 


vis:

) + (


soft

; 


vis:

), is 
ategorized as an in
lusive mode (both visible mode (


vis:

; 


vis:

) is

also distinguished as a doubly de
ay). Interestingly, the measurement of mentioned bran
hing ratios

for �

�

! e

�

��̄
 de
ay, whi
h is in fa
t approximately the ex
lusivemode, deviates from the ex
lusive

SM predi
tion by 3:5�. A

ording to the referen
e, the leading order (LO) 
al
ulation predi
ts

B

Th:

LO

(�

�

! e

�

��̄
)

E

�




>10 MeV

= 1:834 � 10

�2

; (2.8)

B

Th:

LO

(�

�

! �

�

��̄
)

E

�




>10 MeV

= 3:663 � 10

�3

; (2.9)

whereas the next-leading order (NLO) predi
ts

dB

Th:

NLO

(�

�

! e

�

��̄
)

E

�




>10 MeV

= 1:645(19) � 10

�2

; (2.10)

B

Th:

NLO

(�

�

! �

�

��̄
)

E

�




>10 MeV

= 3:572(3) � 10

�3

: (2.11)

Herein, the errors for the NLO 
al
ulation arise from a next-next-leading order e�e
ts, numeri
al


al
ulation and an experimental value of the lifetime of the �.

As a byprodu
t of this analysis, we also measure the bran
hing ratio. The pro
edures are de-

s
ribed in detail in Chapter 9.

2.4 E�e
t of the Mi
hel parameter on the distribution

In this se
tion, we demonstrate the e�e
t of the Mi
hel parameter on the spe
tra of daughter parti
les.

As we shall explain, every event of signal �

+

�

�

! (�

+

�

0

�̄)(`

�

��̄
) is represented as a 
orresponding

point in the twelve-dimension phase spa
e. Due to its large dimension, it is diÆ
ult to intuitively

observe the 
hange of distribution. However, we 
an glimpse the dependen
e of spe
tra of the lepton

and photon variables on the Mi
hel parameter by observing distributions proje
ted on 1D-axis.

The dependen
e on �� disappears when we integrate isotropi
ally in the phase spa
e be
ause ��

is in
luded in the spin-dependent term of the di�erential de
ay width as:

d�(�! `��̄
)

dPS

� S

�

�

� V

�

��; (2.12)

where V

�

is a ve
tor fun
tion, whi
h does not depend on S

�

�

and is written as a linear 
ombination

of the dire
tion of lepton n

�

`

and photon n

�




. Integrations over the dire
tions of lepton and photon (n

�

`

and n

�




) give a net 
ontribution of zero. Thus it is required to adopt some asymmetri
 manipulation

to visualize �� e�e
ts. To separate the overall phase spa
e, we use a heli
ity sensitive parameter !

h

,

whi
h represents polarization of the � and is 
al
ulated only from observables. By 
onstru
tion, !

h

varies in an open interval: !

h

2 (�1; 1). The positive value of !

h

implies it is probable that the spin

of the �

+

(! �

+

�

0

�̄) is pointing to the same (opposite when �

�

de
ays to �

�

�

0

�) dire
tion as that of

�

+

movement. The detailed de�nition of !

h

is introdu
ed in Se
. 6.1. To observe the asymmetri


e�e
t, we integrate the di�erential de
ay width in the phase spa
e only where !

h

be
omes positive.

Figures 2.8 and 2.9 show the dependen
e of the shape of momenta of lepton and photon on the

Mi
hel parameters. Ea
h distribution is 
al
ulated for a 
ertain value of the Mi
hel parameter by

the integration of the di�erential de
ay widths with other variables. For demonstration purpose, the

range of variation of the Mi
hel parameters are 
hosen to be larger than physi
ally-realisti
 values.

As explained above, only !

h

> 0 events are used for the integration to draw Fig. 2.9. We observe

that the magnitude of the momentum of lepton is more strongly a�e
ted by the Mi
hel parameters

than other variables. Furthermore, the dependen
e of Mi
hel parameter on �

�

! �

�

��̄
 de
ay is
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larger than that of �

�

! e

�

��̄
 de
ay. This 
omes from the fa
t that the 
ontribution from physi
s

BSM is enhan
ed by a fa
tor proportional tom

`

=m

�

as the expli
it formula is introdu
ed in Se
. 5.4.1.

Here, we show the variation of distribution assuming very large Mi
hel parameters, the real pos-

sible values are, however, of order of 1 and this implies that measurement of these Mi
hel parameters

requires the pre
ise veri�
ation of the small variation of spe
trum shape. That is why we need to

observe large number of events.

2.5 Determination of � dire
tion

Due to the short lifetime of �, it is diÆ
ult to dire
tly measure the de
ay dire
tion. Nevertheless, in

the �

+

�

�

rest frame, we 
an 
onstrain their dire
tion assuming the masses of neutrinos to be zero.

When the leptoni
 de
ay o

urs, two neutrinos appear in the �nal state. Be
ause the two-body system

of ��̄ must not have a negative invariant mass, an inequality holds:

0 � M

2

��̄

= p

2

��̄

= (p

�

� p

`

)

2

, 
os �

�`

�

2E

�

E

`

� M

2

�

� M

2

`

2P

�

P

`

; (2.13)

whi
h means that the � de
ays in the region en
losed by a 
one around lepton dire
tion. On the other

hand, if the � de
ays hadroni
ally, one neutrino is produ
ed and gives an equality:

x

0 = M

2

�

= p

2

�

= (p

�

� p

h

)

2

, 
os �

�h

=

2E

�

E

h

� M

2

�

� M

2

h

2P

�

P

h

; (2.14)

where p

h

is a sum of four ve
tors for the hadroni
 daughters and M

h

is its invariant mass. This means

that the � de
ays inside the surfa
e of a 
one determined from the dire
tion of hadron momentum.

Depending on the 
onditions, through whi
h type two taus de
ay, we 
an divide the situation into

three 
ategories: (h; h), (`; h) and (`; `), where (a; b) with a; b = l; hmeans two tau de
ay leptoni
ally

(l) or hadroni
ally (h). As Fig 2.10 shows, (h; h) de
ay enables us to �x the dire
tion of the tau into

two 
andidates. If either of the � de
ays leptoni
ally, the dire
tion is no more �xed and be
omes

a region: (`; h) 
onstrains on a line and (`; `) 
onstrains on a region. In the 
ase of signal of this

analysis� �

�

! `

�

��̄
 and �

+

! �

+

�

0

�̄�the 
andidate be
omes a line. Therefore, we parametrize

the dire
tion using one parameter � 2 [�

1

;�

2

℄. As des
ribed later, this determination of � dire
tion

is used to des
ribe a probability density fun
tion (PDF).

x

Current upper limit of the mass of tau neutrinom

�

�

� 18:2 MeV [41℄ is pra
ti
ally suÆ
ient to justify this equation.
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Figure 2.8: Dependen
e of momenta and angles on �̄: left �gures (a)(
)(d) represent dependen
e of

the shape of P

`

, P




and �

`


spe
tra on �̄ for �! e��̄
 de
ay and right �gures (b)(d)(f) represent those

for �! ���̄
 de
ay.

20



 (GeV)lP
0 1 2 3 4 5

-1
N

ev
en

ts
/0

.1
89

 G
eV

0

0.05

0.1

0.15

0.2

0.25
(+)=0κξ

(+)=-120κξ

(+)=-80κξ

(+)=-40κξ

(+)=40κξ

(+)=80κξ

(+)=120κξ

γ ν ν e →τ

(a)

 (GeV)lP
0 1 2 3 4 5

-1
N

ev
en

ts
/0

.1
89

 G
eV

0

0.05

0.1

0.15

0.2

0.25

(+)=0κξ

(+)=-120κξ

(+)=-80κξ

(+)=-40κξ

(+)=40κξ

(+)=80κξ

(+)=120κξ

γ ν ν µ →τ

(b)

 (GeV)γP
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-1
N

ev
en

ts
/0

.5
67

 G
eV

0

2

4

6

8

10

12

(+)=0κξ

(+)=-120κξ

(+)=-80κξ

(+)=-40κξ

(+)=40κξ

(+)=80κξ

(+)=120κξ

γ ν ν e →τ

(
)

 (GeV)γP
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-1
N

ev
en

ts
/0

.5
67

 G
eV

0

2

4

6

8

10

12

(+)=0κξ

(+)=-120κξ

(+)=-80κξ

(+)=-40κξ

(+)=40κξ

(+)=80κξ

(+)=120κξ

γ ν ν µ →τ

(d)

γlθ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
ev

en
ts

/1

0

2

4

6

8

10

12

14

(+)=0κξ

(+)=-120κξ

(+)=-80κξ

(+)=-40κξ

(+)=40κξ

(+)=80κξ

(+)=120κξ

γ ν ν e →τ

(e)

γlθ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
ev

en
ts

/1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(+)=0κξ

(+)=-120κξ

(+)=-80κξ

(+)=-40κξ

(+)=40κξ

(+)=80κξ

(+)=120κξ

γ ν ν µ →τ

(f)

Figure 2.9: Dependen
e of momenta and angles on ��: left �gures (a)(
)(d) represent dependen
e

of the shape of P

`

, P




and �

`


spe
tra on �� for � ! e��̄
 de
ay and right �gures (b)(d)(f) represent

those for �! ���̄
 de
ay.
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(a) (h; h) (b) (`; h) (
) (`; `)

Figure 2.10: Kinemati
s of �� de
ay for (a) (h; h), (b) (`; h) and (
) (`; `). Cones A and B are surfa
es

whi
h satisfy 
ondition: p

2

miss

= 0. In the 
ase of (h; h) de
ay, the 
andidate of the � dire
tion be
omes

generally two points determined by 
rossed points of the reversal 
one A and 
one B. Similarly in

(`; h) 
ase, the 
andidate be
omes line as 
olored by red and (`; `) 
onstrains onto a region en
losed

by red 
urve. In the 
ase of signal de
ay, �

+

�

�

! (�

+

�

0

�̄)(`

�

��̄
), the 
andidate is line (b).
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Chapter 3

Experimental Apparatus

We des
ribe the experimental apparatus whi
h realizes the measurement of the Mi
hel parameters, �̄

and ��, using e

+

e

�

! �

+

�

�

! (�

+

�

0

�̄)(`

�

��̄
) pro
ess. Events are produ
ed by the KEKB a

elerator

and observed/re
orded by the Belle dete
tor.

3.1 The KEKB a

elerator

The KEKB a

elerator is an asymmetri
 energy 
ollider of e

+

and e

�

. The beam energies of E

e

�

=

8:0 GeV and E

e

+

= 3:5 GeV are 
hosen su
h that the 
enter of mass energy 
oin
ides with a mass

of resonan
e state of �(4S ):

p

s = 10:58 GeV where s is the Mandelstam variable. The �(4S )

state, whi
h 
onsists of b

¯

b quark pair, su

essively de
ays into B

¯

B pairs. Meanwhile, via a virtual 


inter
hange, the e

+

and e

�

pair also annihilates into �

+

�

�

and 

̄ pairs, et
. The asymmetry of beam,

�
 = 0:425, is intended to enlarge the de
ay lengths of B mesons in the laboratory frame to gain an

e�e
tive time resolution for the measurement of their de
ay rates.

A key goal of KEKB a

elerator is to produ
e B and � parti
les of interest as many as possible. In

fa
t, KEKB a
hieved the maximum instantaneous luminosity L = 2:11 � 10

34


m

�2

s

�1

, whi
h is the

world-largest instantaneous luminosity at the time of writing.

�

For this reason, KEKB a

elerator

is 
alled B-fa
tory or �-fa
tory. To realize the pre
ise measurement of �

�

! `

�

��̄
 de
ay (order

�-suppressed relative to the ordinary leptoni
 de
ay �

�

! `

�

��̄), the large number of taus thanks to

the �-fa
tory are ne
essary.

Not only did the KEKB a

umulated e

+

e

�

annihilation data at �(4S ) energy, but it also 
ol-

le
ted data at di�erent energy settings su
h as mass resonan
es of �(1S ) (9:46 GeV=


2

), �(2S )

(10:02 GeV=


2

) and �(5S ) (10:86 GeV=


2

). At these energies, the e

+

e

�

! �

+

�

�

pro
ess still o

urs,

however, the situations of event sele
tion and trigger are not ne
essarily same as that of �(4S ), and

moreover the di�erent beam energies make the des
ription of PDF (whi
h is explained later) 
om-

plex. For this reason, we use only �(4S ) resonan
e data, whi
h amounts to 703fb

�1

and 
orresponds

to 70% of all data.

Figure 3.1 shows an overall view of the KEKB a

elerator. The ele
trons are generated from

a thermal ele
tron while positrons are obtained by 
olliding 4 GeV e

�

beam into a high-Z material

(tungsten) in whi
h a gamma 
onversion 
 ! e

+

e

�

generates the positrons. Both e

+

and e

�

are

a

elerated by a linear a

elerator (LINAC) and inje
ted into a low energy ring (LER) and a high

energy ring (HER), respe
tively. At Tsukuba area, the e

+

and e

�


ollide at intera
tion point (IP) with

a 
rossing angle of 22 mrad en
losed by the Belle dete
tor. In table 3.1, the ma
hine parameters of

KEKB a

elerator are summarized.

�

The upgrade proje
t of the Belle experiment, Belle II, is planning to start physi
s data taking from 2017 using the

Super KEKB a

elerator and Belle II dete
tor, where further in
rease of the luminosity by a fa
tor of �fty is expe
ted.

In Chapter 10, we explain the prospe
t of this analysis using data from the next-generation experiment.
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Figure 3.1: A drawing of KEKB a

elerator. Ele
trons and positrons 
ir
ulate the high and low en-

ergy rings in 
lo
kwise and anti-
lo
kwise, respe
tively. The Belle dete
tor is lo
ated at the Tsukuba

hall [42℄.

Table 3.1: KEKB a

elerator ma
hine parameter

Item HER (e

�

) LER (e

+

)

Cir
umferen
e (m) 3016

Beam energy (GeV) 8.0 3.5

Beam 
urrent (A) 1.6 1.2

Beam-beam parameter �

y

(mm) y 0.09 0.129

Beta fun
tion at IP �

�

y

(mm) y 5.9

Beam size at IP �

x

=�

y

(�m/�m) 1:9=77 1:9=77

Number in bun
hes y 1584

Crossing angle (mrad) 22

y A
hieved values
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�
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Figure 3.2: De�nition of axis in the laboratory frame. The dire
tion of z-axis is de�ned as reversal

way of positron beam. The ele
tron and positron movement forms xz plane.

3.1.1 De�nition of frame

The dire
tions of the ele
tron and positron beams are not pre
isely ba
k-to-ba
k in the laboratory

frame: the tilt angle is �

LAB

= 22 mrad. This situation is shown in Fig. 3.2. xyz-axis in the laboratory

frame are de�ned by using beam dire
tion: the positron dire
tion is de�ned as a reversal way of +z,

the plane, in whi
h both ele
tron and positron settle, is xz-plane. Therefore, the four ve
tors of the

ele
tron and positron are parametrized in the laboratory frame as:

p

LAB

e

�

= (E

LAB

e

�

; P

LAB

e

�

sin�

LAB

; 0; P

LAB

e

�


os�

LAB

) (3.1)

and

p

LAB

e

+

= (E

LAB

e

+

; 0; 0;�P

LAB

e

+

): (3.2)

The sum of these momenta p

LAB

CMS

is that of the CMS in the laboratory frame and the velo
ity �

LAB

CMS

=

P

LAB

CMS

=E

LAB

CMS

allows us to 
onvert four ve
tors in both frames ea
h other. When the beam momenta

are boosted to the CMS with this �

LAB

CMS

, the dire
tion of z-axis does not 
oin
ide with that of ele
tron.

For this reason, we rotate frame around y-axis by � su
h that both beams be
ome 
ollinear along

z-axis, where � is approximately 13:24 mrad. The rotated frame is the de�nition of our CMS frame.

Here, we summarize the de�nition of the 
oordinate system and notations.

� Dire
tions of z in both the laboratory and CMS frames are de�ned using e

+

beam whi
h points

-z dire
tion.

� Dire
tion of x in both the laboratory and CMS frames are determined by rotating aforemen-

tioned z dire
tion by 90

Æ

in the plane formed by the laboratory movements of ele
tron and

positron (�-plane).

� Dire
tion of x in CMS frame is determined by rotating the de�ned z dire
tion by 90

Æ

in the

�-plane.

� Dire
tion of y is de�ned by the 
ross produ
t of ve
tors e

y

= e

z

� e

x

, where e

i

(i is x, y or z)

stands for the unit ve
tor of i dire
tion.

� � stands for the polar angle from +z dire
tion

� � stands for the azimuthal angle around z axis

� r stands for the transverse distan
e 
al
ulated as r =

p

x

2

+ y

2

.

� Transverse momentum of p is notated as p

t

and de�ned as the r of p, i.e., p

t

=

q

p

2

x

+ p

2

y

.
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Table 3.2: Information of sub-dete
tors of the Belle dete
tors [43℄

Dete
tor Type Con�guration Performan
e

SVD-1 Double sided Si-strip 3-layers r = 30:0; 45:5; 60:5 mm �

z

= 42 � 44=p� sin

5=2

� �m [44℄

Strip pit
h 25(p)/42(n) �m 23

Æ

< � < 139

Æ

�

r�

= 19 � 54=p� sin

3=2

� �m

(p in GeV=
)

SVD-2 Double sided Si-strip 4-layers r = 20:0; 43:5; 70:0; 88:0 mm �

z

= 26 � 33=p� sin

5=2

� �m [44℄

Strip pit
h 50(p)/75(n) �m (lay.1-3) 17

Æ

< � < 150

Æ

�

r�

= 17 � 34=p� sin

3=2

� �m

65(p)/73(n) �m (lay.4) (p in GeV=
)

CDC Wire drift 
hamber r = 8:3-87:4 
m (SVD1), 10:4-87:4 
m (SVD2) �

r�

= 130 �m

Anode: 50 layers �77 < z < 160 
m �

z

= 200 � 1400 �m

Cathode: 3 layers 17

Æ

< � < 150

Æ

�

p

t

=p

t

= 0:2%p

t

� 0:3%=�

�

dE=dx

= 6%

ECL CsI S
intillator Barrel: r = 125-162 
m, 32:2

Æ

< � < 128:7

Æ

�

E

=E = 1:3%=

p

E

# 
rystals in barrel 6624 End
ap: z = �102 
m, 130:7

Æ

< � < 155:1

Æ

�

pos

= 0:5 
m=

p

E

# 
rystals in end
ap 2112 : z = 196 
m, 12:4

Æ

< � < 31:4

Æ

(E in GeV)

ACC Sili
a aerogel Barrel: r = 89-117 
m P(�jK) < 10%; P(KjK) > 80%

# aerogel in barrel 960 End
ap: z = 1660 
m for 1:2 GeV/
< P < 3:5 GeV/


# aerogel in end
ap 228

TOF Plasti
 S
intillator r = 120 
m 2� K=� separation

128 � segmentation for P < 1:2 GeV/


�

t

= 100 ps

KLM Resistive plate 
ounter End
ap: 20

Æ

< � < 45

Æ

�� = �� = 30 mrad.

14 layers : 125

Æ

< � < 155

Æ

Barrel: 45

Æ

< � < 125

Æ

3.2 The Belle dete
tor

The Belle dete
tor is a general-purpose measurement system whi
h is 
omposed of several sub-

dete
tors. The dete
tor is 
on�gured by 1:5 T super
ondu
ting solenoid and en
loses the IP of the

e

+

e

�

beam.

Figure 3.3 shows the overall view of the Belle dete
tor. The de
ay verti
es are measured by the

sili
on vertex dete
tor (SVD) lo
ated just outside of a 
ylindri
al beam pipe. Tra
king of the 
harged

parti
les are performed by the 
entral drift 
hamber (CDC). Energy of ele
tromagneti
 shower is

measured by the ele
tromagneti
 
alorimeter (ECL). Parti
le identi�
ation is provided by the infor-

mation of dE=dxmeasurements by the CDC, a shape of shower in the 
lusters and E=pmeasurement

in the ECL, an aerogel Cherenkov 
ounter (ACC) and a time-of-�ight 
ounter (TOF). The K

L

and

muons are identi�ed by arrays of the resistive plate 
ounters and iron plates lo
ated at the outermost

part of the Belle dete
tor named K

L

and muons dete
tor (KLM). All of these information is pro
essed

and re
orded by a data a
quisition (DAQ) system when events are sele
ted by a trigger. The general

information and performan
es of the sub-dete
tors are summarized in Table 3.2. In this se
tion, we

des
ribe fun
tions and prin
iples of the sub-dete
tors.
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Figure 3.3: Drawings of the Belle dete
tor: (a) the overall view and (b) the 
ross se
tion [43℄.
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Figure 3.4: Impa
t parameter resolution of the SVD as a fun
tion of pseudo-momentum: (a) �

z

and

(b) �

r�

[44℄.

3.2.1 Sili
on Vertex Dete
tor (SVD)

The main goal of the Belle experiment is to verify the me
hanism of the CP violation in B de
ays,

where the violation of the CP appears as a time dependent asymmetry of the de
ay rate between

�

B! f

CP

(t) and �

¯

B
! f

CP

(t) ( f

CP

stands for a CP eigenstate). Sin
e the di�eren
e of the de
ay rate of

B=

¯

B mesons is measured as that of the �ight length, the pre
ise measurement of the vertex position

is 
ru
ial. The SVD plays a role in lo
ating the vertex position of B mesons. Furthermore, a low

momentum tra
k, whi
h does not rea
h the CDC inner wall, is re
onstru
ted only by the SVD. In

this analysis, the SVD helps the CDC in the 
harged tra
k re
onstru
tion.

There are two types of SVDs. The �rst version is 
alled SVD1 and worked until 2003. Be
ause of

a problem in the front-end 
hip, the SVD1 was upgraded to SVD2. The SVD1 (SVD2) is 
omposed

of three (four) layers lo
ated at radii r = 30:0; 45:5; 60:5 mm (r = 20:0; 43:5; 70:0; 88:0 mm) and


overs 23

Æ

< � < 139

Æ

(17

Æ

< � < 150

Æ

), whi
h is 
onstru
ted from 8, 10, 14 (6, 12, 18, 18) ladder

stru
tures, respe
tively. Ea
h layer is made of double-sided Si-strip dete
tors (DSSD). The DSSD

has 
rossed linear e�e
tive areas (strip) on top and bottom sides, whi
h are orthogonally segmented

along r� and z dire
tions, respe
tively, and ea
h strip is made by a p-type or n-type semi
ondu
tor.

When a 
harged parti
le passes through the p-n jun
tion, the ionized ele
tron-hole pair is sepa-

rated by an applied high bias voltage and read out separately from p and n-side strips of the dete
tor.

The front-end 
ir
uit named VA1 
hip provides an ampli�
ation of the 
urrent and a shaping of the

signal. Figure 3.4 shows the a
hieved impa
t parameter resolution of the SVD1 and SVD2 as a fun
-

tion of pseudo-momentum, whi
h takes into a

ount the e�e
tive in
rease of the pass length inside

material and de�ned by �p = p� sin

5=2

� and �p = p� sin

3=2

� for z and r� dire
tions, respe
tively. The

information of the SVD1 and SVD2 is summarized in Table 3.3.

3.2.2 Central Drift Chamber (CDC)

The CDC plays a role in the tra
king of 
harged parti
le and a pre
ise determination of the mo-

mentum. Sin
e the Belle dete
tor is in the magneti
 �eld of B = 1:5 T, the momentum of 
harged

parti
le is determined a

ording to p = 0:3B�, where p is a momentum of 
harged tra
k in GeV/


and � is the observed 
urvature in meter. The traje
tory of the 
harged tra
k is parametrized by �ve

free parameters (also known as a helix parameter) and �tted to a map of dete
ted energy deposition.

The helix parameter 
ontains information of not only the magnitude of 
urvature but also the impa
t
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Table 3.3: Information of SVDs

Item SVD1 SVD2

# layers 3 4

r (mm) 30.0, 45.5, 60.5 20.0, 43.5, 70.0, 88.0


overage 23

Æ

< � < 139

Æ

17

Æ

< � < 150

Æ

# DSSD � # ladders

layer1: 2 � 8 2 � 6

layer2: 3 � 10 3 � 12

layer3: 4 � 14 5 � 18

layer4: - 6 � 18

DSSD n-strips 42 �m �640 50 �m �512 (layer 1-3)

65 �m �512 (layer 4)

DSSD p-strips 25 �m �640 75 �m �1024 (layer 1-3)

73 �m �1024 (layer 4)

DSSD Thi
kness 300 �m 300 �m

Total number of 
hannel 81920 110592

parameter, whi
h is the distan
e of the 
losest approa
h to the intera
tion point and denoted as dr and

dz in transverse and beam dire
tions, respe
tively. The impa
t parameters are useful to redu
e ba
k-

grounds su
h as se
ondary parti
les from beam and 
osmi
 rays. Moreover, the CDC also provides

information of the parti
le identi�
ation based on dE=dx and reliable trigger signals.

As the stru
ture of CDC is shown in Fig. 3.5, the CDC is a 
ylindri
al wire drift 
hamber whi
h

lies in the region 83 mm < r < 880 mm for SVD1 term and 104 mm < r < 880 mm for SVD2 term,

respe
tively, and 
overs 17

Æ

< � < 150

Æ

angle. The asymmetri
al stru
ture in z-dire
tion is optimized

for the boost of beam. The 
hamber has 8400 drift 
ells, all of whi
h are grouped as axial or stereo

super-layers. The stereo wires are tilted and allow us to determine z-position. A gas mixture of 50%

He and 50% C

2

H

6

was 
hosen be
ause of its small low-Z so as to redu
e the multiple s
attering for

low momentum tra
ks.

The readout signals from the 
hamber are ampli�ed by Radeka-type pre-ampli�er [46℄ and sent

to the shaper and dis
riminator. The data are �nally pro
essed by a 
harge-to-time 
onverter with

retaining the information of the drift time and pulse height. With an aid of SVD, the 
ombined


harged-tra
k momentum resolution is given by:

�

p

T

p

T

=

 

0:19p

T

�

0:30

�

!

%; (3.3)

where p

T

is in GeV=
 and the tra
king eÆ
ien
y of 
harged pion is approximately 90% for 1 GeV/


tra
k.

Figure 3.6 shows a s
atter plot of dE=dx vs momentum for various parti
le types. It 
an be

understood that the parti
le types are well separated a

ording to ea
h expe
ted 
urve. The resolution

of dE=dx is 7% and utilized to dis
riminate parti
le types of 
harged tra
ks.
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(a)

Figure 3.7: Geometry of the ECL [47℄.

3.2.3 Ele
tromagneti
 Calorimeter (ECL)

The main purpose of the Belle ECL is to measure an energy of photon whi
h is often generated by


as
ade de
ays of B meson as well as the � leptons. Be
ause the energy of photons generated by

daughter of the �(4S ) tend to be relatively small (� 1 GeV), it is required to provide a good energy

and position resolutions for su
h photons. On the other hand, the ECL is also designed to a

om-

modate high energy photons (� 4 GeV) produ
ed from low-multipli
ity pro
esses like forbidden �

de
ay � ! `
. Furthermore, the ECL plays an important role in the ele
tron identi�
ation based on

the shower shape inside 
rystals and E=p value.

The Belle ECL is 
omposed of three se
tions�ba
kward and forward end
aps and a barrel

region�whi
h separately 
over 12:4

Æ

< � < 31:4

Æ

, 130:7

Æ

< � < 155:1

Æ

and 32:2

Æ

< � < 128:7

Æ

,

respe
tively. Figure 3.7 shows the 
on�guration of the ECL. All regions 
onsist of CsI (TI) arrays

and amount to 8736 
rystals in total. Ea
h 
rystal has a trapezoidal shape and points to the intera
tion

region. The typi
al dimension of the 
rystal is 55� 55 mm

2

(front fa
e), 65� 65 mm

2

(rear fa
e) and

30 
m long (i.e, 16:2 radiation length) but slightly varies depending on its lo
ation. The s
intillation

photons are dete
ted by two PIN photo-diodes, whose a
tive area are 10 
m�20 
m, glued on the end

surfa
e of a 
rystal. The pulse from the PIN photo-diodes is ampli�ed by a pre-ampli�er atta
hed

nearby and sent to a shaping 
ir
uit. The separate two shaped signals are summed and pro
essed by

a 
harge-to-time 
onverter. The energy and position resolution of the ECL are

�

E

E

=

 

1:34 �

0:066

E

�

0:81

E

1=4

!

%; (3.4)

�

pos

=

 

0:27 �

3:4

p

E

�

1:8

E

1=4

!

mm; (3.5)

where E is in GeV.
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Figure 3.8: Con�guration of the ACC [48℄.

3.2.4 Aerogel Cerenkov Counter (ACC)

The ACC provides the Belle with information of parti
le identi�
ation. In parti
ular, K=� separation

in high momentum region 1:2 GeV=
 < p < 3:5 GeV=
, whi
h is in fa
t a key of the analysis of

B physi
s, mainly depends on the information from ACC. To generate a Cerenkov light inside a

medium, it is required to satisfy the formula

n >

1

�

=

s

1 +

m

2

p

2

; (3.6)

where n is a refra
tive index of material and m is a mass of parti
le in question. As a result, for

�xed values of n and m, there is a lower threshold of momentum p > m=

p

n

2

� 1 and the emission

of Cerenkov light enables us to identify the type of in
oming parti
le.

Figures 3.8 and 3.9 show the 
on�guration of the ACC in the Belle dete
tor and the drawing

of one module. The ACC is 
omposed of the 960 
ounter modules whi
h are segmented into 60

divisions in � dire
tions. Sili
a aerogels, whi
h have low refra
tive indexes, were spe
ially developed

and adopted as its medium. Aerogels with n = 1:030 are used for the forward end
ap region, while

n = 1:020; 1:015; 1:013; 1:010 are used for the barrel region from forward to ba
kward order. These

refra
tive indexes are 
hosen to take into a

ount the asymmetry of the beam energy. The produ
ed

photons are dete
ted by the atta
hed �ne-mesh photomultiplier tubes (FM-PMTs) whi
h are 
hosen

be
ause of their high gain and the relatively strong toleran
e to the high magneti
 �eld environment.

The signals from FM-PMTs are ampli�ed by a pre-ampli�er and pro
essed by a 
harge-to-time


onverter.

The number of photo-ele
tron generated by �

+

and K

+


andidates from D

�

de
ays, both of whi
h

are sele
ted based on the information of TOF and dE=dx measurements, is shown in Fig. 3.10. The

heavier K does not emit Cerenkov light and this allows us to separate K and �. Up to approximately

4 GeV/
 in the momentum of parti
le, P(KjK) > 0:8 and P(�jK) < 0:1 are a
hieved when P

K

=

P

K

=(P

K

+P

�

) > 0:6 is applied, where P

a

(a = K or �) is a likelihood that the parti
le type is a, whi
h

are 
al
ulated by 
ombined information of the CDC, ACC, TOF and ECL.
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Figure 3.9: Modules of ACC. The left module is Barrel ACC, while right one is that of the forward

end
ap. The 
ube stru
ture of Sili
a aerogel (approximately 12 � 12 � 12 
m

3

) is en
losed by a

Goretex re�e
tor and produ
ed photons are dete
ted by the atta
hed PMTs [49℄.
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Figure 3.10: Distribution of the number of photo ele
tron generated from K

+

and �

+

tra
ks for

various refra
tive index values. The red and blue dots indi
ate experimental distribution of K

+

and

�

+

, respe
tively and histograms represent that of MC simulation [43℄.
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Figure 3.11: TOF/TSC module.

Figure 3.12: Con�guration of the TOF/TSC [50℄.

3.2.5 Time-Of-Flight 
ounter (TOF)

Parti
le identi�
ation of a low momentum 
harged tra
k up to 1:2 GeV/
 is mainly performed by the

TOF 
ounter. The time-of-�ight of a parti
le is given by:

T =

L


�

= L

"

1 +

m

2

p

2

#

�1=2

; (3.7)

where L is the �ight length of the parti
le. Thus the parti
le type 
an be determined using observed

T value by 
ombining the momentum information from CDC.

Figure 3.11 shows the drawing of the TOF module. The module is 
omposed of two plasti


s
intillators and one thin trigger s
intillation 
ounter (TSC) to all of whi
h FM-PMTs are atta
hed

at both ends. The 
on�guration of the TOF module is shown in Fig. 3.12. The module is lo
ated at

r = 1:2 m just inside the ECL barrel and 
overs 33

Æ

< � < 121

Æ

range with 64 modules in total. The

signal from FM-PMT is split into two streams: one is used for a 
harge measurement and the other

generates timing information and a sour
e of trigger.

The mass distribution 
al
ulated based on Eq. (3.7) is shown in Fig. 3.13. We 
an see a good

agreement between the experiment and MC simulation. The timing resolution of the TOF is ap-

proximately 100 ps and the separation power of K

+

and �

+

is 2� for a parti
le momentum up to

1:2 GeV/
.

34



Exp5 data

σ (TOF) = 100ps

P<1.25GeV/c

Figure 3.13: Distribution of masses of �, K and proton with momenta less than 1.25 GeV/
. Dots

indi
ate the experimental distribution and histogram is that of MC simulation [50℄.
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(a)
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(b)

Figure 3.14: (a) Geometry of the barrel KLM [43℄. (b) Cross se
tion of the KLM layers [51℄

3.2.6 K

L

and muon dete
tor (KLM)

The main purpose of the KLM system is to identify K

L

and muons with high eÆ
ien
y by judging

whether a hadroni
 shower is observed or not. The momentum target of the muons is p > 600MeV=


be
ause the magneti
 �eld B = 1:5 T traps low energy tra
ks before rea
hing the KLM. Moreover,

the KLM provides an angular information of the K

L

meson.

As shown in Figs 3.14a and 3.3, the KLM is 
on�gured to en
lose all sub-dete
tors explained

above. The system 
onsists of forward and ba
kward end
aps and a barrel part, whi
h separately


over 20

Æ

< � < 45

Æ

, 45

Æ

< � < 125

Æ

and 125

Æ

< � < 155

Æ

, respe
tively. Figure 3.14b shows the


ross se
tion of the KLM layers. The KLM barrel (end
ap) has a sandwi
h stru
ture of fourteen

4.7-
m-thi
k iron plates and �fteen (fourteen) grass-resistive plate 
ounters (RPCs). The RPC is a

type of the gas 
hamber, in whi
h thin gap �lled with gas is sandwi
hed by high resistive glass plates

on both sides. An ele
tri
 �eld is applied by two ele
trodes (typi
ally � 8 kV is applied) atta
hed on

the external side of the glass plates. In the streamer mode, when a 
harged parti
le traverses the gap,

ionized ele
tron-hail pair is gas-ampli�ed by the 
as
ade generation of the avalan
he e�e
t, whi
h

results in the lo
al polarization of the glass plates. The variation of the lo
al voltage is read out as a


urrent from the outermost ele
trodes arranged orthogonally in � and � dire
tions and enables us to

re
ord the lo
ation and timing. Thanks to the relatively large pulse from RPC, the signal is dire
tly

pro
essed with dis
riminator followed by a multiplexer.

A hadroni
 
luster observed in the ECL, whi
h is not asso
iated with any extrapolated 
harged

tra
ks, is identi�ed as K

L

. The 
omparison of the measured range of tra
k vs its expe
ted range for

muon hypothesis is used to determine the likelihood of muon.
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3.2.7 Trigger

The event of interest�B

¯

B, �

+

�

�

, �

+

�

�

, two-photon pro
esses, et
�are sele
ted by a trigger system

with appropriate s
ale fa
tors so as to a

ommodate a limited DAQ bandwidth and storage 
apabili-

ties.

The Belle trigger system 
onsists of hardware and software triggers also known as level 1 and

level 3 (L1 and L3) triggers, respe
tively. As Fig. 3.15 shows the s
hemati
 view of the L1 trigger, the

trigger signal is generated by a global de
ision logi
 (GDL) whi
h makes a logi
al determination of


orrelated information from sub-dete
tors. For example, the CDC and TOF generate trigger signals

from 
harged tra
ks while the ECL provides a signal a

ording to the total energy deposit with a

veto on the Bhabha pro
esses e

+

e

�

! e

+

e

�

(
). The KLM yields supplementary information of the

muons. The de
ision by GDL �nishes with �xed time 2.2 �s laten
y after the event o

urren
e.

There are 64 or 75 kinds of trigger sour
es depending on the version of SVDs, and the information

of the GDL is stored in several bytes format. Ea
h bit of the GDL output 
orresponds to a 
ertain

trigger sour
e.

Although the eÆ
ien
y of the L1 trigger is suÆ
iently high (>96%) for typi
al B de
ays, the low

multipli
ity event like e

+

e

�

! �

+

�

�

! (1-prong)(1-prong)

y

pro
esses are su�ered from the notable

de
rease of the eÆ
ien
y due to the similar stru
ture to the Bhabha events. This turns out to give a

systemati
 e�e
t on the measurement of the Mi
hel parameters (not only main target of this analysis

�̄ and �� but also �; �; �; �Æ measurements) as well as the bran
hing ratio of su
h pro
esses. In a

typi
al running 
ondition, the average trigger rate is 200-400 Hz.

As explained later in Se
. 6.1, to determine trigger eÆ
ien
y, we require the sele
ted signal


andidates to be �red by following spe
i�
 GDL output bits:

� 
lst4: this bit is set when the number of isolated ECL 
lusters ex
eeds three after 
osmi
 ray

veto.

� hie: this bit is set when the energy deposit in the ECL is larger than 1 GeV after the Bhabha

and 
osmi
 ray vetos.

� �s zt2 (SVD1 only): this bit is set when a number of short transverse tra
ks is more than or

equal to 1, at least one full tra
k exists, hits in TSC ex
eed two and there is more than or

equal to one longitudinal tra
k. Here, the short transverse tra
k means that it is re
onstru
ted

using only r and � information from the three innermost layers of the CDC. Similarly, the

longitudinal tra
k is re
onstru
ted using only r and z information from the CDC.

� klm opn: this bit is set when the maximum opening angle ex
eeds 135

Æ

and there is at least

one hit in the KLM.

� klm b2b: this bit is set when there is a ba
k-to-ba
k tra
k with 64 segmented r-� region in the

CDC and there is at least one hit in the KLM.

The �rst two bits are 
ategorized as a neutral trigger whi
h uses ECL information while the others

are 
ategorized as a 
harged trigger determined mainly by the CDC, TOF and KLM. It turns out to

be important that the neutral and 
harged triggers base on physi
ally independent sour
es.

3.2.8 Data a
quisition system (DAQ)

The DAQ system re
eives the data from sub-dete
tors when the L1 �red the trigger signal for an

event, pa
ks the fragmented dete
tor-by-dete
tor information into an event-by-event format, sele
ts

events with more intelligent de
ision with fast re
onstru
ted data and stores the event.

y

1-prong means a de
ay with one 
harged tra
k.
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Figure 3.15: S
hemati
 view of the Belle trigger system (L1) [52℄.
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Figure 3.16: S
hemati
 view of the Belle DAQ system. The individual signals from all sub-dete
tors

are integrated by the GDL to generate a L1 trigger [53℄.

Figure 3.16 shows a s
hemati
 view of the DAQ system. Data from all sub-dete
tors ex
ept

the SVD are sent with Q-to-T-
onverted format and digitized by a 
ommon time-to-digital 
onverter

(TDC) module. At the beginning of Belle proje
t, TDC was performed by VME pro
essor 
alled

FASTBUS but it was repla
ed to pipelined system named COPPER. Be
ause of the large number of


hannels in the SVD, the data from front-end 
hip of the SVD are separately digitized by analog-to-

digital 
onverter (ADC) with a redu
tion of the amount of data size.

The L3 trigger signal initiates the event-building in whi
h digitized data from sub-dete
tors are


olle
ted to an event-by-event format on the online 
omputer farm with linux PC servers (EFARM).

The real time re
onstru
tion farm (RFARM) is responsible for the fast re
onstru
tion of the 
harged

tra
ks. To redu
e a beam ba
kground, in whi
h bremsstrahlung from beam generates se
ondary

parti
les far away from the IP, at least one 
harged tra
k originating around IP with dr < 1 
m,

jdzj < 4 
m and P

t

> 0:3 GeV/
, is required. The event whi
h satis�es L3 is stored in a storage

system.
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Table 3.4: Relationship between various parti
le identi�
ations and sub-dete
tors

Type SVD CDC ECL ACC TOF KLM

e tra
king tra
king E=p Cerenkov light time-of-�ight -

dE=dx shower shape - - -

� tra
king tra
king energy deposit - time-of-�ight range

- - -

K tra
king tra
king - Cerenkov light time-of-�ight -

- - -

�

� identi�
ation is determined by a 
omplementary 
ondition of K identi�
ation

p tra
king tra
king - Cerenkov light time-of-�ight -

dE=dx - - -

K

L

ex
luding - hadron 
luster

tra
ks - - -


 EM 
luster - - -

3.2.9 Parti
le identi�
ations

In this se
tion, we summarize information of various parti
le identi�
ations using the sub-dete
tors

explained above.

Ele
tron is identi�ed using the ratio of energy deposited in the ECL out of tra
k momentum

measured by the CDC (E=p), the transverse shape of the ECL 
luster, dE=dx value measured in

the CDC, light yield in the ACC and time-of-�ight measured by the TOF. Based on these values,

likelihood values for ele
tron and non-ele
tron hypotheses, L

e

and L

x

, are determined. The sele
tion

of ele
tron 
andidate uses likelihood ratio values P

e

= L

e

=(L

e

+ L

x

). For more detail, see Ref. [54℄.

Figure 3.17 shows an eÆ
ien
y of ele
tron and a ratio pion-misidenti�
ation eÆ
ien
y when P

e

>

0:9 is applied.

Muon is identi�ed using an observed range inside the KLM for a 
harged tra
k re
onstru
ted

by the SVD and CDC. The 
harged tra
k is extrapolated to the KLM and 
andidate of a 
luster

is asso
iated. The range is determined by the outermost layer of the KLM and the 
harged tra
k

position. The likelihood values of �

+

, �

+

, K

+

and p�L

�

, L

�

, L

K

and L

p

, respe
tively�are determined

by the measured range vs predi
ted range and the sele
tion of muon uses likelihood ratio values

P

�

= L

�

=(L

�

+ L

�

+ L

K

). For more detail, see Ref. [55℄. Figure 3.18 shows an eÆ
ien
y of muon and

a ratio of pion-misidenti�
ation eÆ
ien
y when P

�

> 0:9 is applied.

Kaon and pion are identi�ed using dE=dx value measured in the CDC, light yield in the ACC

and time-of-�ight measured by the TOF. ACC and TOF provide good dis
rimination 
apabilities of

K/� for high (> 1:2 GeV/
) and low momentum (< 1:2 GeV/
) region, respe
tively. The likelihood

values of K

+

and �

+

(L

K

and L

�

), are determined based on information above and the sele
tions use

the likelihood ratios P

�

= L

�

=(L

�

+ L

K

) and P

K

= L

K

=(L

�

+ L

K

). Figure 3.19 shows eÆ
ien
ies of

muon when P

�

> 0:4 is applied.

Photon is identi�ed from the 
andidates of the ECL 
lusters without any mat
hed 
harged tra
ks.

Above information is summarized in Table 3.4.
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y of ele
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ation eÆ
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y for P

e

> 0:9: " as
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tions of (a)(
) momentum (b)(d) angle.
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Figure 3.20: Integrated luminosity with �(4S ) resonan
e energy. Blue and red lines indi
ate SVD1

and SVD2 terms, respe
tively. The numbers represent the identi�
ation number.

3.3 Operation of Belle data taking

The Belle experiment was managed with identi�
ation numbers of runs. The odd numbers are in-

tended for the in
rease of data, i.e., luminosity run, while the even numbers are for 
alibrations. The

overall numbers vary from 7 to 27 for the SVD1 term and from 31 to 73 for the SVD2 term. Sin
e

the numbers 67, 69, 71 and 73 were operated with di�erent beam energies, the �(4S ) operation

ranges only from 7 to 65. Between the run number of 55 and 61, a minor update of the DAQ system

was performed, thereby the dete
tion eÆ
ien
y of event was slightly improved. Figure 3.20 shows

a re
ord of an in
rease of the integrated luminosity. Continuing the operation of the experiment, we


olle
ted 703 fb

�1

available data with the �(4S ) resonan
e beam energy.

3.4 Monte Carlo simulation

The physi
s pro
esses of e

+

e

�

! �

+

�

�

are simulated by KKMC [56℄ generator. The QED radiative


orre
tions from initial and �nal state radiations are simulated up to se
ond order and ele
troweak


orre
tions are in
luded up to its �rst order. Moreover, 
orrelations among �

+

�

�

spin polarizations,

whi
h are of 
ru
ial importan
e in this analysis, are fully taken into a

ount.

The su

essive de
ay of the � is simulated by TAUOLA [57, 58, 59℄ generator in
orporated in

the KKMC library. The TAUOLA provides �nal state of tau leptons with a resonant distributions

from intermediate hadrons and a 
omplete spin stru
ture. The radiative leptoni
 de
ay �

�

! `

�

��̄


are also simulated by this generator. Other internal QED bremsstrahlung pro
esses from various

hadroni
 � de
ays are simulated by PHOTOS [60℄ generator. These 
orre
tions base on a pro
ess-

independent formalism, where probabilities of a soft photon emission and a 
ollinear produ
tion of

photon with a 
harged parti
le are fa
torized as an original matrix element and the bremsstrahlung

kernel fun
tion.

Although only small fra
tion of events turn out to be �nally sele
ted (< 0:1%), two photon
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pro
esses e

+

e

�

! e

+

e

�

� (� is a state generated by 

 intera
tion) are simulated by TREPS gener-

ator [61℄. The overall pro
ess of 
 emissions and their intera
tion are implemented by the double

equivalent photon approximation, therein a radiation of photon is interpreted as a �ux of photons.

The dete
tor e�e
ts are simulated based on the GEANT3 pa
kage [62℄. The GEANT is a toolkit

to simulate passage of elementary parti
les through matters, where rea
tion of parti
les su
h as

energy deposit, 
as
ade generation of ele
tromagneti
 daughters and de
ay in �ight, are 
al
ulated

at every step-by-step path evolution of the parti
le. Simulated dete
tor responses are pro
essed by

the same 
hain as the real experiment and results are re
orded in the same format.
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Chapter 4

Event sele
tion

In this 
hapter, sele
tion 
riteria are explained in detail. The redu
tion pro
ess is 
omposed of three

stages: presele
tion of �

+

�

�

pairs, se
ond and �nal sele
tions.

4.1 Presele
tion

First of all, the de
ay of the �

+

�

�

is presele
ted from e

+

e

�


ollision data. The de�nition of the


riteria is summarized in Table 4.1. With this sele
tion, ba
kgrounds are eÆ
iently reje
ted while

retaining the eÆ
ien
y of �

+

�

�

pro
ess by approximately 70%. In 
ase of signal, approximately

50% of events pass this stage in
luding the trigger sele
tion. The information of the eÆ
ien
y is

summarized in Table 4.2.

The basi
 strategy of the presele
tion is to sele
t events whi
h show strong dire
tivity and large

energy loss. Compared to other physi
s pro
esses, e

+

e

�

! �

+

�

�

de
ays produ
e small number of

large momentum parti
les (so 
alled low multipli
ity) and show large missing energies es
aped by

(at least) two neutrinos. This sele
tion 
riteria are 
ommon for other � analyses at Belle using the

e

+

e

�

! �

+

�

�

annihilation pro
ess.

4.2 Se
ond sele
tion

After the presele
tion, we sele
t events 
oarsely to further redu
e the number of ba
kground events.

Pro
esses su
h as Bhabha e

+

e

�

! e

+

e

�

(
), �

+

�

�

pair produ
tion, and two photon events e

+

e

�

!

`

+

`

�

e

+

e

�

are additionally suppressed only to be less than 0.01% out of rest events. Figure 4.1 shows

2D-plot of the missing angle �

CMS

miss

and mass M

miss

, whi
h provide an essential dis
rimination 
apa-

bility. Note that, at this stage, the 
orresponden
e of signal parti
le 
andidates and observed ones are

de
ided.With this sele
tion, the number of sele
ted events be
omes approximately 0.1% out of the

total number of �

+

�

�

pair produ
tions in
luding other tau de
ays.

� Missing four momentum is de�ned by p

miss

= p

beam

� p

obs

, where p

beam

is a sum of beam

ele
tron and positron momenta and p

obs

is sum of observed momenta. Missing angle �

CMS

miss

is

a polar angle of p

miss

in the CMS frame and missing mass M

miss

is de�ned as p

2

miss

= M

2

miss

.

To 
al
ulate CMS momenta of 
harged tra
ks, we use a pion hypothesis for the mass of 
orre-

sponding parti
les. These variables must satisfy 30

Æ

� �

CMS

miss

� 150

Æ

and 1 GeV=


2

� M

miss

� 7

GeV=


2

, whi
h essentially sele
t events having large missing energy (and resulting o�-valan
e

of transverse momentum) from neutrinos. The 
orresponding eÆ
ien
y for signal events is

69%.
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Table 4.1: Presele
tion 
riteria

De�nitions

Good 
harged tra
k P

LAB

t

� 0:1 GeV=
 and dr < 2 
m, jdzj < 5 
m.

ECL 
luster and photon E

LAB

ECL

> 0:1 GeV.

Missing four momentum p

miss

= p

beam

� p

obs

, where p

beam

is momenta of sum of beam

and p

obs

is sum of observed momenta.

A

ordingly, M

2

miss

= p

2

miss

and �

CMS

miss

is its polar angle in the CMS frame.

E(ECL)

LAB

Total energy deposit in ECL in the laboratory frame.

E(ECL)

CMS

Total energy deposit in ECL in the CMS frame.

E

CMS

re


Sum of momenta of good 
harged tra
ks + sum of energy of photons both in CMS.

P

LAB

t MAX

Maximum P

t

of good 
harged tra
k in laboratory frame.

E

CMS

tot

E

CMS

re


+ P

CMS

miss

(massless parti
les are boosted to CMS).

N

barrel

Number of good 
harged tra
k within barrel region.

�

LAB

opn MAX

Maximum opening angle of 
harged tra
ks in the laboratory frame.

E

CMS

(photon) Total energy of photon 
lusters in ECL in the CMS frame.

E(ECL)

CMS

trk

E(ECL)

LAB

� E

CMS

(photon).

Criteria

2 � number of good tra
k � 8.

jsum of 
hargej � 2.

P

LAB

t MAX

> 0:5 GeV=
.

Event vertex dr < 1 
m, jdzj < 3 
m.

E

CMS

re


> 3 GeV or P

LAB

t MAX

> 1:0 GeV=
.

Two-tra
k events must satisfy that E(ECL)

LAB

< 11 GeV and 5

Æ

< �

CMS

miss

< 175

Æ

.

2-4 
harged tra
k events must satisfy

1

O and

2

O

1

O E

CMS

tot

< 9 GeV or �

LAB

opn MAX

< 175

Æ

or 2 GeV < E(ECL)

LAB

< 10 GeV.

2

O N

barrel

� 2 or E(ECL)

CMS

trk

< 5:3 GeV.

Table 4.2: EÆ
ien
y of presele
tion

Pro
ess Cross se
tion (nb) EÆ
ien
y (%) E�e
tive 
ross se
tion (nb)

�

+

�

�

0:92 70:2 0:65

�

+

�

�

1:05 5:7 0:06

e

+

e

�

(
) 1249 0:0011 0:014

e

+

e

�

e

+

e

�

(2-photon) 40:85 0:24 0:098

e

+

e

�

u

+

u

�

(2-photon) 11:7 0:56 0:065

Signal

Ele
tron mode 1:67 � 10

�2

46.6 7:85 � 10

�3

Muon mode 3:37 � 10

�3

49.1 1:65 � 10

�3
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� There must be exa
tly two oppositely 
harged tra
ks in the event. To reje
t tra
ks not originat-

ing from e

+

e

�


ollision, the impa
t parameters of these tra
ks (relative to the IP) are required

to be within �2:5 
m along the beam axis and �0:5 
m in the transverse plane. Both transverse

momenta must ex
eed 0:1 GeV/
 in the laboratory frame and the larger one must have more

than 0:5 GeV/
. The 
orresponding eÆ
ien
y for signal events is 92%.

� Number of hard photons � 5, where hard photon is de�ned by E

CMS




> 0:08 GeV. The 
orre-

sponding eÆ
ien
y for signal events is 99%.

� Total energy deposit in ECL must not ex
eed 9 GeV in the laboratory frame, whi
h results in

the suppression of BhaBha pro
ess e

+

e

�

! e

+

e

�

(
). This 
riteria do not essentially redu
e the

eÆ
ien
y for signal events.

� One of the 
harged tra
ks must have lepton likelihood ratio P

`

> 0:7 (` = e or �). The other

tra
k must have a pion-likelihood ratio P

�

> 0:4. The 
orresponding eÆ
ien
y for signal

events is 87% and 73% for ele
tron and muon modes, respe
tively.

� A �

0


andidate is formed from two photon 
andidates, ea
h of whose energies satis�es E




>

80 MeV, with an invariant mass of 115 MeV=


2

< M





< 150 MeV=


2

. The 
orresponding

eÆ
ien
y for signal events is 51%.

� The � 
andidate is formed from a �

�

and a �

0


andidates, with an invariant mass of m

�

�

�

0

<

3:0 GeV=


2

. The 
orresponding eÆ
ien
y for signal events is 96%.

� Signal photon 
andidate is 
hosen with 
os �

`


> 0:9 in the CMS frame. If more than or equal

to two 
andidates satisfy this 
ondition, the event is reje
ted. The 
hosen photon 
andidate

must have an energy more than 80 MeV for the barrel region (31:4

Æ

< �

LAB




< 131:5

Æ

) and 100

MeV for the end
ap region (12:0

Æ

< �

LAB




< 31:4

Æ

or 131:5

Æ

< �

LAB




< 157:1

Æ

) in the CMS

frame. The 
orresponding eÆ
ien
y for signal events is 42% and 34% for ele
tron and muon

modes, respe
tively.

� Either of the spe
i�
 GDL bits explained in Se
. 3.2.7 must be �red. The 
orresponding

eÆ
ien
y for signal events is 85% and 89% for ele
tron and muon modes, respe
tively.

4.3 Final sele
tion

Finally, we apply stringent 
riteria on the sele
ted events. Below in the list, the 
ir
led numbers show

the order of the redu
tion. Thereby, the number of sele
ted events de
reases as the index in
rements.

Figures 4.3 to 4.9 show the distributions of the 
ut parameters at ea
h step. The dots with error bars

indi
ate an experimental distribution and the open and 
olored histograms represent MC distribu-

tions of signal and ba
kgrounds, respe
tively. The MC distributions are s
aled based on the number

of entries just after the se
ond sele
tion. The MC distribution are overlaid on the experimental dis-

tribution. The detailed meanings of ea
h ba
kground are explained in Se
. 4.4. The step-by-step

redu
tions of the signal eÆ
ien
ies and the number of sele
ted events are summarized in Tables 4.3

and 4.4.

0

O The signal photon, whi
h tends to be produ
ed 
ollinearly with lepton dire
tion, must lie in a 
one

determined by the lepton-
andidate dire
tion that is de�ned by 
os�

e


> 0:9848 and 
os�

�


> 0:9700
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Figure 4.1: 2D-plots of �

CMS

miss

vs M

miss

for the experimental data, �

+

�

�

, Bhabha and two photon MC

events. The bla
k re
tangle box indi
ates a requirement of the se
ond sele
tion.

Table 4.3: Redu
tion of eÆ
ien
y in ea
h step for �! e��̄
 
andidate.

Step after N

MC


and

N

MC

sig

"

sig

(%) Purity (%) Ns

MC


and

y N

EX

2nd sele
tion 7299848 1796214 6.45 24.6 1373878 1373878

0

O 6403839 1591564 5.72 24.9 1205243 1202834

1

O 6050803 1515469 5.44 25.0 1138800 1129166

2

O 5910310 1486277 5.34 25.1 1112358 1107275

3

O 5807107 1470467 5.28 25.3 1092935 1088418

4

O 5745691 1464212 5.26 25.5 1081376 1074840

5

O 5516655 1435304 5.16 26.1 1038270 1031535

6

O 4234513 1224733 4.40 28.9 796962 776834

y Ns

MC


and

means s
aled number of MC events at the step just before

0

O
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Table 4.4: Redu
tion of eÆ
ien
y in ea
h step for �! ���̄
 
andidate

Step after N

MC


and

N

MC

sig

"

sig

(%) Purity (%) Ns

MC


and

y N

EX

2nd sele
tion 1478977 376484 6.30 25.5 258089 258089

0

O 636228 275069 4.60 43.2 111025 114367

1

O 603237 262554 4.39 43.5 105268 107826

2

O 543512 253771 4.25 46.7 94846 96427

3

O 519598 250083 4.19 48.1 90672 92359

4

O 499350 249135 4.17 49.9 87139 89130

5

O 478862 244229 4.09 52.3 83564 85516

6

O 398970 228947 3.83 57.4 69622 71171

y Ns

MC


and

means s
aled number of MC events at the step just before

0

O

in the CMS frame for the ele
tron and muon modes, respe
tively. The di�erent 
ut value is intended

to allow broader distribution of �

�


than ele
tron mode (see Se
. 2.1).

1

O The pion 
andidate must have a likelihood ratio value of P

�

> 0:7.

2

O The ele
tron 
andidate must have a likelihood ratio value of P

e

> 0:9 and the �

2

of the tra
k

�tting is required to have �

2

tra
k

< 200. The muon 
andidate must have a likelihood value of P

�

> 0:9

and the �

2

of the tra
k is required to have �

2

tra
k

< 150. The requirement of the �

2

intends to reje
t

bad quality tra
k but does not have essential impa
t on eÆ
ien
ies.

3

O Reje
t other �

0

possibilities: if the signal photon (inside aforementioned 
one) 
andidate and

either of the photons from the �

0

(the daughter of the � 
andidate) form an invariant mass of the �

0

(115 MeV=


2

< M





< 150 MeV=


2

), the event is reje
ted.

4

O Angle between `
 and �

0

: 
onsidering both `

�

and 
, and �

+

are boosted ba
k-to-ba
k ea
h

other in �

+

�

�

rest frame, we reje
t events if the dire
tion of the 
ombined momentum of the lepton

and photon in the CMS frame orients in the hemisphere determined by the �

+


andidate (�

(`
)�

> 90

Æ

).

5

O �

+

mass: an invariant mass of 
harged and neutral pions must satisfy 0:5 GeV=


2

< m

�

�

�

0

< 1:5

GeV=


2

.

6

O Sum of the laboratory energies of photons whi
h are not asso
iated with any 
harged tra
k (de-

noted as E

LAB

extra


) must satisfy E

LAB

extra


< 0:2 GeV for � ! e��̄
 events and E

LAB

extra


< 0:3 GeV for

� ! ���̄
 events. This requirement is essential in the suppression of various ba
kgrounds. For

example, �

0

s produ
ed from hadroni
 de
ays generate extra photon 
lusters. Moreover, fake 
lusters

arising from the beam deposit energies in the ECL.
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Figure 4.9:

6

O! �nal: Distribution of E

LAB

extra


: (a) (a) overall view and (b) enlarged view.
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Table 4.5: Ba
kground 
ontributions for �

+

�

�

! (�

+

�

0

�̄)(e

�

��̄
) 
andidates.

Pro
ess y Fra
tion Color

�

+

�

�

! (�

+

�

0

�̄)(e

�

��̄
)[


rad

℄ 28:9% Open

(1) �

+

�

�

! (�

+

�

0

�̄)(e

�

��̄)[


brems:

℄ 52:8% Yellow

(2) �

+

�

�

! (�

+

�

0

�̄)(e

�

��̄
)[


brems:

℄ 7:50% Green

(3) Others 10:7% Blue

y The bra
ket represents the sour
e of photon.

4.4 Ba
kground 
omponents for the sele
ted 
andidates

In this se
tion, we present the signal and ba
kground 
ontributions evaluated by MC simulation

with sele
tion 
riteria des
ribed in the last se
tion. As explained below in detail, the fra
tions of

ba
kground modes largely di�er between ele
tron and muon modes. This arises from the high rate of

bremsstrahlung by a daughter ele
tron. The small mass of ele
tron makes the rate of bremsstrahlung

high and this o

upies the fra
tion of sele
ted events.

4.4.1 �

+

�

�

! (�

+

�

0

�̄)(e

�

��̄
) de
ay 
andidates

Figures 4.10, 4.11, 4.12 and 4.13 show the distributions of photon energy E




, ele
tron momentum

P

e

, 
osine of angle between lepton and photon 
os�

e


and angle itself for �

�

! e

�

��̄
 
andidates.

Fra
tion of ea
h ba
kground is summarized in Table 4.5.

(1) Ordinary leptoni
 de
ay + bremsstrahlung, (e; ��

0

) + 


brems:

: 52:8%

When an ele
tron is a

elerated by an ele
tri
 �eld of atoms in dete
tor, a photon is produ
ed

almost 
ollinearly with the ele
tron dire
tion. In parti
ular, the photons produ
ed at dete
tors

near the IP 
annot be essentially distinguished from signal photon even if we try to veto the

event based on the impa
t parameter of the ele
tron tra
k. Be
ause of the quite similar feature

to the signal events, i.e., its energy and angular dependen
e, this o

urren
e is 
alled external

bremsstrahlung. This 
ontribution is represented by a yellow histogram in Figs. 4.10 to 4.13.

(2) Radiative leptoni
 de
ay o

urred but the bremsstrahlung is re
onstru
ted, (e
; ��

0

) + 


brems:

:

7:50%

Although the radiative leptoni
 de
ay �

�

! e

�

��̄
 o

urs, the extra bremsstrahlung is re
on-

stru
ted as a signal photon. Sin
e this event does not 
onvey any information of the Mi
hel

parameters, we regard this event as a ba
kground. This 
ontribution is represented by a green

histogram.

(3) Others: 10:7%

The rest ba
kgrounds are treated as one 
ategory and we 
all them others. This 
ontribution

is represented by a blue histogram in Figs. 4.10 to 4.13. In Table 4.6, we show the list of

sour
es on this 
ategory. The 
ontributions 
ome from a beam ba
kground and a failure of

the re
onstru
tion of �

+


andidates due to 
ontaminations from multi-pion de
ays su
h as

�

+

! �

+

�

0

�

0

�̄.
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Figure 4.10: Distribution of the photon energy E




for �

+

�

�

! (�

+

�

0

�̄)(e

�

��̄
) 
andidates. The

bra
ket shows an origin of the re
onstru
ted photon. Dots with error bars indi
ate experimental

distribution while histograms are MC simulation. Open histogram represent signal MC while yellow,

green and blue histograms represent an ordinary leptoni
 de
ay + bremsstrahlung, a radiative leptoni


de
ay + bremsstrahlung and others.

Table 4.6: Ba
kground 
omponents in others for �

+

�

�

! (�

+

�

0

�̄)(e

�

��̄
) 
andidates.

Pro
ess y Fra
tion in others (%)

(�

+

�

0

�̄)(e

�

��̄)[


beam

℄ 32

(�

+

�

0

�

0

�̄)(e

�

��̄
)[


rad

℄ 23

(�

+

�

0

�̄)(e

�

��̄
)[


beam

℄ 9

(�

+

�

0

�

0

�̄)(e

�

��̄
)[


brems:

℄ 6

Others (ea
h is smaller than 4%) 30

y The bra
ket represents the sour
e of photon.
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Figure 4.11: Distribution of the momentum of ele
tron P

e

for the �

+

�

�

! (�

+

�

0

�̄)(e

�

��̄
) 
andidates.

The 
orresponden
es of 
olors of histograms are same as Fig. 4.10.
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Figure 4.12: Distribution of the 
osine of angle between the ele
tron and photon 
os�

`


for the

�

+

�

�

! (�

+

�

0

�̄)(e

�

��̄
) 
andidates. The 
orresponden
es of 
olors of histograms are same as

Fig. 4.10.
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Figure 4.13: Distribution of the angle between the ele
tron and photon �

`


for the �

+

�

�

!

(�

+

�

0

�̄)(e

�

��̄
) 
andidates. The 
orresponden
es of 
olors of histograms are same as Fig. 4.10.
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4.4.2 �

+

�

�

! (�

+

�

0

�̄)(�

�

��̄
) de
ay 
andidates

For �

+

�

�

! (�

+

�

0

�̄)(�

�

��̄
) 
andidates, we show the distributions of photon energy E




, muon mo-

mentum P

�

, 
osine of angle between muon and photon 
os�

�


and angle itself in Figs. 4.16, 4.15,

4.14 and 4.17. Following information is summarized in Table 4.7.

(1) Ordinary leptoni
 de
ay + beam ba
kground, (�; ��

0

) + 


beam

: 16:2%

For the �

+

�

�

! (�

+

�

0

�̄)(�

�

��̄
) de
ay 
andidates, the beam ba
kground has the largest fra
-

tion. The 
lusters in the ECL, originating from beam, behaves as photon and the event is

wrongly re
onstru
ted when it is 
ombined with the ordinary leptoni
 de
ay �

�

! �

�

��̄. Be-


ause the distribution of the beam ba
kground is determined by 
omplex geometry and envi-

ronment of the beam, it is impossible to reprodu
e the distribution only from the MC. For this

reason, the energy deposit in the ECL from the beam ba
kground is re
orded in the real exper-

iment with random trigger and this information is overlaid to MC event. This 
ontribution is

represented by a magenta histogram in Figs. 4.14 to 4.17.

(2) Ordinary leptoni
 de
ay + ISR/FSR, (�; ��

0

) + 


ISR=FSR

: 7:7%

The initial and �nal state radiation (ISR/FSR) are pro
esses in whi
h photons are generated

from verti
es of e

+

e

�

and �

+

�

�

, respe
tively. Sin
e �

�

is a long-lived parti
le in that the in-

terferen
e between the ISR/FSR pro
esses and de
ay amplitude of � is ignored, the radiative

de
ay is de�nitely distinguished from ISR/FSR in the generator level. The ISR/FSR is re
on-

stru
ted as signal photon and the event is sele
ted when it 
ombines with �

�

! �

�

��̄ de
ay.

This 
ontribution is represented by a water-blue histogram.

(3) Three � events, (�
; ��

0

�

0

): 5:1%

When one �

0

from �

+

! �

+

�

0

�

0

�̄ is lost, it is re
onstru
ted as the �

+

! �

+

�

0

� de
ay. Sin
e

the radiative de
ay �

�

! �

�

��̄
 is properly re
onstru
ted, this event still have a sensitivity on

the Mi
hel parameters. This 
ontribution is is represented by a purple magenta histogram.

(4) �-� de
ay, (��

0

; ��

0

): 3:8%

When one photon from neutral pion is missed and the 
harged pion is mis-identi�ed as muon,

the event is wrongly sele
ted. Though the probabilities are relatively small, the large bran
hing

ratio of �

�

! �

�

� ! �

�

�

0

� de
ay (� 25%) gives a notable 
ontribution to the �

�

! �

�

��̄


de
ay 
andidates. This 
ontribution is represented by a light-green histogram.

(5) 3�-� de
ay, (��

0

�

0

; ��

0

): 1:2%

�

�

! �

�

�

0

�

0

� de
ay is mis-re
onstru
ted as signal when �

�

is mis-identi�ed as �

�

and three

photons from two �

0

are not vetoed even after the event sele
tion. Though the fra
tion of

3�-� de
ay is small, the e�e
t of this de
ay on the �tted Mi
hel parameter is relatively high

and we separately regard this de
ay as one of major ba
kground modes. This 
ontribution is

represented by a red histogram.

(6) Others: 8:6%

Similarly to �

+

�

�

! (�

+

�

0

�̄)(e

�

��̄
) de
ay 
andidates, the rest fra
tions are grouped as one


ategory others. This 
ontribution is represented by an orange histogram. In Table 4.8,

we show the list of sour
es on this 
ategory. The 
ontributions mainly 
ome from a pion-

misidenti�
ation as muon and 
ontaminations from the beam ba
kgrounds. In many 
ases,

pions from various hadroni
 de
ays 
ouple with the a

idental beam ba
kground or a photon

from �

0

.
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Table 4.7: Ba
kground 
ontributions for �

+

�

�

! (�

+

�

0

�̄)(�

�

��̄
) 
andidates.

Pro
ess y Fra
tion Color

�

+

�

�

! (�

+

�

0

�̄)(�

�

��̄
)[


rad

℄ 57:4% Open

(1) �

+

�

�

! (�

+

�

0

�̄)(�

�

��̄)[


beam

℄ 16:2% Magenta

(2) �

+

�

�

! (�

+

�

0

�̄)(�

�

��̄)[


ISR

℄ 7:7% Water-blue

(3) �

+

�

�

! (�

+

�

0

�

0

�̄)(�

�

��̄
)[


rad

℄ 5:1% Purple

(4) �

+

�

�

! (�

+

�

0

�̄)(�

�

�

0

�)[


from �

0

℄ 3:8% Light green

(5) �

+

�

�

! (�

+

�

0

�̄)(�

�

�

0

�

0

�)[


from �

0

℄ 1:2% Red

(6) Others 8:6% Others

y The bra
ket represents the sour
e of photon.

Table 4.8: Ba
kground 
omponents in others for �

+

�

�

! (�

+

�

0

�̄)(�

�

��̄
) 
andidates.

Pro
ess y Fra
tion in others (%)

(�

+

�

0

�

0

�̄)(�

�

��̄)[


beam

℄ 8

(�

+

��̄)(�

�

�

0

�

0

�)[


beam

℄ 8

(�

+

�

0

�̄)(�

�

��̄
)[


beam

℄ 8

(�

+

��̄
)(�

�

�

0

�)[


beam

℄ 7

(�

+

�̄)(�

�

�

0

�

0

�)[


from �

0
℄ 7

(�

+

�

0

�̄)(�

�

�

0

�

0

�)[


from �

0

℄ 6

(�

+

�

0

�

0

�̄)(�

�

�

0

�)[


from �

0

℄ 6

Others (ea
h is smaller than 4%) 50

y The bra
ket represents the sour
e of photon.

65



 (GeV)γE
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1
N

ev
/0

.0
10

00
 G

eV

2

4

6

8

10

12

14

16

18

20

22

310×
γ ν ν e →τ

Exp.

] (28.9%)   
rad

γ)[γτνeν-)(eτν0π+π(→-τ+τ

] (52.8%)   
brems.

γ)[τνeν-)(eτν0π+π(→-τ+τ

] (7.5%)   
brems.

γ)[γτνeν-)(eτν0π+π(→-τ+τ

others (10.7%)   

 (GeV)γE
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1
N

ev
/0

.0
10

00
 G

eV

0.5

1

1.5

2

2.5

3

3.5

4

4.5

310×
γ ν ν µ →τ

Exp.

] (57.4%)   
rad

γ)[γτνµν-µ)(τν0π+π(→-τ+τ

] (16.2%)   
beam

γ)[τνµν-µ)(τν0π+π(→-τ+τ

] (7.7%)   
ISR

γ)[τνµν-µ)(τν0π+π(→-τ+τ

] (5.1%)   
rad

γ)[γτνµν-µ)(τν0π0π+π(→-τ+τ

] (3.8%)   
0πfrom 

γ)[τν0π-π)(τν0π+π(→-τ+τ

] (1.2%)   
0πfrom 

γ)[τν0π0π-π)(τν0π+π(→-τ+τ

others (8.6%)   

Figure 4.14: Distribution of the photon energy E




for the �

+

�

�

! (�

+

�

0

�̄)(�

�

��̄
) de
ay 
andidates.

The bra
ket shows an origin of the re
onstru
ted photon. Dots with error bars indi
ate experimental

distribution while histograms are MC simulation. The open histogram 
orresponds to signal MC

distribution while 
olored histograms are ba
kground modes: (red) ordinary leptoni
 de
ay + beam

ba
kground, (blue) ordinary leptoni
 de
ay + ISR/FSR gamma, (purple) three-�, (green) ��, (brown)

3�-� and (orange) others.
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Figure 4.15: Distribution of the momentum of ele
tron P

�

for the �

+

�

�

! (�

+

�

0

�̄)(�

�

��̄
) 
andidates.

The 
orresponden
es of 
olors of histograms are same as Fig. 4.14.
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Figure 4.16: Distribution of the 
osine of angle between muon and photon 
os�

`


for the �

+

�

�

!

(�

+

�

0

�̄)(�

�

��̄
) de
ay 
andidates. The 
orresponden
es of 
olors of histograms are same as Fig. 4.14.
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Figure 4.17: Distribution of the angle between muon and photon �

`


for the �
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�
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+

�
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�̄)(�

�

��̄
)

de
ay 
andidates. The 
orresponden
es of 
olors of histograms are same as Fig. 4.14.
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4.5 Total eÆ
ien
y

In this se
tion, we present the eÆ
ien
y of signal events evaluated by MC simulation. We prepared

dedi
ated signal MC samples whi
h 
ontain 7:504 � 10

7

events for ea
h of four 
on�gurations:

(e

�


; �

+

�

0

), (e

+


; �

�

�

0

), (�

�


; �

+

�

0

) and (�

+


; �

�

�

0

). By default, the TAUOLA generator adopts the

photon energy threshold: E

�




= m

�

� 0:001 � 1:8 MeV to de�ne the radiative de
ay. Based on the

information of the generated events, the ratio of events in whi
h E

�




ex
eeds 10 MeV is 66:6% for

` = e and 68:5% for ` = �, respe
tively. Thus the numbers of generated signal events de�ned by

E

�




> 10 MeV are 2:50 � 10

7

for (e

�


; �

+

�

0

), (e

+


; �

�

�

0

) de
ays and 2:57 � 10

7

for (�

�


; �

+

�

0

),

(�

+


; �

�

�

0

) de
ays. With sele
tion 
riteria des
ribed above, the number of sele
ted events are

N

�

e

� N(e

�


; �

+

�

0

)

�

= 1205449; (4.1)

N

+

e

� N(e

+


; �

�

�

0

) = 1195610; (4.2)

N

�

�

� N(�

�


; �

+

�

0

) = 996808; (4.3)

N

+

�

� N(�

+


; �

�

�

0

) = 991504: (4.4)

Divided by the number of generated signal events, the estimated eÆ
ien
ies by MC are given as:

"̄(e

�


; �

+

�

0

) = (4:83 � 0:09)%; (4.5)

"̄(e

+


; �

�

�

0

) = (4:79 � 0:09)%; (4.6)

"̄(�

�


; �

+

�

0

) = (3:9 � 0:1)%; (4.7)

"̄(�

+


; �

�

�

0

) = (3:9 � 0:1)%; (4.8)

where the errors represent statisti
al un
ertainties. The eÆ
ien
y is determined based on the de�-

nition of radiative de
ay, i.e., if E

�




> 10 MeV the event is radiative. In this 
al
ulation, the radiative

photon is not required to be properly re
onstru
ted. For example, even if the extra bremsstrahlung

from �

�

! e

�

��̄
 is re
onstru
ted as the signal photon, this event is still in
luded in the 
al
ulation

of eÆ
ien
y.

As des
ribed in Chapter 6 and Appendix A, the MC does not well simulate the experimental

eÆ
ien
y parti
ularly due to an imperfe
t trigger simulation so that an additional 
orre
tion fa
tor

must be taken into a

ount. With this modi�
ation, the eÆ
ien
y turns out to de
rease by 11% and

8% for (e
; ��

0

) and (�
; ��

0

) events, respe
tively.

�

As long as the Standard Model (SM) pro
ess is 
onsidered, the neutrino-less de
ay of the � is forbidden and we 
an

uniquely determine the types of neutrinos based on lepton number 
onservation. Hereafter, without expli
itly writing

neutrinos, we often abbreviate the 
ombination of both de
ays in a simpli�ed form: (�; ��

0

) means � ! ���̄ and

� ! ��

0

�. Although the neutrino may 
hange � or �̄ depending on the sign of the �, we do not persist on it be
ause this

does not a�e
t any 
on
lusions. Similarly, the 
harge assignment of parti
les depends on the 
ontexts.
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Chapter 5

Method of the measurement of the Mi
hel

parameters

In this 
hapter, we des
ribe methods to extra
t the Mi
hel parameters �̄ and ��. Te
hni
al details like

mathemati
al formulae and their derivations are found in the Appendix B.

5.1 Notations and 
onventions

In this 
hapter and Appendix B, we use following notations and 
onventions unless otherwise noted.

The four ve
tors are denoted by small letters with itali
 
hara
ters like p and its energy and three

ve
tor 
omponents are denoted as E and P. The 
apital letter P means magnitude of P. 
 is used

to represent an angular 
omponent of three ve
tors and represents an abbreviation of a set f
os�; �g.

The general ve
tors are also denoted as bold letters x. For example, a set of observed variables is

often abbreviated as x: parti
le-1 (P

1

;


1

) and parti
le-2 (P

2

;


2

) are put together to be represented

as x = fP

1

;


1

; P

2

;


2

g. Furthermore, we always use an asterisk as supers
ript like E

�

to show it

is evaluated in the � rest frame. While to show a value is evaluated in other frames, we also use a

tilde, hat and double asterisk. The meanings of these supers
ripts 
hange depending on ea
h 
ontext

and shall be explained on ea
h o

asion. In this analysis, we often use a variable whi
h distributes

a

ording to a 
ertain probability density fun
tion. We represent x 2 f (x) for this situation that the x

is distributed a

ording to f (x).

5.2 Unbinned maximum likelihood method

The Mi
hel parameters � = f�̄; ��g are obtained by maximizing a likelihood fun
tion L, whi
h is


omprised of the produ
t of a probability density fun
tion (PDF) P(xj�) of ea
h event:

L(�) =

Y

k

P(x

k

); (5.1)

where k is the index of event and x represents a set of twelve-dimension observables, whi
h is

expli
itly given by x = fP

`

;


`

; P




;





; P

�

;


�

;m

2

��

;

e




�

g and explained later in detail. In other words,

the P(x)dx is regarded as a probability su
h that the event having 
orresponding point x lies inside a


ertain 
ube dx. Te
hni
ally, it is more useful to adopt a negative logarithmi
 likelihood fun
tion

L(�) = � log L = �

X

k

logP(x

k

) (5.2)

so that the exponential small value that appears in the right hand side of the Eq. (5.1) be
omes easy

to manage.
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Thus the pro
edure is dissolved into the formulation of P(x). A

ounting for the event sele
-

tion and the 
ontamination from ba
kgrounds, the total visible (properly normalized) PDF for the

observable x in ea
h event is given by:

P(x) = (1 �

X

i

�

i

) �

S (x)"(x)

R

dxS (x)"(x)

+

X

i

�

i

B

i

(x)"(x)

R

dxB

i

(x)"(x)

; (5.3)

where S (x) is the signal PDF explained later in Se
. 5.4.1, B

i

(x) is the distribution of the i-th 
ategory

of ba
kground, �

i

is the fra
tion of ea
h ba
kground and "(x) is the sele
tion eÆ
ien
y of signal.

The index i runs 1; 2; 3 and 1; 2; : : : ; 6 for ele
tron and muon modes, respe
tively, and this indi
ates

ea
h 
ategory of ba
kground explained in Se
. 4.4 (also shown in Figs. 4.10 and 4.14 with ea
h


olor). The PDF of the major ba
kground modes are des
ribed using their theoreti
al formulae while

other minor 
ontributions are treated as one 
ategory and des
ribed based on the MC simulation. The

sele
tion eÆ
ien
y "(x) is not generally 
ommon between the signal and ba
kgrounds, the di�eren
e,

however, is in
luded in the de�nition of B

i

(x). The denominator of ea
h term is a produ
t of the

average sele
tion eÆ
ien
y of ea
h 
omponent and its normalization.

Due to the large dimension of the phase spa
e, an evaluation of lo
al eÆ
ien
y "(x) as a fun
tion

of x is almost impossible. However, this does not 
ause a substantial problem, sin
e "(x) is a 
om-

mon fa
tor irrelevant from �, whi
h results in an addition of a 
onstant in the negative logarithmi


likelihood maximization: L(�) � �

P

k

log "(x

k

). Therefore, the dependen
e of "(x) on x does not

dire
tly a�e
t �tted value of the Mi
hel parameters. The unne
essity of a tabulation of "(x) is one of

the most important keys of this analysis.

5.3 Average eÆ
ien
y and normalization

We explain a manipulation of the terms in Eq. (5.3) before the des
ription of PDF. All terms in the

equation have forms given by

P

i

"(x)

= � �

F(x)

R

dxF(x)"(x)

; (5.4)

where F is S or B

i

in Eq. (5.3). Sin
e the overall probability of ea
h 
omponent should be unity,

F(x) should satisfy the unitary 
ondition:

R

dxF(x) = 1. However, in some 
ases, F(x) whi
h is not

ne
essarily be normalized is easy to extra
t and we distinguish them by notating

e

F(x) for the PDF

whi
h is not normalized. For

e

F(x), we are allowed to ignore 
onstant fa
tors su
h as many (2�)s

arising from the Lorentz-invariant phase spa
e (LIPS). Right-hand side of Eq. (5.4) shows that this

term does not depend on the normalization fa
tor of F(x). Therefore, it 
an be rewritten as

P

i

"(x)

= � �

e

F(x)

R

dx

e

F(x)"(x)

: (5.5)

The integration in the denominator is evaluated by sele
ted MC events, whi
h is distributed with

respe
t to the SM predi
ation:

� �

e

F(x)

R

dx

e

F(x)"(x)

= � �

e

F(x)

Z

dxF

SM

(x)

e

F(x)"(x)

F

SM

(x)

(5.6)

= � �

e

F(x)

"̄

N

sel

X

x

k

2"F

SM

e

F(x

k

)

F

SM

(x

k

)

= � �

e

F(x)

"̄�

SM

N

sel

X

x

k

2"F

SM

e

F(x

k

)

e

F

SM

(x

k

)

; (5.7)
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� � �

e

F(x)

"̄�

SM

*

e

F

e

F

SM

+

(5.8)

where "̄ is the average sele
tion eÆ
ien
y, N

sel

is the number of sele
ted events and �

SM

is magnitude

of the normalization fa
tor 
al
ulated as

�

SM

=

Z

dx

e

F

SM

(x): (5.9)

The bra
ket in Eq. (5.8) indi
ates the average for the sele
ted SM distribution. Hereafter, we refer the

fa
tor whi
h normalizes the Standard Model part �

SM

=

R

dx

�

F

SM

(x) to an absolute normalization,

while the relative fa
tor

h

�

F=

�

F

SM

i

in Eq. (5.8) to a relative normalization.

5.4 Implementation of probability density fun
tions

In this se
tion, we present the des
ription of the PDFs for the signal and ba
kgrounds. For simpli
ity,

we des
ribe the te
hni
al details only for the signal des
ription and skip explaining those of the

ba
kgrounds in the main text by just writing the 
on
ept of the formulation. The detailed information

is given in Appendix B.

5.4.1 Des
ription of the signal PDF

The di�erential de
ay width for the radiative leptoni
 de
ay of the �

�

with a de�nite spin dire
tion

S

�

�

�

is given by

d�(�

�

! `

�

��̄
)

dE

�

`

d


�

`

dE

�




d


�




=

�

A

�

0

+ �̄A

�

1

�

+

�

B

�

0

+ �� B

�

1

�

� S

�

�

�

; (5.10)

where A

�

i

and B

�

i

(i = 0; 1) are known fun
tions of the kinemati
 variables of the de
ay produ
ts,


a

stands for a set of f
os�

a

; �

a

g for a parti
le type a = (` or 
) and the asterisk means that the variable is

de�ned in the � rest frame. The expli
it formula is given in the end of this Se
. 5.4.1. Equation 5.10

shows that �� appears in the spin-dependent part of the de
ay width. This produ
t 
an be measured

by utilizing the well-known spin-spin 
orrelation of the � pair in the e

�

e

+

! �

+

�

�

rea
tion:

d�

�

e

�

e

+

! �

�

(S

�

�

�

)�

+

(S

�

�

+

)

�

d


�

=

�

2

�

�

64E

2

�

(D

0

+ D

i j

S

��

i

S

+�

j

) (i; j = 1; 2; 3); (5.11)

where � is the �ne stru
ture 
onstant, �

�

and E

�

are the velo
ity and energy of the �, respe
tively,

D

0

is a form fa
tor for the spin-independent part of the rea
tion and D

i j

is a tensor des
ribing the

spin-spin 
orrelation [63℄:

D

0

= 1 + 
os

2

� +

1




2

�

sin

2

�, (5.12)

D

i j

=

0

B

B

B

B

B

B

B

B

B

B

B

�

(1 +

1




2

�

) sin

2

� 0

1




�

sin 2�

0 ��

2

�

sin

2

� 0

1




�

sin 2� 0 1 + 
os

2

� �

1




2

�

sin

2

�

1

C

C

C

C

C

C

C

C

C

C

C

A

; (5.13)

here, � is the polar angle of the �

�

and 


�

= 1=

p

1 � �

2

�

. The plane formed by ele
tron and tau

movements are de�ned as xz-plane (or equivalently � = 0 plane) and this is the reason why x and y


omponents in Eq. (5.13) are not symmetri
al .
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The spin information on the partner �

+

is extra
ted using the two-body de
ay �

+

! �

+

�̄! �

+

�

0

�̄

whose di�erential de
ay width is given by

d�(�

+

! �

+

�

0

�̄)

d


�

�

dm

2

��

d

e




�

= A

+

+ B

+

� S

�

�

+

; (5.14)

A

+

and B

+

are the form fa
tors for the spin-independent and spin-dependent parts, respe
tively, while

the tilde indi
ates the variables are de�ned in the � rest frame and m

��

is an invariant mass of the

two-body system of pions whi
h is de�ned as m

2

��

= (p

�

+ p

�

0

)

2

. The formulae of the form fa
tors

are also given in the end of this se
tion. Thus the total di�erential 
ross se
tion of e

+

e

�

! �

+

�

�

!

(�

+

�

0

�̄)(`

�

��̄
) pro
ess is given by:

d�(`

�


; �

+

�

0

)

dE

�

`

d


�

`

dE

�




d


�




d


�

�

dm

2

��

d

e




�

d


�

/

�

�

E

2

�

h

D

0

�

A

�

0

+ A

�

1

��̄

�

A

+

+ D

i j

�

B

�

0

+B

�

1

���

�

i

�B

+

j

i

: (5.15)

To extra
t the visible di�erential 
ross se
tion, we transform the di�erential variables into ones

de�ned in the CMS using a Ja
obian J (dE

�

`

d


�

`

dE

�




d


�




d


�

�

d


�

! d�dP

`

d


`

dP




d





dP

�

d


�

)

�

:

J = J

1

J

2

J

3

; (5.16)

J

1

=

�

�

�

�

�

�

�(E

�

`

;


�

`

)

�(P

`

;


`

)

�

�

�

�

�

�

=

P

2

`

E

`

P

�

`

; (5.17)

J

2

=

�

�

�

�

�

�

�(E

�




;


�




)

�(P




;





)

�

�

�

�

�

�

=

E




E

�




; (5.18)

J

3

=

�

�

�

�

�

�

�(


�

�

;


�

)

�(P

�

;


�

;�)

�

�

�

�

�

�

=

m

�

P

�

E

�

P

�

�

P

�

; (5.19)

where the parameter � is the angle along the ar
 explained in Se
. 2.5. The visible di�erential 
ross

se
tion is, therefore, obtained by an integration over �:

d�(`

�


; �

+

�

0

)

dP

`

d


`

dP




d





dP

�

d


�

dm

2

��

d

e




�

=

Z

�

2

�

1

d�

d�(`

�


; �

+

�

0

)

d�dP

`

d


`

dP




d





dP

�

d


�

dm

2

��

d

e




�

(5.20)

=

Z

�

2

�

1

d�

d�(`

�


; �

+

�

0

)

dE

�

`

d


�

`

dE

�




d


�




d


�

�

dm

2

��

d

e




�

d


�

� J (5.21)

�

e

S (x); (5.22)

where

e

S (x) is the PDF of the signal and x denotes the mentioned set of twelve measured variables:

x = fP

`

;


`

; P




;





; P

�

;


�

;m

2

��

;

e




�

g.

Sin
e the PDF is a linear 
ombination of the Mi
hel parameters

e

S (x) = E

0

(x)+E

1

(x)�̄+E

2

(x)�

00

+

E

3

(x)��, a

ounting for the dis
ussion in Se
. 5.3 (Eqs. (5.6) to (5.8)), we evaluate the normalization

as:

�

sig

�

e

S (x)

R

dx

e

S (x)"(x)

= �

sig

�

e

S (x)

"̄�

SM

N

sel

X

x

k

2"S

SM

e

S (x

k

)

e

S

SM

(x

k

)

(5.23)

= �

sig

�

E

0

(x) + E

1

(x)�̄ + E

2

(x)�

00

+ E

3

(x)��

"̄

SM

�

SM

N

sel

X

x

k

2"S

SM

E

0

(x

k

) + E

1

(x

k

)�̄ + E

2

(x)�

00

+ E

3

(x

k

)��

E

0

(x

k

) + E

1

(x

k

)�̄

SM

+ E

2

(x)�

00

SM

+ E

3

(x

k

)��

SM

(5.24)

�

For the derivation of Ja
obians, see Appendix C.
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= �

sig

�

E

0

(x) + E

1

(x)�̄ + E

2

(x)�

00

+ E

3

(x)��

"̄

SM

�

SM

N

sel

X

x

k

2"S

SM

E

0

(x

k

) + E

1

(x

k

)�̄ + E

2

(x)�

00

+ E

3

(x

k

)��

E

0

(x

k

)

(5.25)

� �

sig

�

E

0

(x) + E

1

(x)�̄ + E

2

(x)�

00

+ E

3

(x)��

"̄

SM

�

SM

"

1 +

*

E

1

E

0

+

�̄ +

*

E

2

E

0

+

�

00

+

*

E

3

E

0

+

��

#
; (5.26)

where �

SM

and hE

i

=E

0

i (i = 1; 2; 3) are the absolute and relative normalizations, respe
tively, and

"̄

SM

is an average sele
tion eÆ
ien
y for the SM distribution. In this 
al
ulation, we use the fa
t that

�̄

SM

= �

00

SM

= ��

SM

= 0.

Formulae

As mentioned, the di�erential de
ay width of the �

�

is expressed as sum of spin independent A

�

and

dependent parts B

�

as:

d�(�

�

! `

�

��̄
)

dE

�

`

d


�

`

dE

�




d


�




= A

�

+ B

�

� S

�

�

�

; (5.27)

both of whi
h are fun
tions of normalized kineti
 parameters x, y and d as [28℄:

r =

m

`

m

�

(5.28)

x =

2E

�

`

m

�

(2r < x < 1 + r

2

) (5.29)

y =

2E

�




m

�

(0 < y < 1 � r) (5.30)

d = 1 � �

�

`


os �

`


(5.31)

y <

2(1 + r

2

� x)

2 � x + 
os �

`


p

x

2

� 4r

2

(5.32)

A

�

(x; y; d) =

4�G

2

F

m

3

�

3(4�)

6

X

i=0;1:::5

F

i

r

i

(5.33)

B

�

(x; y; d) = �

4�G

2

F

m

3

�

3(4�)

6

X

i=0;1:::5

(�

�

l

G

i

n

�

l

+ H

i

n

�




)r

i

(5.34)

F

0

(x; y; d) =

1

y

h

48

d

(y

2

� y

3

+ 2xy � 3xy

2

+ 2x

2

� 4x

2

y � 2x

3

)

+ 8(2xy

2

� 6xy + 7xy

3

� 6x

2

+ 6x

2

y + 14x

2

y

2

+ 6x

3

+ 12x

3

y)

+ 4d(6x

2

y � 7x

2

y

2

� 7x

2

y

3

� 12x

3

y � 9x

3

y

2

) + 6d

2

x

3

y

2

(2 + y)

i

+

�

y

h

32

3d

(�3y

2

+ 4y

3

� 6xy + 12xy

2

� 6x

2

+ 16x

2

y + 8x

3

)

+

32

3

(�xy

2

+ 3xy � 6xy

3

+ 3x

2

� 5x

2

y � 10x

2

y

2

� 4x

3

� 8x

2

y)

+

8d

3

(�6x

2

y + 9x

2

y

2

+ 12xy

3

+ 16x

3

y + 12x

3

y

2

) �

16

3

d

2

x

3

y

2

(2 + y)

i

+

�̄

y

h

16xy

2

(2x + y � 1) � 8dx

2

y

2

(1 + y)

i

(5.35)
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F

1

(x; y; d) =

�

y

h

3

2d

n

y

2

+ 8x(1 � x � y)

o

+

3

2

x

n

�y

2

+ 4(x + y + xy � 1)

o

+ 3dx

2

y(

y

8

� 1)

i

+

�

00

y

h

�

y

2

2d

+

xy

2

2

�

dx

2

y

2

8

i

(5.36)

F

2

(x; y; d) =

1

y

h

192

d

2

(

y

2

x

�

y

x

� 1 + 2y + x

)

+

16

d

n

6y � 7y

2

� 6xy + 6x

2

o

+ 16(xy

2

� 3xy � 3x

2

� 3x

2

y) + 12:0dx

2

y(2 + y)

i

+

�

y

h

128

3d

2

(

3y

x

�

4y

2

x

+ 3 � 8y � 4x) +

32

3d

(�6y + 9y

2

� 8x + 10xy � 6x

2

)

+

32

3

(�xy

2

+ 4x + 3xy + 3x

2

+ 3x

2

y) � 8dx

2

y(2 + y)

i

+

�̄

y

h

�

32y

2

d

� 16xy

2

i

(5.37)

F

3

(x; y; d) =

�

y

h

384

d

2

(�

1

x

+

y

x

+ 1) +

192(x � y)

d

� 96x

i

(5.38)

F

4

(x; y; d) =

1

y

h

�

192

d

2

(

y

x

+ 1) +

96y

d

i

+

�

y

h

128

3d

2

(

4

x

+

3y

x

+ 3) �

64y

d

i

(5.39)

F

5

(x; y; d) = 0 (5.40)

G

0

(x; y; d) =

�

y

h

16

d

(�xy +

2xy

2

3

� 2x

2

+ 3x

2

y + 2x

3

)

+ 8(2x

2

� x

2

y �

5x

2

y

2

3

� 2x

3

� 3x

3

y) + 4dx

3

y(2 + y)

i

+

�Æ

y

h

32

d

(xy �

10xy

2

9

+ 2x

2

� 4x

2

y �

8x

3

3

)

i

+

��

y

h

�

16xy

2

d

+ 8x

2

y

2

i

(5.41)

G

1

(x; y; d) = 0 (5.42)

G

2

(x; y; d) =

�

y

h

64

d

2

(1 � x � y) +

16

d

x(y � 2x) + 8x

2

(2 + y)

i

+

�Æ

y

h

128

3d

2

(4x + 4y � 3) +

32

d

x(

10x

3

� y) �

80

3

x

2

(2 + y)

i

(5.43)

G

3

(x; y; d) = 0 (5.44)

G

4

(x; y; d) =

�

y

h

64

d

2

i

+

�Æ

y

h

�

640

3d

2

i

G

5

(x; y; d) = 0 (5.45)

H

0

(x; y; d) =

�

y

h

16

d

(�y

2

+ y

3

� xy +

7xy

2

3

+ x

2

y) + 8(

2xy

2

3

�

7xy

3

3

+

+ x

2

y � 3x

2

y

2

� x

3

y) + 8dx

2

y

2

(�

1

2

+

7y

6

+ x) � d

2

x

3

y

3

i

+

��

y

h

16xy

2

d

+ 8xy

2

(3x + 2y � 4) � 8dx

2

y

3

i

(5.46)

H

1

(x; y; d) = 0 (5.47)
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H

2

(x; y; d) =

�

y

h

64y

xd

2

(1 � x � y) +

16y

d

(x +

7y

3

� 2) + 8xy(x �

2y

3

) � 4dx

2

y

2

i

(5.48)

+

�Æ

y

h

128y

3xd

2

(4x + 4y � 3) +

32y

9d

(18 � 9x � 29y) +

80xy

9

(2y � 3x) +

40dx

2

y

2

3

i

+

��

y

h

16xy

2

d

+ 8xy

2

(3x + 2y � 4) � 8dx

2

y

3

i

(5.49)

H

3

(x; y; d) = 0 (5.50)

H

4

(x; y; d) =

�

y

h

64y

xd

2

�

32y

d

i

+

�Æ

y

h

�

640y

3xd

2

+

320y

3d

i

(5.51)

H

5

(x; y; d) = 0 (5.52)

In the des
ription of form fa
tor, we use the CLEO model, where the di�erential de
ay width is

expressed as [64, 65℄:

d�(�

+

!�

+

�

0

�̄)

d


�

�

dm

2

��

d

e




�

= A

+

+ B

+

� S

�

�

+

: (5.53)

The A

+

and B

+

are given by following formulae:

A

+

=

G

2

F

jV

ud

j

2

(4�)

5

h

2(E

�

�

� E

�

�

0

)(p

�

� q) � E

�

�

q

2

i

� BPS (5.54)

B

+

= �

G

2

F

jV

ud

j

2

(4�)

5

h

P

�

�

f(q � q) + 2(p

�

� q)g + P

�

�

0

f(q � q) � 2(p

�

� q)g

i

� BPS (5.55)

where V

ud

is the 
orresponding element of the Cabibbo-Kobayashi-Maskawa matrix and q is a four-

ve
tor de�ned by q = p

�

� p

�

0

. The fa
tor BPS stands for a square of a relativisti
 Breit-Wigner

fun
tion and a Lorentz-invariant phase spa
e and they are 
al
ulated from the following formulae:

BPS = jBW(m

��

)j

2

 

2P

�

�

m

�

!

0

B

B

B

B

�

2

e

P

�

m

�

1

C

C

C

C

A

; (5.56)

BW(m

��

) =

BW

�

+ �BW

0

�

1 + �

; (5.57)

BW

�

(
m

��

)
=

m

2

�

m

2

�

� m

2

��

� im

�

�

�

�

m

2

��

� ; (5.58)

BW

�
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(
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��

)
=

m

2

�

0

m

2

�

0

� m

2

��

� im

�

0

�

�

0

�

m

2

��

�

; (5.59)
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��

)
= �

�0

m

�

p

m

2

��
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B

B

B

B

B

B

�

e

P
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�

m

2

��

�
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�

;

�

m

2
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�

1

C

C

C

C

C

C

A
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; (5.60)
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0

m

�

0

p

m
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��
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B

B

B

B

B

B

�

e
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�
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��

�

e
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�

�
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2

�

0

�

1

C

C

C

C
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A

3

; (5.61)

where P

�

�

is the momentum of neutrino in the tau rest frame given by P

�

�

= (m

2

�

�m

2

��

)=2m

�

and

e

P

�

(m

2

)

means momentum of pion in the � rest frame 
al
ulated by

e

P

�

(m

2

) =

p

[m

2

� (m

�

+ m

�

0

)

2

℄[m

2

� (m

�

� m

�

0

)

2

℄

2m

: (5.62)
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5.4.2 Des
ription of the major ba
kground PDFs

As mentioned before, the di�eren
e of the eÆ
ien
y between signal and ba
kground is in
luded in

the de�nition of the ba
kground PDF su
h that the normalized ba
kground PDF be
omes

B

i

(x)"(x)

R

dxB

i

(x)"(x)

; (5.63)

where "(x) is the eÆ
ien
y of the signal distribution. This manipulation 
an be 
ategorized into three


ases. Suppose that an intrinsi
 PDF of the ba
kground mode in question is B

int

.

� Case A: Parti
les are identi
al

When all parti
les in the �nal states are 
ommon in both signal and ba
kgrounds, we simply


hange the intrinsi
 signal PDF to that of ba
kground.

� Case B: Parti
le lost

When the ba
kground mode has an extra parti
le and it is not vetoed by the sele
tion 
riteria,

the ba
kground event is sele
ted as signal 
andidate. In this 
ase, the visible PDF is obtained

by a 
onvolution with a probability that the event is not reje
ted (ineÆ
ien
y):

B

vis

(x) =

Z

dyB

int

(x; y)

�

1 � "(y)

�

; (5.64)

where y indi
ates variables of the extra parti
le and

�

1 � "(y)

�


orresponds to the ineÆ
ien
y.

� Case C: Parti
le misidenti�
ation

When a parti
le a is misidenti�ed as either of signal parti
les b (a , b), the di�eren
e of a

fa
tor is "(b! a)="(b! b). Therefore, the visible PDF simply be
omes

B

vis

(x) =

"(b! a)

"(b! b)

(y)B

int

(x); (5.65)

where y indi
ates a set of variable for the misidenti�ed parti
le.

Bremsstrahlung (
ase A)

The two main ba
kgrounds for �

+

�

�

! (�

+

�

0

�̄)(e

�

��̄
) 
andidates 
ome from the bremsstrahlung of

ele
tron. The probability of the emission of the photon for a given dire
tion of the ele
tron f (�

`

) is

expressed by:

f (�

`

) =

e

L= sin �

`

1 �

E


min

E

`

log

�

E


min

E

`

� ; (5.66)

where

e

L is a material budget in terms of radiation length and E


min

is the energy threshold of the

bremsstrahlung photon. The value E


min

= 1 MeV is 
hosen to satisfy the 
ondition E


min

=E

`

�

�

P

e

=P

e

. The momentum and angular distribution of the produ
ed ele
tron and photon are given by

d�=dP

`

d


`

d





as reported in Ref. [66℄. Convolution of these quantities and the original PDF of the

leptoni
 de
ays �

�

! e

�

��̄(
) produ
es the visible PDF of these pro
esses.
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Beam ba
kground (
ase A)

A

idental fake ECL 
lusters from the beam are wrongly re
onstru
ted as a signal photon and be-


ome a sour
e of ba
kgrounds. There are multiple sour
es of the beam ba
kgrounds. The beam

parti
les are s
attered by the residual gas atoms and hit on the inner wall of the beam pipe. The se
-

ondary parti
les generated by the out-of-orbit beam make 
lusters in the ECL. Similarly, the beam

is also s
attered by an ele
tri
 �eld formed by the beam itself: when the ele
tri
 �led is formed by

the parti
les of the same bun
h this is 
alled Tous
hek e�e
t, when it is formed by the other side

of bun
h it is 
alled beam-beam s
attering. Moreover, the syn
hrotron radiation also be
omes the

sour
e of the ba
kground.

Sin
e the pre
ise simulation of these beam ba
kground is diÆ
ult, we re
ord the data of energy

deposit in ECL 
lusters in the real experiment with a random trigger. Then, the beam ba
kground is

overlaid in the event of MC simulation.

In order to des
ribe the PDF of the beam ba
kground, we basi
ally follow the Case A pro
edure.

However, there is a fundamental diÆ
ulty here, i.e., the extra
tion of the intrinsi
 PDF of the beam

ba
kground is not possible. For simpli
ity, we divide the overall phase spa
e into two parts: x =

fP

`

;


`

; P




;





; P

�

;


�

;m

2

��

;

e




�

g ! fy; zg with y = fP

`

;


`

; P

�

;


�

;m

2

��

;

e




�

g and z = fP




;





g. Here, y

and z are variables for the ordinary leptoni
 de
ay �

�

! �

�

��̄ and the beam ba
kground, respe
tively.

With this notation, the sele
ted distribution of z, whi
h is in fa
t a

essible with MC simulation, 
an

be expressed as:

P

sel

(z) =

Z

dy "(y)"(zjy)B

bm

(z)B

ord

(y)

Z

dydz "(y)"(zjy)B

bm

(z)B

ord

(y)

=

B

bm

(z)

Z

dy "(y)"(zjy)B

ord

(y)

Z

dydx "(x)B

bm

(z)B

ord

(y)

; (5.67)

where B

bm

(y) and B

ord

(z) are intrinsi
 PDF of the ordinary leptoni
 de
ay and beam ba
kground,

respe
tively. Removing B

bm

(z) from the normalized PDF term, we get

B(x)"(x)

Z

dxB(x)"(x)

=

B

ord

(y)B

bm

(z)"(x)

Z

dx"(x)B

ord

(y)B

bm

(z)

=

P

sel

(z)B

ord

(y)

Z

dy "(y)"(zjy)B

ord

(y)

�

P

sel

(z)B

ord

(y)

�"(z)

: (5.68)

Here, �"(z) =

R

dy"(y)"(zjy)B

ord

(y) represents an e�e
tive eÆ
ien
y of z for a given y 2 B

ord

(y) and


an be extra
ted from the signal MC distribution.

High polar angle ISR photons (
ase A)

The ISR pro
ess e

+

e

�

! �

+

�

�


 
ombines with the ordinary leptoni
 de
ay �

�

! �

�

��̄ to be
ome a


andidate of the signal. In our analysis, we distinguish the ISR pro
ess in two 
ategories depending

on the angle: 
ollinear and high polar angle ISRs. In the former 
ase, photon jets in the 
ollinear

region (�


e

� m

e

=E

beam

) is treated by means of the stru
ture fun
tion [71℄. These photons do not

enter the a

eptan
e of the dete
tor, hen
e it results in the de
rease of the energy of the � pairs and

boost of the CMS. This is des
ribed in Se
.5.4.4. The latter photon is emitted inside the a

eptan
e

of dete
tor and 
an be a

identally re
onstru
ted as signal photon. The des
ription of the PDF is

straightforward be
ause we only need to modify the 
ross se
tion of the produ
tion e

+

e

�

! �

+

�

�

into radiative one in Eq. (5.11) (of 
ourse, the di�erential de
ay width of the radiative de
ay should

be 
hanged to non-radiative one) as [67℄:

y

d�
(
e

�

e

+

! �

�

�

+

)

d


�

!

d�
(
e

�

e

+

! �

�

�

+



)

dP




d





d


�

: (5.69)

y

So far for the radiative 
ross se
tion, the spin-spin 
orrelation of the �

+

�

�

pair is taken into a

ount only in this paper

while spin-independent formulae are given in Refs. [68, 69℄
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Three-� ba
kground (
ase B)

If either of �

0

from the three-� de
ay �

+

! �

+

�

0

�

0

�̄ is lost and the rest parts are re
onstru
ted as

�

+

! �

+

�

0

�̄ de
ay, the pro
ess be
omes the 
andidate of the signal. Sin
e the intrinsi
 PDF of the

three-� events is given by

B

3�

(x; y) =

d�(`
; ��

0

�

0

)=�

dP

�

0

d


�

0

dP

`

d


`

dP




d





dm

2

��

d

e




�

=

d�(`
; ��

0

�

0

)=�

dxdy

(5.70)

with x = fP

`

;


`

; P




;





; P

�

;


�

;m

2

��

;

e




�

g and y = fP

�

0
;


�

0
g; (5.71)

the visible PDF is 
al
ulated with the ineÆ
ien
y of �

0

as:

B

vis

(x) =

Z

dy B

3�

(x; y) 2

�

1 � "(y)

�

: (5.72)

The fa
tor of two 
omes from the number of 
ounting for the �

0

.

�-� ba
kground (
ase B and 
ase C)

The �

�

! �

�

�

0

(! 

)� de
ay is wrongly sele
ted by the misidenti�
ation of �

�

! �

�

and a failure

of the reje
tion of a photon from �

0

de
ay. The visible PDF of �

�

1

�

+

2

! (�

�

1

�

0

1

(! 


1




2

)�)(�

+

2

�

0

2

�̄)

pro
ess is given by

B

vis

(x) =

"

�!�

"

�!�

Z

dy B

�-�

(x; y) 2

�

1 � "(y)

�

; (5.73)

B

�-�

(x; y) =

d�=�
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1

d
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1
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d
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2

; (5.74)

with x = fP

�

1

;


�

1

; P




1

;





1

; P

�

2

;


�

2

;m

2

�

2

�

2

;

e




�

2

g and y = f





2

g: (5.75)

3�-� ba
kground (
ase B and 
ase C)

The �

�

! �

�

�

0

�

0

(! 

)� de
ay is similarly sele
ted as the �-� ba
kground: in this 
ase two �

0

are

not reje
ted by the sele
tion 
riteria. The visible PDF of �

�

�

+

! (�

�

1

�

0

1

�

0

2

(! 


1




2

)�)(�

+

3

�

0

3

�̄) pro
ess

is

B

vis

(x) =

"

�!�

"

�!�

Z

dy B

3�-�

(x; y) 4

�

1 � "(y)

�

; (5.76)

B

3�-�
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�
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; (5.77)

with x = fP

�

1

;


�

1

; P




1

;





1

; P

�

3

;


�

3

;m

2

�

3

�

3

;

e




�

3

g and y = fP

�

0

2

;


�

0

2

g: (5.78)

5.4.3 Des
ription of other ba
kground modes

The rest minor ba
kground modes are des
ribed e�e
tively in the total PDF rather than the analyti
al

des
ription as presented above, be
ause the number of 
hannels in the 
ategory of other ba
kground

are too large to des
ribe them separately. Suppose that the sele
ted events are only the 
ombination

of signal and the other ba
kgrounds. The total PDF is given by

P(x) = (1 � �)

"(x)S (x)

R

dx "(x)S (x)

+ �

"(x)B(x)

R

dx "(x)B(x)

; (5.79)
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where � is a total fra
tion of other ba
kground modes, S (x) and B(x) are PDFs of signal and ba
k-

grounds, and "(x) is an eÆ
ien
y of signal. Same as the major ba
kground modes, the di�eren
e of

eÆ
ien
y between signal and ea
h ba
kground mode is in
luded in the de�nition of B(x). Here, we

should regard the B(x) as a kind of intrinsi
 distribution for a �xed sele
tion 
riteria. The ba
kground

term is modi�ed as

"(x)B(x)

R

dx "(x)B(x)

=

"(x)S

SM

(x)

R

dx "(x)S

SM

(x)

"(x)S

SM

(x)

R

dx "(x)S

SM

(x)

"(x)B(x)

R

dx "(x)B(x)

(5.80)

=

"(x)S

SM

(x)

"̄

sig

B

sel

(x)

S

sel

(x)

; (5.81)

where "̄

sig

=

R

dx "(x)S

SM

(x) is an average eÆ
ien
y of signal and S

sel

(x) and B

sel

(x) are normalized

PDFs of the sele
ted signal and other ba
kground modes, whi
h are given by

S

sel

(x) =

"(x)S

SM

(x)

R

dx "(x)S

SM

(x)

; (5.82)

B

sel

(x) =

"(x)B

SM

(x)

R

dx "(x)B

SM

(x)

: (5.83)

Thus �nally we get

P(x)

"(x)

= (1 � �)

S (x)

"̄

sig

+ �

S

SM

(x)

"̄

sig

T (x) (5.84)

T (x) �

B

sel

(x)

S

sel

(x)

: (5.85)

The extra
tion of T (x) is performed by S
hmidt method [70℄. As shown in Fig 5.1, the probability

density at a 
ertain point x is obtained from a set of sele
ted Monte Carlo sample by 
ounting number

of events around x. In reality, however, it is not e�e
tive to 
ount the number of event in the entire

12D phase spa
e be
ause the number of statisti
s is limited. Therefore, we divide the phase spa
e

into smaller subsets: T (x) = T (x

1

) �T (x

2

), where x

1

and x

2

are variables of the subsets. Furthermore,

it is also possible to freely 
hange variable into another independent set y a

ording to x = y �

�(x)

�(y)

be
ause when we formulate T (x), the Ja
obians appearing in both numerator and denominator 
an
el

ea
h other. Therefore, it is required to fa
torize T (x) to the extent that the number of entry inside

lo
al region V is suÆ
ient and ex
hange variables su
h that the nature of spe
tra is properly re�e
ted

on. In this analysis, we use the method below:

T (�! e��̄
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): (5.87)

The distribution of these variables are shown in Figs. 5.2 and 5.3 for �

�

�

+

! (e

�

��̄
)(�

+

�̄) and

�

�

�

+

! (�

�

��̄
)(�

+

�̄) 
andidates, respe
tively.
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s are normalized so that both

entries are same.

83



pl
0 1 2 3 4 5

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

muon event

Signal
Others

muon event

(a) P

`

pg
0 1 2 3 4 5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

muon event

Signal
Others

muon event

(b) P




sqrt_invpg
0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

muon event

Signal
Others

muon event

(
)

p

1=P




pr
0 1 2 3 4 5

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

muon event

Signal
Others

muon event

(d) P

�

mr2
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

muon event

Signal
Others

muon event

(e) m

2

��

costh_l
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

0

0.005

0.01

0.015

0.02

0.025

muon event

Signal
Others

muon event

(f) 
os�

`

ph_rho_plus_phi_l
3− 2− 1− 0 1 2 3

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

muon event

Signal
Others

muon event

(g) �

�

+ �

`

ph_l_minus_ph_g
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

muon event

Signal
Others

muon event

(h) �

`

� �




costh_pitilde
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

0

0.002

0.004

0.006

0.008

0.01

0.012

muon event

Signal
Others

muon event

(i) 
os

�

�

�

psi_lg
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

muon event

Signal
Others

muon event

(j)  

costh_rho
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

muon event

Signal
Others

muon event

(k) 
os�

�

four_prod
0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3 0.4

0

0.005

0.01

0.015

0.02

0.025

0.03

muon event

Signal
Others

muon event

(l) "pppp=EEEE

Figure 5.3: Distribution of various variables for �
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tively. Both statisti
s are normalized so that both entries

are same.
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�
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�

. Blue and red graphs represent distribution when the ISR e�e
t

is turned on and o�, respe
tively.
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Figure 5.5: ISR emission 
an be regarded as Drell-Yan pro
ess. E represent energy of e

�

and e

+

in

the ee-CMS frame.

5.4.4 Implementation of the e�e
t of 
ollinear ISR

As mentioned before, the ISR is 
ategorized into two groups depending on the dire
tion of the emis-

sion of the photon vs that of beam. Sin
e the dominant emission of the ISR is inside the region

of �

e


� m

e

=E

beam

= 10

�4

, we treat this e�e
t as a 
ollinear ISR. Figure 5.4 shows the generated

distribution of the momentum of the muon in the � ! ���̄ de
ay. Be
ause of the energy deposit of

the beam by ISR emission, the momentum distribution shifts in smaller side. Furthermore, CMS of

beam be
omes not to 
oin
ide with ��-CMS frame. We take into a

ount the energy loss by means

of a stru
ture fun
tion D(x) [71℄. As Fig. 5.5 shows, ISR photons are assumed to be 
ollinear with

beam axis

z

and the fra
tion of the energy deposit from e

�

and e

+

are x

1

and x

2

, respe
tively. Similarly

to the well known Drell-Yan pro
ess, the probability of the ISR emission is des
ribed as a double


onvolution with fun
tion D(x):

D(x) = D
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z

It is known that the e�e
t of large angle ISR is suppressed by an additional fa
tor � [68℄.
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where � is the step fun
tion, � =

2�

�

(L � 1), L = log

�

s

m

2

e

�

and L = log

�

sx

2

m

2

e

�

. Thus the original PDF

P

org

(s) for an invariant mass squared s is modi�ed to

P

vis:

(s) =

Z

1

0

dx

1

Z

1

0

dx

2

D(x

1

)D(x

2

)P

org

(
s(1 � x

1

)(1 � x

2

)
)
� J; (5.88)

where J is a Ja
obian whi
h 
onverts the di�erential variables from ��-CMS frame to the CMS of

beam and given as produ
ts of three Ja
obians: J

a

= P

2

a

E

0

a

=P

02

a

E

a

for a = l; 
; �. The supers
ript

prime indi
ates that it is de�ned in the ��-CMS frame.

5.4.5 Implementation of the e�e
t of dete
tor resolution

The observed momenta and energies of parti
les are distorted by measurement with dete
tors. This

e�e
t is taken into a

ount based on the information of the error of the dete
tor. The response of

dete
tor is des
ribed by a resolution fun
tion R(x; x

0

), where x and x

0

are, respe
tively variables for

observed and true values. In the presen
e of the distortion, the visible PDF is written as:

P

vis:

(x) =

Z

dx

0

P(x

0

)R(x; x

0

): (5.89)

In this analysis, we assume that the resolution fun
tion is a produ
t of ea
h parti
le: R(x; x

0

) =

R(P

`

;


`

) � R(P




;





) � R(P

�

;


�

) � R(P




0

;





0

) � R(P




0

;





0

), where 


0

means it is generated from the

signal �

0

. The resolution fun
tion of the 
harged tra
k�` and ��is given by

R(P; P

0

) =

1

(2�)

3=2

p

detE

exp

(

�

�P

T

E

�1

�P

2

)

; �P = P � P

0

; (5.90)

where E is an inverse of the varian
e-
ovarian
e matrix de�ned in the Cartesian 
oordinate system

and P is a momentum of the re
onstru
ted parti
le. The E has a form diag(1=�

2

1

; : : : ; 1=�

2

n

) if all

variables are not 
orrelated. Sin
e the traje
tory of 
harged tra
k is �tted by the Helix parameters,

the error matrix is also given in this format, hen
e we 
onvert it with Ja
obian as �H

T

E

�1

�H !

�P

T

J

�1

E

�1

J�P � �P

T

E

�1

Cartesian

�P, where �H is a ve
tor formed by the helix parameters and J is

the Ja
obian de�ned as J = �H=�P. The MC distribution of the error matrix is 
alibrated using


osmi
 ray and s
aled so that the distribution be
omes the Gaussian distribution.

For the re
onstru
tion of photon, it is known that the di�eren
e of energy �E = E � E

0

is not

symmetri
 Gaussian as the 
ase of the 
harged tra
k. The asymmetri
 response is des
ribed by the

logarithmi
 Gaussian, whi
h is obtained by ex
hange of variable x = log(� � �E) where x follows

Gaussian distribution. � determines the maximum available energy and �E 
hara
terizes the degree

of asymmetry. The angular response of the dete
tor is given as errors of �




and �




with simple

diagonal form: (�; �)

T

E

�1

(�; �) = (�; �)

T

diag(1=�

2

�

; 1=�

2

�

)(�; �). Similarly to the 
ase of 
harged

parti
le, it is 
onverted to Cartesian distribution. These parameters are 
alibrated using e

+

e

�

! 



pro
ess and 
on�rmed by �

0

! 

 and �

0

! 

 de
ays measuring their invariant masses [72℄.
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5.5 Fitting

As des
ribed above, the visible PDF for an observed event x is formulated:

P(x) = (1 �

X

i

�

i

) �

S (x)"(x)

R

dxS (x)"(x)

+

X

i

�

i

B

i

(x)"(x)

R

dxB

i

(x)"(x)

;

By means of this PDF, for a given set of sele
ted events, we 
onstru
t the (negative) logarithmi


likelihood fun
tion as

L(�̄; ��) = �log

0

B

B

B

B

B

�

Y

k

P(x

k

)

1

C

C

C

C

C

A

= �

X

k

log

�

P(x

k

)

�

: (5.91)

As Eq. (5.91) shows, the free parameters are only Mi
hel parameters �̄; �� and �

i

are �xed to values

evaluated by MC simulation. The asso
iated un
ertainties of �

i

are taken into a

ount as systemati


un
ertainties.

5.6 Validation of �tter

5.6.1 Linearity of �tter

In order to validate our �tter, we 
he
k the linearity response to the Mi
hel parameters whi
h are not

the SM values. Figure 5.6 shows the linearity of the �tter for ea
h Mi
hel parameter value. Ea
h

point is statisti
ally independent and obtained by using 9:2 M generated events for �

�

! e

�

��̄
 and

2:3M events for �

�

! �

�

��̄
. A

ording to the �gures, we 
an observe a good linearity of the �tter.

Furthermore, we also 
he
k same 
on�rmation for the sele
ted sample, where sele
tion 
riteria

are applied. Figures 5.7
 and 5.7d show the linearities for sele
ted statisti
s, where 4:7 M �

�

!

�

�

��̄
 de
ay events are �tted. Still the linear response 
an be properly seen. We also attempt to �t

4:4M �

�

! e

�

��̄
 sele
ted events and only result of �� shows robust linearity as seen in Fig 5.7b. The

linearity of �̄ is degraded due to its low sensitivity. Intuitively, this result seems strange based on the

sensitivities obtained �ttingMi
hel parameters to the generated events, be
ause statisti
al un
ertainty

should be proportional to the inverse of square root of event number. However, as explained in the

next se
tion, it is found that the low sensitivity of �̄ 
omes from sele
tion with 
os�

`


, whi
h is

ne
essary to 
hoose events.

5.6.2 Dependen
e of sensitivity on sele
tion 
riteria

In the last se
tion, we see that the sensitivities of Mi
hel parameters obtained by the sele
ted sample

are degraded 
ompared to those of the original generated events. This situation 
an be explained by

the e�e
t of sele
tion 
riteria. Figures 5.8 and 5.9 show sensitivity dependen
es on E




and 
os�

`


.

Sin
e statisti
al un
ertainty should be proportional to the inverse of square root of the event number,

we use �

p

N to evaluate the e�e
t of sele
tion, where � is a statisti
al un
ertainty of Mi
hel pa-

rameters and N is a number of �tted events. A

ording to these �gures, we 
an 
learly observe that

the sensitivities 
hange even if the e�e
t of de
rease of event number is 
ompensated by the fa
tor

of

p

N. This is equivalent to remark that the importan
e of events in phase spa
e is not uniform:

events whi
h have higher energy photons and smaller 
os�

`


values give the large impa
t on the �t-

ted values of Mi
hel parameters. In parti
ular, the 
ondition of angle between lepton and photon is


ru
ial be
ause lower 
ut of the 
os�

`


enhan
es the fra
tion of ba
kgrounds. It is ideal to relax these


onditions as loose as possible, however, we 
annot help using the sele
tion 
riteria to retain realisti


purities.
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Figure 5.7: Linearity of �tter obtained using 4:4 M sele
ted events for � ! e��̄
 and 4:7 M events

for � ! ���̄
. The horizontal axis represents value of input Mi
hel parameter and verti
al axis

represents the �tted Mi
hel parameter (a)(b) �̄ and �� for �

�

! e

�

��̄
, (
)(d) �̄ and �� for �

�

!

�

�

��̄
. The blue line is a �tted linear fun
tion and its gradient and inter
ept are shown.
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Figure 5.8: Dependen
e of sensitivities of Mi
hel Parameters for � ! e��̄
 de
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depen-
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)(d) 
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es on �̄ and ��. The verti
al axis represents a normalized

sensitivity de�ned as �

p
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5.6.3 Fitting Mi
hel parameters with ba
kground PDFs

For the experimental situation, we 
annot distinguish the events a

ording to their sour
es. With MC

events, however, we 
an separately turn on and o� ea
h 
ontribution. The PDFs of ea
h ba
kground

mode is 
on�rmed by mixing the ba
kground mode in question and �tting Mi
hel parameters with

the PDF of signal.

x

Figures 5.10 and 5.11 show the 
ontours of the likelihood for the mixed sample

for (e
; ��

0

) and (�
; ��

0

), respe
tively. In both 
ases, the analyti
al implementations are more or

less proper.

On the 
ontrary, we 
an observe bias due to the in
lusion of others. In parti
ular, these others

always tend to shift �� in the negative side. As a matter of fa
t, the 3�-� de
ay, whi
h is explained

in Se
. 5.4.2, was previously in
luded in the fra
tion of the others for �

�

�

+

! (�

�

��̄
)(�

+

�

0

�̄)


andidates. However, we found that the e�e
tive des
ription of 3�-� in the others shifted the �tted

Mi
hel parameter (espe
ially ��), and de
ided to des
ribe it analyti
ally. This is one of a proof that

the simpli�
ation of the T = B

sel

=S

sel

de�ned in Eq. (5.85) into smaller subsets (like as we did in

Eq. (5.86) or (5.87)) fails to re�e
t the high dimension 
orrelations in the total PDF. We tried more

than �fty ways to simplify the T , but the tenden
ies were always more or less similar: �� tends to

move into negative side. Up to now, we 
ompromised on the 
urrent method and this is in
luded as

a sour
e of systemati
 bias.

Figure 5.12 shows 
ontours of the likelihood fun
tions for the 
ombined statisti
s, where all

ba
kgrounds are in
luded in the total PDFs. The 
entral values of �tted Mi
hel parameters are

�̄

e

= �2:5; (5.92)

(��)

e

= �0:25; (5.93)

�̄

�

= 0:67; (5.94)

(��)

�

= �0:22: (5.95)

We regard these residuals from the SM values of �̄ = �� = 0 as systemati
 un
ertainties due to

the limited pre
ision of ba
kground des
riptions. The magnitudes of these biases are less than 1�

statisti
al un
ertainties of experimental events. Conversely, the pre
ision of PDF des
riptions 
an be

justi�ed within this level.

x

Although we do not present in this thesis, we have also 
he
ked ea
h PDF by �tting other Mi
hel parameters. For

example, (`; ��

0

) de
ay has a sensitivity on �, �, � and ��. Therefore, it is possible to 
on�rm the PDF by �tting them.

Furthermore, sin
e the PDF of (��

0

; ��

0

) de
ay has a �

�

parameter (the di�erential de
ay width of �

+

! �

+

�

0

�̄ is

proportional to A + �

�

B � S

�

�

and we use the SM value �

�

= 1 in Eq. (5.55)), we also 
on�rmed this PDF by �tting �

�

.
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Figure 5.10: Contour of the likelihood obtained with 
ontaminated sample. (a) (e; ��

0

) + 


brem:

,

(b) (e
; ��

0

) + 


brem:

and (
) others, are mixed to (e
; ��

0

) statisti
s. Horizontal and verti
al axises

represent �̄ and ��. Contours 
orrespond to �L = 0:5, �L = 4 � 0:5 and �L = 9 � 0:5 in order from

inside to outside. Cross hairs represent the SM predi
tion.
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Figure 5.11: Contour of the likelihood obtained with 
ontaminated sample. (a) (�; ��

0

) + 


beam

, (b)

(�; ��

0

) + 


ISR

, (
) (�
; ��

0

�

0

), (d) (��

0

; ��

0

), (e) (��

0

�

0

; ��

0

) and (f) others, are mixed to (�
; ��

0

)

statisti
s. Horizontal and verti
al axises represent �̄ and ��. Contours 
orrespond to �L = 0:5,

�L = 4 � 0:5 and �L = 9 � 0:5 in order from inside to outside. Cross hairs represent the SM

predi
tion.
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Figure 5.12: Contours of the likelihood fun
tion for 
ombined statisti
s: (a) all �! e��̄
 
andidates,

(b) all � ! ���̄
 
andidates and (
) 
ombined. Contours 
orrespond to �L = 0:5, �L = 4 � 0:5 and

�L = 9�0:5 in order from inside to outside. Cross hairs represent the SM predi
tion and white 
ir
le


orresponds to the best �t value of Mi
hel parameters.
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Stability of Mi
hel parameters on E

LAB

extra


We also 
he
ked the stability of �tted Mi
hel parameters on the variation of E

LAB

extra


value. Generally,

the fra
tions of ba
kgrounds 
hange as the requirement varies and we 
an 
on�rm the validity of

the PDFs. Figure 8.2 shows the obtained Mi
hel parameters. The variations of the �tted values are

within their statisti
al un
ertainties.
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Figure 5.13: Dependen
e of E

LAB
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ut on �̄ (a) and �� (b). Horizontal and verti
al axises are extra-

gamma energy 
ut and �tted Mi
hel parameters respe
tively. The red markers with error bars 
orre-

spond 
enter values and their statisti
al errors.
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Chapter 6

Analysis of the experimental data

As des
ribed in 5.4, the Mi
hel parameters are measured by �tting the total PDF de�ned as

P

total

(x) = (1 �

X

i

�

i

)

"(x)S (x)

R

dx "(x)S (x)

+

X

i

�

i

"(x)B

i

(x)

R

dx "(x)B

i

(x)

; (6.1)

and the dependen
e of "(x) 
an
els when we formulate the logarithmi
 likelihood fun
tion. Suppose

that "(x) 
hanges "(x)! "(x)R(x), where R(x) is a 
orre
tion fa
tor whi
h represents the 
hange of

sele
tion eÆ
ien
y. Following totally the same pro
edure as explained in Se
. 5.4, the normalization

of signal term be
omes

�

SM

sig

"̄

sig

N

sel

X

x

i

2"

e

S

SM

e

S (x

i

)R(x

i

)

e

S

SM

(x

i

)

(6.2)

=

�

SM

sig

"̄

sig

N

sel

X

x

i

2"

e

S

SM

h

E

0

(x

i

) + E

1

(x

i

) � �̄ + E

2

(x

i

) � �

00

+ E

3

(x

i

) � ��

i

R(x

i

)

E

0

(x

i

)

; (6.3)

Consequently, the relative normalization is modi�ed:

*

E

i

E

0

+

x2"S

SM

!

*

E

i

E

0

R

+

x2"S

SM

; (6.4)

whi
h means that every event is weighted with additional fa
tor R(x). In the presen
e of R(x), the

normalizations of ba
kground terms also 
hange and result in an additional fa
tor R

i

=< R >

x2B

i

.

The di�eren
e of the eÆ
ien
y between the real experiment and MC simulation is taken into

a

ount by extra
ting the R(x). We tabulate R(x) as produ
ts of 
orre
tions from a trigger eÆ
ien
y

and re
onstru
tion eÆ
ien
ies of all parti
les.

6.1 Trigger eÆ
ien
y 
orre
tions

�

The information of the trigger is stored as bits from the global de
ision logi
 (GDL), whose ea
h bit


orresponds to ea
h sour
e of the trigger. The GDL data are pa
ked with eight bytes format, hen
e at

maximum 64 sour
es of information are extra
ted. As explained in Se
. 3.2.7, all events are required

to be �red by following spe
i�
 bits: �s zt2, klm opn, klm b2b, 
lst4 and hie. Figure 6.1 shows the

distribution of GDL trigger bits for both MC simulation and the experiment separately for SVD1

and SVD2 
ases, respe
tively. As the �gure shows, it is apparent that the MC does not simulate the

trigger signals so pre
isely.

�

Hereafter, several 
orre
tion fa
tors are evaluated. The binning of those fa
tors are summarized in Se
. 6.4

97



Figures 6.2 and 6.3 show dependen
e of the trigger eÆ
ien
y on the momentum and angle of

lepton for both de
ay modes�(e
; ��

0

) and (�
; ��

0

)�for SVD1 and SVD2, respe
tively. In parti
-

ular, (e
; ��

0

) 
ase, we 
an see quite strong dependen
e on both variables. It is known that this e�e
t

arises from an improper 
alibration of the energy threshold of Bhabha veto. For this reason, we are

required to obtain the 
orre
tion fa
tor R

trg

= "

EX

="

MC

to take into a

ount the systemati
 e�e
t from

trigger simulation.

To evaluate R

trg

, we �rst separate the events into two 
ategories depending on the sour
e of

trigger: one is a 
harged trigger Z and the other is a neutral trigger N, whi
h are de�ned as:

Z =

(

�s zt2 or klm opn or klm b2b for SVD1

klm opn or klm b2b for SVD2

; (6.5)

N = 
lst4 or hie: (6.6)

Noting that the 
harged and neutral triggers are physi
ally independent signals, we 
an re
ognize

that the 
harged trigger eÆ
ien
y is "

Z

= N

N&Z

=N

N

and "

N

= N

N&Z

=N

Z

be
ause the fa
tor from other

eÆ
ien
ies should 
an
el. Sin
e an event is triggered unless both triggers are ina
tive, the eÆ
ien
y

is obtained as

"

trg

= 1 � (1 � "

N

)(1 � "

Z

) = "

N

+ "

Z

� "

N

"

Z

: (6.7)

As a matter of fa
t, Figs 6.2 and 6.3 are obtained by this Eq. (6.7). The eÆ
ien
y 
orre
tion R

trg

is

obtained by 
omparing the di�eren
e of Eq. (6.7) between the experiment and MC simulation as:

R

trg

=

�

N

N&Z

N

N

�

EX

+

�

N

N&Z

N

Z

�

EX

�

�

N

N&Z

N

N

�

N

N&Z

N

Z

�

EX

�

N

N&Z

N

N

�

MC

+

�

N

N&Z

N

Z

�

MC

�

�

N

N&Z

N

N

�

N

N&Z

N

Z

�

MC

: (6.8)

In this analysis, we obtain R

trg

as a fun
tion of P

LAB

`

, 
os�

LAB

`

and !

h

as produ
ts of two 2D PDFs as

R

trg

= R

trg

(P

LAB

`

; 
os�

LAB

`

)

R

trg

(P

LAB

`

; !

h

)

R

trg

(P

LAB

`

)

; (6.9)

where !

h

is 
alled heli
ity sensitive parameter and 
al
ulated by following formula:

!

h

=

Z

�2[�

1

;�

2

℄

d�

B

0

� n

�

z

A

0

(6.10)

where A

0

and B

0

are spin-independent and spin-dependent terms de�ned in the signal PDF

(Eqs. (5.54) and (5.55)). This !

h

represents an average magnitude of the polarization of �

+

! ��

0

�̄

in the dire
tion of the movement of �

+

[73℄. The idea of this tabulation (Eq. (6.9)) is to take into

a

ount the 
orrelations among three variables as many as possible without loss of statisti
s per ea
h

bin. The 
orre
tion fa
tor R

trg

is shown in Figs 6.4 and 6.5 for �

�

! e

�

��̄
 and �

�

! �

�

��̄
 
andi-

dates, respe
tively. Although we evaluate this this fa
tor in two dimensional spa
e as Eq. (6.9), they

are proje
ted onto one axis to observe them easily.

6.2 Parti
le sele
tion eÆ
ien
y 
orre
tions

The systemati
 e�e
t from parti
le sele
tion eÆ
ien
ies are also in
luded in R. The total e�e
ts

is assumed to be fa
torized into produ
ts of all parti
les: R

tot

= R

`

R




R

�

R

�

0

. All of these fa
tors

are extra
ted as fun
tions of momenta and 
osine of polar angles for 
orresponding parti
les. For


harged tra
ks (the lepton and pion), we regard the 
orre
tion fa
tor as a produ
t of the 
harged-tra
k

re
onstru
tion eÆ
ien
y and the PID sele
tion eÆ
ien
y as R

l;�

= R

re


R

PID

.
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Figure 6.1: GDL trigger bits distribution: (a) (e

�
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+

) de
ay 
andidate and (b) (�
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+

) de
ay


andidate. For both 
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The pion PID 
orre
tion fa
tor is obtained by the measurement of D

�+

de
ay D

�+

! D

0

�

+

!

(K

�

�

+

)�

+

s

. Be
ause the di�eren
e of mass between D

�+

and D

0

is small (� 140MeV), the momentum

of �

+

s

from D

�+

de
ay is small (the s in the subs
ript stands for soft) and this 
hara
teristi
 tra
k

enables us to spe
ify the pro
ess without PID of D

0

daughters. Sin
e D

0

! K

+

�

�

de
ay is CKM-

suppressed (B(D

0

! K

+

�

�

)=B(D

0

! K

�

�

+

) � 0:4%), we 
an assume that the 
harges of two pions

are same. Therefore, we 
an determine the �

+


andidate uniquely from the two rest 
harged tra
ks.

Then, the eÆ
ien
y of pion identi�
ation for a 
ertain �-likelihood value is extra
ted observing the

�

+

tra
k of D

0

daughter by

"

�ID

=

number of � tra
ks identi�ed as �

number of � tra
ks

; (6.11)

and the 
orre
tion fa
tor is extra
ted by the 
omparison of the eÆ
ien
ies between the experiment

and MC simulation as R = "

EXP

�ID

="

MC

�ID

.

The lepton PID 
orre
tion is taken from two photon pro
ess e

+

e

�

! e

+

e

�

`

+

`

�

(` = e; or �).

After a reje
tion of 
osmi
 rays with an opening angle of `

+

`

�

pair, events are sele
ted if either of

lepton satis�es P

`

> 0:99 (` = e or �). The lepton identi�
ation eÆ
ien
y is obtained using the

a

ompanying tra
k as

"

lID

=

number of ` tra
ks identi�ed as l

number of ` tra
ks

: (6.12)

Similarly to �ID 
ase, the 
orre
tion fa
tor is extra
ted as R = "

EXP

`ID

="

MC

`ID

. These PID 
orre
tion

fa
tors are 
onventional ones used in many Belle analyses.

The 
ommon fa
tor of R

re


is obtained using the de
ay of four-
harged tra
k events and explained

in Se
. 6.3.

6.2.1 �

0

ID and 
ID eÆ
ien
y 
orre
tions

�

0

and 
 ID eÆ
ien
y 
orre
tions are obtained by analyzing two de
ays, �

+

�

�

! (�

+

�

0

�̄)(�

�

�

0

�)

and �

+

�

�

! (�

+

�

0

�̄)(�

�

�). The �

0

eÆ
ien
y is formulated by 
omparing the number of sele
ted and

generated events as:

"

�

0

=

N

sel

(��

0

; ��

0

)=N

prod

(��

0

; ��

0

)

N

sel

(�; ��

0

)=N

prod

(�; ��

0

)

=

N

sel

(��

0

; ��

0

)

N

sel

(�; ��

0

)

�

N

prod

(�; ��

0

)

N

prod

(��

0

; ��

0

)

(6.13)

=

N

sel

(��

0

; ��

0

)

N

sel

(�; ��

0

)

B(�; ��

0

)

B(��

0

; ��

0

)

; (6.14)

where N

prod

and N

sel

mean number of produ
ed and sele
ted events. The last fa
tor is a ratio of

bran
hing ratio and 
an be ignored be
ause they are pre
isely measured within a few sub per
ents

and 
an
els in the 
al
ulation of the 
orre
tion fa
tor when the MC events are generated a

ording

to the measured bran
hing ratios.

The sele
tion 
riteria for 
ommon parti
les (� and ��

0

) are basi
ally arbitrary be
ause the eÆ-


ien
ies 
an
el. On the other hand, for the rest �

0

, it is required to apply 
ompletely same sele
tion


riteria as that of signal, whi
h are not shared in both numerator and denominator. The event sele
-

tion is 
omposed of two stages: presele
tion of �

+

�

�

and �nal sele
tion. The presele
tion of �

+

�

�

is


ommon to the event sele
tion explained in Se
. 4.1. In the sele
tion of these 
andidates, it is not

ne
essarily important to in
rease its purity be
ause we extra
t the lo
al value by binning momentum

and dire
tion. For example, the re
onstru
tion of �

+

! �

+

�

0

�̄ is 
ontaminated from several multi-

pion de
ays like �

+

! �

+

�

0

�

0

�̄, �

+

! �

+

�

0

�

0

�

0

�̄ and so on, however, this does not 
ause serious

problems be
ause the type of parti
le is same and we do not reje
t event by a veto of su
h extra
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Table 6.1: Sele
tion 
riteria for (��

0

; ��

0

) and (�; ��

0

) 
andidates

y

1

O: Common 
harged � is sele
ted by P

�

> 0:98 and P

�

< 0:01.

2

O: Common �

0

is sele
ted by 115 MeV=


2

< M





< 150 MeV=


2

,

where 
 is sele
ted with energy threshold E




> 40 MeV.

3

O: Common pair of ��

0

should form � 
andidate with 0:5 GeV=


2

< M

��

0
< 1:5 GeV=


2

.

4

O: A �

0

whi
h is not 
ommon is sele
ted with same sele
tion 
riteria as that of signal �

0

.

5

O: A 
 whi
h is not 
ommon is sele
ted with same sele
tion 
riteria as that of signal 
.

6

O: When 
 eÆ
ien
y 
orre
tion is extra
ted, a �

0

! 

 
andidate whi
h is not 
ommon is

sele
ted with a loose 
ut 80 MeV=


2

< M





< 190 MeV=


2

. The 
 
andidate is randomly


hosen from the two photons.

y

Common means parti
les are shared in both denominator and numerator in Eq. (6.14).

Table 6.2: Fra
tions of sele
ted 
andidates

y

(��

0

; ��

0

) 
andidate (�
; ��

0

) 
andidate (�; ��

0

) 
andidate

(��

0

; ��

0

) 40% (��

0

; ��

0

) 37% (��

0

; ��

0

) 28%

(��

0

�

0

; ��

0

) 26% (��

0

�

0

; ��

0

) 24% (�; ��

0

) 20%

(��

0

�

0

; �) 8% (��

0

�

0

; �) 9% (��

0

�

0

; ��

0

) 15%

(��

0

�

0

; �) 4% (��

0

; �) 7% (��

0

�

0

; �) 9%

others 20% (��

0

�

0

; �) 4% (��

0

; �) 7%

others 20% others 20%

parti
les. The only problem is the 
ontamination from muon instead of the 
harged pion re
onstru
-

tion, whi
h may have a di�erent behavior in the dete
tor. In our extra
tion, the in
lusion of muon is

less than 10%, hen
e, we ignore this. Using Eq. (6.14) and noting the 
an
ellation of the fa
tor of

bran
hing ratio, we obtain the R

�

0

as:

R

�

0
=

"

EX

�

0

"

MC

�

0

=

N

EX

sel

(��

0

; ��

0

)

N

MC

sel

(��

0

; ��

0

)

�

N

MC

sel

(�; ��

0

)

N

EX

sel

(�; ��

0

)

: (6.15)

The 
ID eÆ
ien
y 
orre
tion 
an be also tabulated using same de
ays, where one of two photons

from �

0

is randomly sele
ted. Similarly to �

0


ase, same sele
tion 
riteria as signal must be applied

for 
 
andidates. Thus the formula is expli
itly written as

R




=

"

EX




"

MC




=

N

EX

sel

(�
; ��

0

)

N

MC

sel

(�
; ��

0

)

�

N

MC

sel

(�; ��

0

)

N

EX

sel

(�; ��

0

)

: (6.16)

In Tables 6.1 and 6.2, we summarize the sele
tion 
riteria and the 
ontribution of various modes for

(��

0

; ��

0

), (�
; ��

0

) and (�; ��

0

) 
andidates. The measured R

�

0

and R




are shown in Figs. 6.6 and 6.7

as fun
tions of momenta and dire
tions for ea
h parti
le.

y

The others mainly 
ome from multi-pion de
ays n� (n � 4).
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: (a)(b)(
) P

�

0
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�

0
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6.3 Re
onstru
tion eÆ
ien
y 
orre
tions

In many analysis of B meson at Belle, the information of D

+�

! D

0

(! K

S

�

+

�

�

)�

+

s

de
ay is 
on-

ventionally used to extra
t the 
harged tra
k re
onstru
tion eÆ
ien
y. Similarly to measurement

of �ID eÆ
ien
y 
orre
tion explained above, the 
hara
teristi
 low momentum tra
k of �

+

s

(from

D

+�

! D

0

�

+

s

) is utilized to sele
t events and the mathemati
al 
onstraints of masses of D

0

and K

S

allow us to determine the momentum of a lost 
harged pion (from K

S

! �

+

�

�

de
ay) only from

partially observed information. However, the typi
al momentum of the pion from this pro
ess tends

to be low (up to � 1 GeV=
) and not so useful for this analysis. Moreover, the requirement of the

tra
k re
onstru
tion used in this analysis is not same as previous study, thereby we need to separately

obtain the eÆ
ien
y 
orre
tion for this analysis.

The tra
k re
onstru
tion eÆ
ien
y 
orre
tion R

re


is obtained using four-
harged tra
k events

from �

+

�

�

de
ay where one side of tau de
ays leptoni
ally and the other side de
ays into three


harged pions. Suppose that (`

�

; �

+

�

�

�

+

) de
ay o

urs. The 
harged tra
ks are sele
ted by the same

sele
tion 
riteria as our main analysis (as explained in Chapter 4, the 
harged tra
k is required to

satisfy d

r

< 2 
m, jd

z

j < 5 
m and P

LAB

t

> 0:1 GeV=
). Moreover, we require just one negative sign

lepton 
andidate whi
h has a lepton likelihood ratio of P

e

> 0:98 or P

�

> 0:98. In this 
ase, the

number of events whi
h have four re
onstru
ted tra
ks be
omes

N

4

= N

0

"

2

+

"

�

�

�

"

(4)

other

; (6.17)

where N

0

is a number of produ
ed events, �

�

is a produ
t of the eÆ
ien
ies of both lepton identi�
a-

tion and negative 
harged tra
k re
onstru
tion, "

�

is the eÆ
ien
y of the 
harged tra
k re
onstru
tion

and "

(4)

other

is other eÆ
ien
ies for four-
harged tra
k events that is explained later. Similarly, we 
an


al
ulate 
orresponding number for three 
harged tra
k events as

N

+

3

= N

0

�

�

"

2

+

(1 � "

�

)"

(3)

other

; (6.18)

N

�

3

= 2N

0

�

�

"

�

"

+

(1 � "

+

)"

(3)

other

; (6.19)

where the sign of N

�

3

represents the net 
harge of observed tra
ks. Here, the fa
tor of two in Eq. (6.19)

appears from way of 
ounting for positively-
harged tra
ks. Note that the subs
ript 3 does not mean

number of produ
ed tra
ks but re
onstru
ted ones. Therefore, we obtain following relations as:

N

4

N

4

+ �N

+

3

= "

�

; (6.20)

N

4

N

4

+ �N

�

3

=2

= "

+

; (6.21)

where we de�ned � = "

(4)

other

="

(3)

other

. As des
ribed later, we do not apply di�erent sele
tion 
riteria

separately for the three and four tra
k events, therefore, we 
an de
ompose the fa
tor of the other

eÆ
ien
ies into 
ontribution of the trigger and 
ommon sele
tion 
riteria as "

(i)

other

= "

(i)

trg

"


om

(i = 3; 4).

The 
orre
tion fa
tor of the trigger 
an be obtained in the same way as explained in Se
. 6.1. In this

extra
tion, we use an average value of "

(3)

other

and "

(4)

trg

a

ording to the observed events.

In order to extra
t kinemati
 dependen
e on the re
onstru
tion eÆ
ien
y 
orre
tion, we modify

Eq. (6.20) as:

�N

4

(P

LAB

; 
os�

LAB

)

N

4

+ �N

+

3

=

N

prod

(P

LAB

; 
os�

LAB

)"

�

(P

LAB

; 
os�

LAB

)

N

tot

prod

; (6.22)

where �N

4

(P

LAB

; 
os�

LAB

) represents number of entry inside a 
ertain bin tabulated based on the

momentum and angle of the negative pion 
andidate. The fa
tor of N

prod

(P

LAB

; 
os�

LAB

)=N

tot

prod

in
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Figure 6.8: Distribution of a 
osine of angle between lepton and pion 
andidates. Red, water blue

and green histograms, respe
tively represent two, four and six tra
k events, where these numbers

mean those of produ
ed ones. White histogram represents other 
ontributions like � ! nh � K

S

,

� ! ���n�

0

(n � 1) and two photon pro
ess. The 
osine is de�ned as maximum value among the


ombinations of (`

�

; �

+

1

) and (`

�

; �

+

2

) (vi
e versa for an opposite 
harge 
on�guration).

the right hand side of Eq. (6.22) represents the fra
tion of the produ
ed events whi
h have spe
i�


momentum and 
osine of the polar angle.

Sin
e the fa
tor of "


om

does not appear in Eq. (6.22) as long as same sele
tion 
riteria are applied

for three and four tra
k events, the obtained re
onstru
tion eÆ
ien
y is stable for the 
ommon se-

le
tion and we 
an utilize this nature to enhan
e purity. In parti
ular, to suppress gamma 
onversion

pro
ess 
 ! ee, we apply a loose sele
tion 
riteria in the angle between the lepton 
andidate and

other positively-
harged tra
k events. Furthermore, we dis
ard events if either of the two positive

pion 
andidates has a large lepton identi�
ation probability, i.e., we reje
t if P

e

> 0:15 or P

�

> 0:15.

The situation of the sele
tion is shown in Figs. 6.8 and 6.9. The obtained purity is summarized in

Table 6.3.

Whole story also holds for reversal 
harge 
on�guration (`

+

; �

�

�

+

�

�

) on
e the sign of N

3

is

swapped. Moreover, in prin
iple, these formulae hold for other four-tra
k de
ay pro
esses like

(`

�

; �

+

�

�

�

+

�

0

) and (`

�

; �

+

�

�

�

+

�

0

�

0

) only if we do not apply any sele
tion 
riteria for other pho-

tons. However, we de
ided to regard them as ba
kgrounds. To redu
e these de
ays, we apply the

extra gamma energy 
ut E

ECL

extra


< 0:5 GeV as shown in Fig. 6.10.

The re
onstru
tion eÆ
ien
y 
orre
tion R

re


is obtained by 
al
ulating the ratio of Eq. (6.22)

between the experiment and MC simulation as:

R

re


=

"

�N

4

N

4

+ �N

3

#

EX

"

�N

4

N

4

+ �N

3

#

MC

; (6.23)

where the �rst fa
tor of the right hand side of Eq. (6.22) is assumed to be 
an
eled. For MC

events, we use only four-tra
k events ((`

�

; ���n�

0

) n � 1 de
ays are ex
luded) to obtain table

of �N

4

(P

LAB

; 
os�

LAB

) while that of experiment is 
al
ulated based on the observed number of

entries and the expe
ted amount of the 
ontamination evaluated by MC: the expe
ted number of

ba
kground events for the experiment is evaluated bin-by-bin using a sideband region de�ned by

E

ECL

extra


> 0:5 GeV. The signal 
ontamination for the sideband region is estimated to be �34% for both

N

3

and N

4

events.

Figure 6.11 shows obtained re
onstru
tion eÆ
ien
y 
orre
tion R

re


as a fun
tion of momentum

of 
harged tra
k P


h

and 
osine of zenith angle 
os�


h

. The average values of the re
onstru
tion and

trigger eÆ
ien
ies are summarized in Table 6.5.
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Figure 6.9: Distribution of likelihood ratio value P

`

. Meanings of 
olors are same as Fig 6.8. The P

`

is de�ned as the maximum value of P

e

or P

�

for the two positively-
harged pion 
andidates.
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Figure 6.10: Distribution of extra gamma energy E

ECL

extra


. Meanings of 
olors are same as Fig 6.8.

Table 6.3: Information of sele
ted events

N

re


N

2tra
k

prod

(%) N

4tra
k

prod

(ex.K

S

) (%) N

other

(%)

3 6 74 19

4 < 1 86 13
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Figure 6.11: Tra
k re
onstru
tion eÆ
ien
y 
orre
tion R

re


as a fun
tion of momentum and dire
tion

of positively (red) and negatively (blue) 
harged parti
les: (a)(b)(
) momentum dependen
e on R

re


for the run identi�
ation number 7 to 27, 31 to 55 and 61 to 65: (d)(e)(f) angle dependen
e for same

experimental 
on�gurations.

Table 6.4: Average re
onstru
tion and trigger eÆ
ien
ies

Run ID "

+

(%) "

�

(%) "

(3)

trg:

(%) "

(4)

trg:

(%) �

Experiment

7 to 27 91.0 91.0 90.7 97.6 1.076

31 to 55 90.4 90.8 71.1 83.3 1.172

61 to 65 91.1 91.0 69.4 82.3 1.185

MC

7 to 27 92.4 92.5 94.2 98.7 1.049

31 to 55 92.7 92.7 85.9 94.2 1.097

61 to 65 92.8 93.0 91.1 97.3 1.067
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Table 6.5: Information of tabulations

Tables Argument # bin Determination of the indi
es

Trigger R(P

LAB

l

; 
os �

LAB

`

) �

R(P

LAB

`

; !

h

)

R(P

LAB

`

)

([i; 10℄; [ j; 10℄) �

([i; 10℄; [k; 10℄)

[i; 10℄

i : P

`

is uniformly divided into ten bins between [0; 5℄ GeV=


j : 
os�`

LAB

is uniformly divided into ten bins between [�1; 1℄

k : !

h

is uniformly divided into ten bins between [�1; 1℄

Oh!Iam f ound!Thisisdummy:

�ID R(P

LAB

�

; 
os �

LAB

�

) ([i; 32℄; [ j; 12℄)

Divisions (unit is in GeV=
) i : [0; 0:5℄; [0:5; 0:6℄; : : : ; [2:9; 3:0℄;

[3:0; 3:2℄; : : : ; [3:4; 3:6℄; [3:6; 4:0℄; [4:0; 4:5℄[4:5;1℄:

Oh!Iam f ound!Thisisdummy:

Divisions j : [�1;�0:612;�0:511;�0:300;�0:152; 0:017;

0:209; 0:355; 0:435; 0:542; 0:692; 0:842; 1℄

Oh!Iam f ound!Thisisdummy:

eID R(P

LAB

e

; �

LAB

e

) ([i; 10℄; [ j; 7℄)

i : P

e

is uniformly divided into ten bins between [0; 5℄ GeV=


Oh!Iam f ound!Thisisdummy:

Divisions (unit is in degree) j : [18; 25; 35; 40; 60; 125; 132; 151℄

Oh!Iam f ound!Thisisdummy:

�ID R(P

LAB

�

; �

LAB

�

) ([i; 10℄; [ j; 7℄)

i : P

�

is uniformly divided into ten bins between [0; 5℄ GeV=


Oh!Iam f ound!Thisisdummy:

Divisions (unit is in degree) j : [17; 25; 37; 51; 117; 130; 145; 150℄

Oh!Iam f ound!Thisisdummy:

�

0

re
onstru
tion R(P

�

0

; 
os �

�

0

) ([i; 10℄; [ j; 10℄)

i : P

�

0 is uniformly divided into ten bins between [0; 5℄ GeV=


j : 
os�

�

0

is uniformly divided into ten bins between [�1; 1℄

Oh!Iam f ound!Thisisdummy:


 re
onstru
tion R(P




; 
os �




) ([i; 10℄; [ j; 10℄)

i : P




is uniformly divided into ten bins between [0; 25℄ (GeV=
)

2

j : 
os�




is uniformly divided into ten bins between [�1; 1℄

Oh!Iam f ound!Thisisdummy:

Charged tra
k

re
onstru
tion

R(P

LAB

; 
os �

LAB

) ([i; 10℄; [ j; 10℄)

i : P

LAB

is uniformly divided into ten bins between [0; 7℄ GeV=


j : 
os�

LAB

is uniformly divided into ten bins between [�1; 1℄

Oh!Iam f ound!Thisisdummy:

6.4 Binning of 
orre
tion fa
tors

In this se
tion, we summarize the method of binning. In table 6.5, information of the bins used for

the 
orre
tion fa
tors are listed. The notation [i; 10℄ in the 
olumn �# bin� represents that the index i

is divided into 10 bins.

The bins of angular variables in the pion and lepton identi�
ations are determined by taking into

a

ount the dete
tor geometries. The 
os �

�

division is based on the ACC 
rystal lo
ation while �

e

and �

�

are divided a

ording to the separation of the ECL and KLM regions, respe
tively.

The tables of �

0

and 
 re
onstru
tion eÆ
ien
y 
orre
tions on angular variables are divided

uniformly not in the laboratory frame but in the CMS frame be
ause this makes the distribution

broad. For 
 
ase, 
onsidering the dense 
onvergen
e in the low-momentum region, we spe
ify the

index of bin by i = [N

bin

p

P




=P

max

℄ so that the division of lower-momentum bins be
omes small,

where the bra
ket [ ℄ is the Gauss's 
eiling fun
tion and [x℄ indi
ates a maximum integer whi
h does

not ex
eed x.

The number of bins is determined in su
h a way as to make the entries of bins have reasonable

amounts (approximately a few per
ent in its statisti
al un
ertainty).

Note that the plots presented before are obtained using di�erent divisions from those of real

analysis and of being summarized here. We divided the phase spa
e with larger number of 
ells for

drawing one-dimension plots be
ause the dependen
e of eÆ
ien
y 
orre
tion be
omes 
learer.
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6.5 Con�rmation of the 
orre
tion R

In the presen
e of R, the sele
ted PDF of events is modi�ed as

P

total

(x) = (1 �

X

i

�

i

)

"(x)S (x)

R

dx "(x)S (x)

+

X

i

�

i

"(x)B

i

(x)

R

dx "(x)B

i

(x)

; (6.24)

w

w

w

w

w

�

P

total

(x) = (1 �

X

i

�

i

)

"(x)R(x)S (x)

R

dx "(x)R(x)S (x)

+

X

i

�

i

"(x)R(x)B

i

(x)

R

dx "(x)R(x)B

i

(x)

: (6.25)

As a result, we are able to 
he
k the e�e
t of R by dire
tly applying it as a weight for the sele
ted

PDF. Sin
e the denominator of Eq. (6.25) is simply a 
ertain number, we 
an negle
t the dependen
e

of R by normalizing the MC distribution based on the area of the histograms. Furthermore, it is

worth to note that the �t result does not depend on the absolute magnitude of R be
ause additional

fa
tor 
 for R ! 
R disappears when we formulate log-likelihood fun
tion. Thus it is justi�ed to

verify R by simply seeing its shape without taking 
are of the absolute height of histograms. From

Figs. 6.12 to 6.15, we show the original and 
orre
ted histograms of the momenta and dire
tions for

lepton, photon, neutral pion and 
harged pion in the laboratory frame, whi
h totally form twelve-

dimension observables. With this 
orre
tion, we 
an see improvements in the shape. In parti
ular,

reasonable agreement in the angle distribution of lepton in the ba
kward region 
os �

`

< �0:6 is

observed. The notable disagreement in the forward dire
tion of 
os �

�

> 0:8 � 0:9 
omes from an

ina

urate extra
tion of 
orre
tion fa
tor of �ID eÆ
ien
y. This e�e
ts are separately evaluated by

ex
luding this region (see Se
. 7.2.4).
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Figure 6.12: Distribution of lepton variables for �

�

! e

�

��̄
 (left) and �

�

! �

�

��̄
 (right): (a) P

`

, (b)


os�

`

and (
) �

`

. Solid bla
k and red lines represent original and 
orre
ted MC histograms. Dashed

green line represents 
orre
ted MC histogram based only on the trigger 
orre
tion R

trg:

. Points with

errors means experiment. In the bottom, the ratio of experimental number out of 
orre
ted histogram

is shown.
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Figure 6.13: Distribution of photon variables for �

�

! e

�

��̄
 (left) and �

�

! �

�

��̄
 (right): (a) P




,

(b) 
os�




and (
) �




. The meanings of ea
h 
olor of line are same as Fig. 6.12.
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Figure 6.14: Distribution of the 
harged pion observables for �
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! e
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��̄
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. The meanings of ea
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Figure 6.15: Distribution of the neutral pion variables for �
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Chapter 7

Evaluation of un
ertainties

7.1 Statisti
al un
ertainties

The statisti
al errors of �tted Mi
hel parameters are obtained from information of the 
hange of

likelihood fun
tion. The PDF of �tted parameters is assumed to be Gaussian P / expf�

(���

0

)

2

2�

2

�

g for

� = �̄ or ��, hen
e the errors �

�

are evaluated as magnitude of residual su
h that negative logarithmi


likelihood fun
tion L = �logP =

(���

0

)

2

2�

2

�

moves by 1=2. The errors are evaluated to be �̄

e

= 5:0,

�̄

�

= 1:5, (��)

e

= 0:8 and (��)

�

= 0:5.

7.2 Systemati
 errors

In Table 7.1, we summarize 
ontributions of systemati
 sour
es. The detail of ea
h item is explained

in following subse
tions.

7.2.1 Systemati
 un
ertainty from bran
hing ratios

In this analysis, the fra
tions of multiple ba
kground modes are evaluated using generi
 MC sample,

where input of the bran
hing ratios are taken from previous measurements. The systemati
 un
er-

tainties due to the �nite a

ura
y of these measurements are estimated based on the world average

values summarized by the parti
le data group (PDG) (Ref. [7℄). The obtained fra
tions of �

i

(i is an

index of ba
kground modes) are separately varied �

i

! �

i

(1 + �B

i

=B

i

) and variations �tted Mi
hel

parameters are assigned as 
orresponding errors, where B

i

means the bran
hing ratio. In Table 7.2,

we summarize the systemati
 
ontributions from the input of bran
hing ratio.

7.2.2 Un
ertainty from the relative normalization

As explained in Se
. 5.4.1, the relative normalization of PDF is evaluated by using generated MC

events. Sin
e the normalized PDF of signal is

P

sig

(x) =

E

0

+ E

1

� �̄

SM

+ E

2

� �

00

SM

+ E

3

� ��

SM

Z

dx E

0

+ E

1

� �̄

SM

+ E

2

� �

00

SM

+ E

3

� ��

SM

=

E

0

R

dxE

0

=

E

0

�

sig

; (7.1)
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Table 7.1: List of systemati
 
ontributions

Item �

e

�̄

�

e

��

�

�

�̄

�

�

��

explained in

Input of bran
hing ratio 3:8 0:05 0:25 0:01 7.2.1

Relative normalizations 3:8 0:69 0.13 0.04 7.2.2

Absolute normalizations 1:0 0:01 0:03 0:001 7.2.3

Exp/MC 
orre
tions 1:9 0:14 0:09 0:10 7.2.4

Formulation of PDFs 2:5 0:24 0.67 0.22 7.2.5

E�e
t of 
luster overlap in ECL 2:2 0:46 0:02 0:06 7.2.6

Dete
tor resolution 0.74 0.20 0.22 0.02 7.2.7

E





ut 0.91 0.22 - - 7.2.9

Beam energy spread negligible negligible negligible negligible 7.2.8

total 6.8 0.93 0.77 0.25

Table 7.2: Systemati
 
ontributions from input of bran
hing ratio

item �

e

�̄

�

e

��

�

�

�̄

�

�

��

(e
; ��

0

) 3.7 0.04 - -

(e; ��

0

) + 


brems:

0.6 0.01 - -

(e
; ��

0

) + 


brems:

0.6 0.02 - -

(�
; ��

0

) - - 0.23 0.005

(�; ��

0

) + 


beamBG

- - 0.04 0.001

(�; ��

0

) + 


ISR

- - 0.03 negligible

(�
; ��

0

�

0

) - - 0.04 0.005

(��

0

; ��

0

) - - 0.07 negligible

(��

0

�

0

; ��

0

) - - 0.07 negligible

total 3.8 0.05 0.25 0.007
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Figure 7.1: Histograms of 
oeÆ
ients of E

0

, E

1

=E

0

, E

2

=E

0

, E

3

=E

0

for � ! e��̄
 events. Blue line

represents an average. The 
al
ulated relative normalization 
oeÆ
ients are as follows: E

1

=E

0

=

(3:84 � 0:01) � 10

�5

, E

2

=E

0

= (�1:2588 � 0:0005) � 10

�6

, E

3

=E

0

= (6:8 � 0:7) � 10

�6

.

then, the normalization of signal PDF be
omes

Z

dx "(x)E

i

(x) =

Z

dxP

sig

(x)"(x)

E

i

(x)

P

sig

(x)

= �

sig

Z

dx "(x)P

sig

(x)

E

i

E

0

(7.2)

=

�

sig

"̄

sig

N

sel

X

x

i

2"P

sig

E

i

(x

i

)

E

0

(x

i

)

�

�

sig

"̄

sig

N

sel

*

E

i

(x)

E

0

(x)

+

: (7.3)

The average of ratio E

i

(x)=E

0

(x) for sele
ted events a

ording to the PDF of signal is 
onsidered

as a relative normalization. Figure 7.1 and Fig. 7.2 show the distributions of E

0

(x) and E

i

(x)=E

0

(x)

for �

+

�

�

! (�

+

�

0

�̄)(e

�

��̄
) and �

+

�

�

! (�

+

�

0

�̄)(�

�

��̄
) events, respe
tively. To obtain these his-

tograms, 17 M and 12 M sele
ted events are used for ele
tron and muon modes, respe
tively. Using


entral limit theorem, we evaluate the statisti
al un
ertainties of hE

i

(x)=E

0

(x)i by the root mean

square of E

i

(x)=E

0

(x) divided by

p

N

MC

, where N

MC

is the number of used events mentioned above.

The impa
t of the un
ertainties of the normalization on the �tted Mi
hel parameters is estimated

by arti�
ially shifting the 
enter values and evaluating the movement of �tted Mi
hel parameters.

The e�e
t of the un
ertainties are listed in Table 7.3. This relative normalization is one of the major

sour
es of un
ertainties for the ele
tron mode. This 
omes from the fa
t that the PDF of �

�

! `

�

��̄


de
ay has a strong pe
uliarity in m

`

! 0 and makes the 
onvergen
e of 1=N

MC

P

i

E

i

(x)=E

0

(x) slow.

However, a simulation of large amount of signal event is very time-
onsuming and we de
ided to use

the mentioned numbers.

�
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Figure 7.2: Histograms of 
oeÆ
ients of E

0

, E

1

=E

0

, E

2

=E

0

, E

3

=E

0

for � ! ���̄
 events. Blue line

represents an average. The 
al
ulated relative normalization 
oeÆ
ients are as follows: E

1

=E

0

=

(1:112 � 0:0013) � 10

�3

, E

2

=E

0

= (�1:665 � 0:001) � 10

�4

, E

3

=E

0

= (1:40 � 0:04) � 10

�4

.

Table 7.3: Systemati
 errors from relative normalization

sour
e of error

�

e

�̄

�

e

��

�

�

�̄

�

�

��

E

1

=E

0

3.8 0.05 0.12 0.014

E

2

=E

0

y

- - - -

E

3

=E

0

0.12 0.69 0.01 0.04

total

3.8 0.69 0.13 0.04

y In this analysis, �

00

is always set to be the SM value �

00

= 0, hen
e

the dependen
e on the 
orresponding normalization E

2

=E

0

is zero.
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a

b

x2

x1

P(x)>0

P(x)<0 U0

U

Figure 7.3: Con
eptual view of the integration of PDF in 2D plane. The �lled part represents the

region su
h that PDF be
omes positive. The events are uniformly generated in entire phase spa
e

whi
h en
loses the valid region. The volume of generated phase spa
e is 
al
ulated as V

0

= ab.

7.2.3 Un
ertainty from the absolute normalization

As des
ribed in Se
. 5.3, the absolute normalization is de�ned as an integration of PDF: � =

R

dxP(x). This value is 
al
ulated by MC method where events are uniformly distributed in the

entire phase spa
e as:

� =

V

0

N

gen

X

x

i

21=V

0

¯

P(x

i

); (7.4)

¯

P(x) =

(

P(x) x 2 U

0 x 2 U

0

� U

(7.5)

where U

0

is the phase spa
e and V

0

is its volume, U is its subspa
e su
h that the PDF be
omes

positive and N

gen

is the number of generated events. This illustrative idea in two dimension 
ase is

shown in Fig 7.3.

The un
ertainties from the absolute normalizations are evaluated by the 
entral limit theorem

similarly to the 
ase of relative normalization. Sin
e � always appears with fra
tion �

i

, this e�e
t

shifts of Mi
hel parameters in the same way as the error from the input of the bran
hing ratio. The


ontributions are listed in Table 7.4.

7.2.4 Un
ertainties from 
orre
tion fa
tors and ineÆ
ien
ies

In this analysis, we obtain 
orre
tion fa
tor of signal eÆ
ien
y R = "(x)

EX

="(x)

MC

, where this fa
tor

is written as produ
ts of 
orre
tions from the parti
le re
onstru
tion eÆ
ien
ies and trigger eÆ-


ien
y. The estimated fa
tors have errors due to �nite statisti
s of events and this systemati
 impa
t

is estimated by varying the 
enter values and evaluating the variation of �tted Mi
hel parameters

explained below. The errors of 
orre
tion fa
tors themselves are evaluated assuming the Poisson

distribution, where the statisti
al un
ertainty of a number of bin is 
al
ulated by its square root.

This un
ertainty of 
orre
tion fa
tor a�e
ts the �tted Mi
hel parameter through two ways. Sup-

pose the 
orre
tion fa
tor shifts R! R+ ÆR. In the presen
e of systemati
 un
ertainties ÆR, the total

�

In this analysis, it took approximately �ve weeks to fully 
al
ulate the events.
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Table 7.4: Systemati
 errors from absolute normalization

item �

e

�̄

�

e

��

�

�

�̄

�

�

��

(e
; ��

0

) 1.0 0.01 - -

(e; ��

0

) + 


brems:

0.2 negligible - -

(e
; ��

0

) + 


brems:

negligible negligible - -

(�
; ��

0

) - - 0.007 0.0001

(�; ��

0

) + 


beamBG

- - 0.008 0.0002

(�; ��

0

) + 


ISR

- - 0.021 0.0001

(�
; ��

0

�

0

) - - 0.011 0.0014

(��

0

; ��

0

) - - 0.014 0.0003

(��

0

�

0

; ��

0

) - - 0.003 0.0001

total 1.0 0.01 0.03 0.0014
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i

(x)
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�
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"(x)[R + ÆR℄(x)S (x)

R

dx "(x)[R + ÆR℄(x)S (x)

+

X

i

�

i

"(x)[R + ÆR℄(x)B

i

(x)

R

dx "(x)[R + ÆR℄(x)B

i

(x)

; (7.7)

where S (x) and B

i

(x) are PDFs of the signal and i-th ba
kground, whose fra
tions are (1�

P

i

�

i

) and

�

i

, respe
tively, and "(x) is the eÆ
ien
y of MC. As explained many times, the variation of ÆR in

the numerator of Eq. (7.7) does not a�e
t the �tted Mi
hel parameters sin
e overall fa
tor disappears

when we formulate likelihood fun
tion. The expression of the denominator (normalization) of signal

PDF be
omes
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3
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: (7.11)

This is the residual of normalization explained in Chapter 6. Thus the e�e
t of ÆR 
an be divided

into the absolute and relative parts:

Æ(abs) = hR + ÆRi � hRi (7.12)

Æ(rel) =

D

(R + ÆR)

E

i

E

0

E

hR + ÆRi

�

D

R

E

i

E

0

E

hRi

(7.13)

Be
ause the error of the absolute normalization Æ(abs) is just a number whi
h appears with fra
tion

�

i

, this a�e
ts the �tted Mi
hel parameters in the same way as the un
ertainties from the input of

bran
hing ratio explained in Se
. 7.2.1.
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Figure 7.4: Muon identi�
ation eÆ
ien
y and 
orre
tion fa
tor as a fun
tion of 
os�

LAB

�

measured

using e

+

e

�

! �

+

�

�

pro
ess. Red and blue points represent positively and negatively 
harged muons,

respe
tively. The bla
k lines mean boundaries of the most forward bin 17

Æ

< �

LAB

�

< 25

Æ

.

In the 
ase of ba
kground, the 
orresponding term also re
eives un
ertainties from the absolute

part, where the average hi is 
al
ulated with respe
t to the ba
kground events in question.

Based on the above two 
ategorizations�absolute and relative normalizations�we found that

former 
ontribution was negligible. The variation of the fa
tor Æ(abs) for every sour
e of de
ay turns

out to be less than 0:2%, hen
e it is suÆ
iently smaller than the errors from bran
hing ratios. This


omes from the fa
t that Æ(abs) is linear in R and redu
es to Æ(abs) = hÆRi. On the 
ontrary, the e�e
t

of Æ(rel) is notable.

While the R is de�ned as a 
orre
tion fa
tor of the signal eÆ
ien
y (
ommon between signal

and ba
kground), the errors of the ineÆ
ien
ies di�erently a�e
t the �tted Mi
hel parameters. This

un
ertainty of ineÆ
ien
ies 
ontributes to the �tted Mi
hel parameters not only through the denom-

inator of 
orresponding term but also from the numerator. Therefore, we simply 
ompared the �tted

results obtained with "

inef:

and "

inef:

+ Æ"

inef:

, where "

inef:

is the measured ineÆ
ien
y.

The measured �-ID eÆ
ien
y value R

�ID

exhibits strong de
rease as the polar angle rea
hes very

forward dire
tion �

LAB

�

< 25

Æ

. Su
h forward muon 
annot penetrate into suÆ
ient number of the

RPC/iron plates in the KLM and resulting eÆ
ien
y shows a 
ru
ial dependen
e on the polar angle

at edges. Although most of R

�ID

values are 
onsistent with R

�ID

� 1 within a few sigmas, estimated

values of the forward region are typi
ally R

�ID

� 0:5. A

ording to the study of �ID eÆ
ien
y


orre
tion using e

+

e

�

! �

+

�

�

pair produ
tion, R

�ID

value rapidly de
reases at 0:910 <
os�

�

< 0:940

(or equivalently 20

Æ

< �

�

< 24

Æ

) as shown in Fig. 7.4. The forward part of �ID eÆ
ien
y is tabulated

using a division 0:906 <
os�

LAB

�

< 0:956 (17

Æ

< �

LAB

�

< 25

Æ

) and adoption of its average therein

gives the distortion on the spe
tra. Alternatively, we use R

�ID

= 1 for the dire
tion of � in 17

Æ

<

�

LAB

�

< 25

Æ

, and the resulting systemati
 e�e
t is estimated by ex
luding the events, whi
h amounts

to approximately 1.5% of total 
andidates. We regard the variation of the �tted Mi
hel parameters as

the 
orresponding un
ertainty.

The evaluated 
ontributions from 
orre
tion fa
tors and ineÆ
ien
ies are summarized in Ta-

ble 7.5

7.2.5 Un
ertainty due to imperfe
t formulation of PDFs

As is demonstrated in Se
. 5.6.3, we validate our formulation of ba
kground PDFs by �tting the

Mi
hel parameters to the 
ombined statisti
s of signal and the ba
kground mode in question. Sin
e
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Table 7.5: Systemati
 errors from obtained tables

Item �

e

�̄

�

e

��

�

�

�̄

�

�

��

Contribution of ÆR through relative normalization

Trigger eÆ
ien
y 0:5 0:10 0:04 0:03

`ID eÆ
ien
y negligible 0:01 0:08 0:09

�ID eÆ
ien
y negligible negligible negligible negligible

�

0

ID eÆ
ien
y 0:4 0:09 negligible 0:01


 eÆ
ien
y 0:14 0:03 0:015 0:02

Contribution from ineÆ
ien
y tables

(e
; ��

0

) + 


brems

ineÆ
ien
y 1:8 0:04 - -

(�
; ��

0

�

0

) ineÆ
ien
y - - 0:001 negligible

(��

0

; ��

0

) ineÆ
ien
y - - 0:002 0:02

(��

0

; ��

0

) �mis-ID - - 0:001 negligible

(3�; ��

0

) ineÆ
ien
y - - negligible negligible

total 1:9 0.14 0.09 0.10

signal events are generated based on the SM distributions, the deviation of �tted Mi
hel parameters

from SM predi
tion �̄ = �� = 0 is a systemati
 bias due to imperfe
t formulations of PDFs. We

estimated the systemati
 bias by simply taking the residuals of the results. This e�e
ts mainly 
ome

from the simpli�
ation of high-dimension 
orrelation performed in the des
ription of the others as

mentioned in Se
. 5.6.3.

7.2.6 Un
ertainty from the simulation of overlap in the ECL 
lusters

The 
on�rmation whether the MC method simulates the experimental events with suÆ
ient a

ura
y

or not is generally diÆ
ult espe
ially in analyses of high-dimension phase spa
e. Moreover, neither

de�nition of the quanti�
ation nor its visualization is straightforward. The proje
ted histogram onto

one-dimension axis (like we des
ribe in Se
. 6.5) reveals the validity to some extent, however, this

is not ne
essarily suÆ
ient be
ause the measurement of Mi
hel parameters is, in other words, a

veri�
ation of the 
orrelation in the high-dimension phase spa
e.

In this analysis, we 
an mainly rely on the evaluation of the high-dimension 
orrelation by MC


al
ulation for separate tra
ks be
ause two 
harged tra
ks (one for `

�

and the other for �

+

) are almost

ba
k-to-ba
k and the re
onstru
tions of three photons (two for �

0

! 

 and the rest one for signal)

is irrelevant ea
h other. The only ex
eption is the 
ase when the ECL 
luster of ele
tron tra
k is

very 
lose to that of signal photon so that both 
lusters have an overlap as illustrated in Fig. 7.5. To


on�rm this e�e
t, we 
he
k the distribution of angle between positions of two 
lusters �

LAB

ECL(`
)

as

drawn in Fig. 7.6. Here, we de�ne �

LAB

ECL(`
)

as an opening angle of these 
lusters measured from the

intera
tion point. The e�e
t of the New Physi
s on �

LAB

ECL(`
)


an be 
onsidered to be less sensitive

be
ause �

LAB

ECL(`
)

is mainly determined by the geometri
al design of the dete
tor. The di�eren
e of

distribution in �

LAB

ECL(`
)

! 0 between the experiment and MC simulation is regarded as the systemati


un
ertainty due to the simulation of the overlap.

Comparing the distribution of �

LAB

ECL(`
)

, we 
an see an agreement to some extent between the

experiment and MC simulation. To quantify the 
orresponding error, we extra
ted a ratio of PDFs

between the experiment and MC simulation for �

LAB

ECL(`
)

as:

R = R(�

LAB

ECL(`
)

): (7.14)
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ɤ

τ

e

Figure 7.5: Con
eptual view of two 
lusters in ECL. The 
urvature of lepton be
omes small as the

momentum is large whi
h result in the merge of two ECL 
lusters.

The e�e
t of R 
an be evaluated in a similar way as the evaluation of eÆ
ien
y 
orre
tion explained

in Se
. 7.3. The errors are estimated to be �

e

�̄

= 2:2, �

e

��

= 0:5, �

�

�̄

= 0:02 and �

�

��

= 0:06.

7.2.7 Un
ertainty from the dete
tor resolution

The impa
t of the dete
tor resolution is estimated by the 
omparison of the �tted values of Mi
hel

parameters with and without the 
onvolution of resolution fun
tion of R explained in Se
. 5.4.5. The


orresponding errors are �

e

�̄

= 0:74, �

e

��

= 0:20, �

�

�̄

= 0:22 and �

�

��

= 0:02.

7.2.8 Un
ertainty from the beam Energy spread

The error of beam energy is 
alibrated based on the mass 
onstraint of B meson, whi
h result in the

a

ura
y of order of 0.1 MeV for the run dependent values. This magnitude 
orresponds to only

0.002%, therefore, we 
an basi
ally expe
t that this error is negligible. Nevertheless, we 
on�rmed

this 
ould be really ignored. We 
al
ulated PDFs of signal and ba
kgrounds where the beam energy

were shifted on purpose and evaluated the variation of the �tted Mi
hel parameters. The magnitude

of the 
hange of the �tted Mi
hel parameters are of order of at most ten to minus forth

y

and we


on
lude that the e�e
t of variation of beam energy is negligible.

7.2.9 Un
ertainty from E




distribution

As shown in Fig. 4.10, in low energy region (E




�100 MeV), we 
an observe the dis
repan
y in

the photon energy distribution between the real experiment and MC simulation. This may 
ome

from the limited pre
ision of bremsstrahlung simulation. As demonstrated in Se
. 2.4, the e�e
ts of

nonzero values of �̄ and �� on the photon energy shape are small, hen
e it 
an be guessed that this

dis
repan
y does not strongly a�e
t the �tted Mi
hel parameters. Nevertheless, we evaluated this

e�e
t by varying the sele
tion 
riteria of photon energy threshold to be E




= 150 MeV. The shifts

of �tted Mi
hel parameters are �

e

�̄

= 0:91 and �

e

��

= 0:22. This variation redu
es the amount of

statisti
s by approximately 18% and thus there is a 
han
e that the statisti
al �u
tuation is simply

re�e
ted on the variation of �tted parameters. This evaluation is, therefore, 
onservative estimation.

y

This error in
ludes the pre
ision of the reprodu
ibility of PDF 
al
ulation itself.
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Figure 7.6: Distribution of angle �

LAB

ECL(`
)

for �

�

! `

�

��̄
: (left) ` = e and (right) ` = �. The meanings

of �lled 
olors are explained in 
aptions of Figs. 4.10 and 4.14 for ` = e and ` = �, respe
tively.
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Chapter 8

Results and dis
ussion

8.1 Fit result

As presented in the last se
tion, the evaluated un
ertainties for �̄ using � ! e��̄
 events is mu
h

larger than the expe
ted sensitivity for � ! ���̄
 de
ay and it is reasonable to extra
t �̄ value from

only � ! ���̄
 events. Using sele
ted 776834 and 71171 events for � ! e��̄
 and � ! ���̄



andidates, respe
tively, we performed the �t pro
edure and obtained results as:

��

e

= �0:4 � 0:8 � 0:9; (8.1)

�̄

�

= �1:3 � 1:5 � 0:8; (8.2)

��

�

= 0:8 � 0:5 � 0:25: (8.3)

where �rst errors are statisti
al and se
ond systemati
. These obtained values are 
onsistent with the

SM predi
tion. Figure 8.1 shows the 
ontour of the likelihood fun
tion for �! ���̄
 events. The ��

are also obtained by 
ombined �t as

�� = 0:5 � 0:4 � 0:2; (8.4)

where �rst error is statisti
al and se
ond is systemati
. The systemati
 un
ertainty is naively esti-

mated by

1

�

2


omb

=

1

�

2

e

+

1

�

2

�

: (8.5)

We also obtained dependen
e of E

LAB

extra



ut on the �tted Mi
hel parameters as shown in 8.2. In

the extra
tion of �̄, we used � ! ���̄
 while for ��, 
ombined result using � ! e��̄
 and � ! ���̄


de
ays are shown. We 
an see stability of �tted Mi
hel parameters within errors. Figure 8.3 shows

a plot of a residual of likelihood fun
tion �L = L � L

max

proje
ted onto one axis. We 
an observe a

smooth and quadrati
 shape of the likelihood fun
tion around its maximum value.

8.2 Goodness of �t

In many appli
ation of the high energy physi
s, people often use �

2

�t to extra
t desired parameter.

The bene�t of the �

2

�t is a fa
t that the PDF of �

2

value is already known, hen
e people 
an easily

evaluate the goodness of �t. In other words, the properties of �

2

distribution like average and p-

value 
an be extra
ted analyti
ally based on a given degree of freedom. On the other hand, as is

often dis
ussed, an evaluation of goodness of �t for the unbinned-maximum likelihood method is not

straightforward due to non-existen
e of a general PDF of the maximized likelihood value. Moreover,
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Figure 8.1: Contours of the likelihood fun
tion obtained using 69622 events for � ! ���̄
 
andi-

dates. Three 
ir
les 
orrespond to �L = 1=2, 4=2 and 9=2 
ontours from inside to outside and mean

statisti
al un
ertainties. The 
ross is the SM predi
tion.

it is also well known that the absolute maximum value of likelihood fun
tion itself does not tell any

information about its goodness.

�

As summarized in Ref. [75℄, there are several alternative solutions for the evaluation of the good-

ness of a �tting result obtained by the unbinned-maximum likelihood method. Among all presented

in the referen
e, we, in this work, attempt to use point-to-point dissimilaritymethod. The idea of this

method is to use evaluation parameter T de�ned as

T =

1

2

Z

dx(P

EX

(x) � P

�t

(x))

2

; (8.6)

where P

EX

(x) is a (unknown) PDF of the real experimental data and P

�t

(x) is the �tted PDF obtained

by the unbinned maximum likelihood method. This T be
omes its minimum T = 0 only if P

EX

=

P

�t

. Therefore, the T value 
an be used to s
ore the similarity of spe
tra between real and �tted

distributions, i.e., its smaller value indi
ates that �t is de
ent. Here, a more general form of T is

de�ned as

T =

1

2

Z

dxdx

0

(P

EX

(x) � P

�t

(x))(P

EX

(x

0

) � P

�t

(x

0

)) (jx � x

0

j); (8.7)

where  (jx � x

0

j) is a 
ertain weighting fun
tion. Although P

EX

(x) is not known (if we know, we do

not need to �t a fun
tion), Eq. (8.6) is evaluated for the sele
ted experiment and MC events as:

T =

1

N

MC

(N

MC

� 1)

N

MC

X

i> j

x

i

;x

j

2P

MC

 (jx

i

� x

j

j)

+

1

N

EX

(N

EX

� 1)

N

EX

X

i> j

y

i

;y

j

2P

EX

 (jy

i

� y

j

j) �

1

N

MC

N

EX

N

MC

;N

EX

X

i; j

x

i

2P

MC

y

j

2P

EX

 (jx

i

� y

j

j); (8.8)

�

For example, as presented in Ref. [74℄, a likelihood fun
tion 
onstru
ted from a PDF of parti
le de
ay time ( f (t) =

e

�t=�

=� for a given lifetime �) has a de�nite maximum value for any given number of events N and their average

¯

t

regardless of the shape of real distribution. Sin
e it is obvious that numerous distributions 
an give the same average

value

¯

t, the test using absolute value of the likelihood fun
tion does not s
ore the goodness of �t.
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Figure 8.2: Dependen
e of E

LAB

extra



ut on (a) �̄ (b) and ��. Horizontal and verti
al axises are ex-

tra gamma energy 
ut and �tted Mi
hel parameters, respe
tively. The red markers with error bars


orrespond 
enter values and their errors, where both statisti
al and systemati
 errors are 
onsidered.
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Figure 8.3: Plot of �L as a fun
tion of Mi
hel parameters: (a) L(�̄

�

) when �� is set to the �tted value:

(b) L(��

e

) when �̄ = �̄

SM

= 0: (
) L(��

�

) when �̄ is set to the �tted value.

where x and y indi
ate the sele
ted MC and the real experimental events, respe
tively. In our appli-


ation, we modify Eq. (8.8) with P

�t

(x)! P

�t

(x)w(x) to give

T =

1

N

MC

(N

MC

� 1)

N

MC

X

i> j

x

i

;x

j

2P

MC

 (jx

i

� x

j

j)w(x

i

)w(x

j

)

+

1

N

EX

(N

EX

� 1)

N

EX

X

i> j

y

i

;y

j

2P

EX

 (jy

i

� y

j

j) �

1

N

MC

N

EX

N

MC

;N

EX

X

i; j

x

i

2P

MC

y

j

2P

EX

 (jx

i

� y

j

j)w(x

i

); (8.9)

where w(x) is given by

w(x) =

P

BSM

(x)

P

SM

(x)

R(x): (8.10)

Here, P(x) is the total PDF given by Eq. (5.3) and BSM and SM mean the Mi
hel parameters are

set to the �tted and SM values, respe
tively. In Eq. (8.9), the variation of distribution by the Mi
hel

parameters are taken into a

ount through the weight w(x).
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As demonstrated in Ref. [75℄, it is justi�ed to drop the �rst term in Eq. (8.9) be
ause its statisti
al

�u
tuations should be negligible for N

MC

� N

EX

. In our approa
h, however, rather than dis
arding

this term, we adopt a little bit 
orre
t method:

1

N

MC

(N

MC

� 1)

N

MC

X

i> j

x

i

;x

j

2P

MC

 (jx

i

� x

j

j)w(x

i

)w(x

j

)

!

1

N

MC

(N

EX

� 1)

N

MC

;N

EX

X

i> j

x

i

;x

j

2P

MC

 (jx

i

� x

j

j)w(x

i

)w(x

j

)

where number of 
al
ulation is redu
ed from N

MC

(N

MC

� 1) to N

MC

(N

EX

� 1) so that the 
al
ulation

be
omes manageable to be same order as se
ond term. This simpli�
ation is, in fa
t, ne
essary to

redu
e the 
ost of 
al
ulation. Thus we use

�

T =

1

N

MC

(N

EX

� 1)

N

MC

;N

EX

X

i> j

x

i

;x

j

2P

MC

 (jx

i

� x

j

j)w(x

i

)w(x

j

) (8.11)

+

1

N

EX

(N

EX

� 1)

N

EX

X

i> j

y

i

;y

j

2P

EX

 (jy

i

� y

j

j) �

1

N

MC

N

EX

N

MC

;N

EX

X

i; j

x

i

2P

MC

y

j

2P

EX

 (jx

i

� y

j

j)w(x

i

); (8.12)

as a signature of the goodness of �t. The de
ision of the fun
tion  is not trivial but we fol-

low the method of Ref. [76℄, where it is given by  (d) = e

�d

2

=2�

2

. Here, d is a distan
e

in the twelve-dimension phase spa
e fP

`

;


`

; P




;





; P

�

;


�

;m

2

��

;

e




�

g de�ned simply with d

2

i; j

=

jP

`

i

� P

`

j

j

2

+ � � � + j

e

�

�

i

�

e

�

�

j

j

2

, and � is a measure to de�ne the spread of distribution. The vari-

ables in the twelve-dimension phase spa
e are linearly proje
ted into open interval (0; 1) so that the

volume of the overall phase spa
e be
omes unity. The � is determined by an equation

1 = V

12

N

EX

(10�)

12

; (8.13)

where V

12

is a volume of the twelve-dimension unity sphere and given by V

12

= �

6

=�(12=2 + 1) =

�

6

=720. In other words, 10 � � is 
hosen as an average distan
e between a 
losest event when N

EX

events are uniformly distributed in the phase spa
e. The fa
tor of ten is 
hosen to a

ount for a dense


on
entration of events in the phase spa
e.

With des
ribed de�nition of

�

T , we 
an s
ore the goodness of �t: however, distribution of

�

T itself

when P

EX

= P

�t

is not known. This means that we are not able to 
al
ulate the p-value. To estimate

the distribution of

�

T , we adopt permutation test, where randomly pooled N

EX

and N

MC

events are

used to generate sequen
e of

�

T values, i.e., for every shu�ed set of pseudo �experimental� and

�MC� events, we 
al
ulate

�

T in the same way as real one. We repeat this pro
edure N

try

= 100 times

and 
ount events that satisfy

�

T

real

<

�

T

pseudo

. We take the fra
tion as an estimator of p-value. In the

real evaluation of

�

T , however, it is not possible to use whole available events in terms of reasonable

CPU 
al
ulation due to its rapid in
rease of iteration: � N

MC

�N

EX

�N

try

. Therefore, we divide both

MC and experimental sample into small subsets so that they typi
ally 
ontain 5�10

4

and 10

4

events,

respe
tively. Figures 8.4 and 8.5 show distributions of

�

T for ele
tron and muon modes, respe
tively.

Sin
e p-value should distribute uniformly in the interval (0; 1) if the real and �tted fun
tions are

totally same, the appearan
e of widely spread values may suggest a good performan
e of our �t. At

the same time, however, we should put emphasis on the fa
t that the method explained above simply


annot reje
t the badness of �t.
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Figure 8.4: Distribution of

�

T values for nine di�erent sets (whi
h are 
hosen randomly) for ele
tron

mode. The line shows real

�

T value from �tted sample and histograms are distributions obtained with

the permutated sets.

8.3 Upper limits on 
ouplings g

N

i j

As introdu
ed in Se
. 1.4, �̄ is represented as a sum of non-negative terms, hen
e the upper limit of

the �̄ parameter gives also upper limits of ea
h term. Here, again we show the expli
it formula of �̄

and �� below

�̄ =

�

�

�
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; (8.14)
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: (8.15)

The distribution on the �̄ in the vi
inity of the optimal value is well des
ribed by Gaussian PDF.

Though it may draw 
ontroversy, if we allow �̄ < 0 region as possible area (in pra
ti
e, measured

value 
an be
ome negative as well) the upper limit of �̄ at 95% 
on�den
e level is given by

�̄ < 1:5 (95% C:L):

Of all terms in Eq. (8.14), there are essential impa
ts only on the �rst and last two terms in terms

of sensitivity be
ause the rest terms are suppressed by a fa
tor of 1=8. Moreover, if we take into

a

ount existing values shown in Table 8.1 [7℄, the upper limit of �̄ gives notable impa
t only on

jg

T

RL

j. Putting zero into other terms in Eq. (8.14), we obtain jg

T

RL

j < 0:9 (95% C.L.).
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Figure 8.5: Distribution of

�

T values for nine di�erent sets (whi
h are 
hosen randomly) for muon

mode. The line shows real

�

T value from �tted sample and histograms are distributions obtained with

the permutated sets.

Moreover, from Eqs. (8.14) and (8.15), sum of �̄ and �� is also written as 
ombination of non-

negative terms as

�̄ + �� = 2

�

�

�
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RL
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�

�

2

+
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4

�

�
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+ 2g
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�
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+ 4

�

�

�

g

T
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�

�

�

2

: (8.16)

From 
ombined measured value �̄ + �� = �0:8 � 1:8, we 
an similarly obtain its upper limit

�̄ + �� < 2:1 (95% C:L);

whi
h leads jg

V

RL

j < 1:0 and jg

T

RL

j < 0:7 (95% C.L.). If we assume that these 
oupling 
onstants are

real�whi
h means that T or CP is 
onserved� we 
an simplify Eq. (8.16) and draw allowed range

of g

S

RL

and g

T

RL

values for di�erent value of jg

V

RL

j

2

(95% C.L.) as shown in Fig. 8.7.

We 
an also give a di�erent 
onsideration using another linear 
ombination of the Mi
hel param-

eters as

�̄ � �� = 2

�

�

�

g

V

LR

�

�

�

2

+

1

4

�

�

�

g

S

LR

+ 2g

T

LR

�

�

�

2

+ 4

�

�

�

g

T

LR

�

�

�

2

< 1:1 (95% C:L)

but this turns out to be less e�e
tive for already existing 
onstraints on g

S

LR

, g

V

LR

and g

T

LR


ouplings.

Relying only on the measurement of �̄ and ��, we 
annot improve already obtained 
onstrained limit.

However, it is possible to improve 
onstraints by simultaneously 
ombining experimental values of
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Figure 8.6: Distribution of p value: (a) ele
tron mode using one hundred di�erent sets (b) muon

mode using ten di�erent sets.

other Mi
hel parameters. In parti
ular, � parameter shares same six g
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i j

s with �̄ and ��
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Combining � and ��
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(8.18)

The magnitude of negative terms 
an be evaluated based on Table 8.1 as

1

2

jg

T

LR

j

2

+

1

8

jg

S

LR

j

2

< 0:12 (95% C:L): (8.19)

Moreover, the terms in the last parenthesis in Eq. (8.18) arise from the 
ontribution of the interferen
e

between s
alar and tensor type intera
tions and disappear when we 
onsider one type of parti
le

BSM. In this s
enario, the rest positive terms are thus evaluated to be

2jg

V

RL

j

2

+

9

2

jg

T

RL

j

2

+

1

8

jg

S

RL

j

2

< 1:35; (95% C:L) (8.20)

whi
h gives

jg

V

RL

j < 0:82 (95% C:L); (8.21)

jg

T

RL

j < 0:55 (95% C:L): (8.22)

In parti
ular, Eq. (8.22) is 
ompetitive with PDG value that was obtained by 
ombing results of

multiple experiments.

8.4 Couplings with right-handed lepton

As des
ribed in Se
. 1.4, the �� parameter is related to a normalized probability that � 
ouples with

a right-handed daughter lepton Q

�

`

R

. This value has not been measured yet for the tau lepton. Taking

131



S
RL

g
3− 2− 1− 0 1 2 3

   
T R

L
g

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

)T
RL

,gS

RL
Upper limit of (g

=02|V

RL
|g

=0.152|V

RL
|g

=0.32|V

RL
|g

=0.452|V

RL
|g

=0.62|V

RL
|g

=0.752|V

RL
|g

)T
RL

,gS

RL
Upper limit of (g
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S

RL

and g

T

RL

at 95% 
on�den
e level depending on various jg

V

RL

j

2

values.

Inner regions en
losed by ellipses are allowed. Here we assume g

S

RL

and g

T

RL

are real.

Table 8.1: Upper limit of various 
ouplings g

N

i j

(95% C.L.) [7℄

�! e��̄

jg

S

RR

j < 0:70 jg

V

RR

j < 0:17

jg

S

LR

j < 0:99 jg

V

LR

j < 0:13 jg

T

LR

j < 0:082

jg

S

RL

j < 2:01 jg

V

RL

j < 0:52 jg

T

RL

j < 0:51

jg

S

LL

j < 2:01 jg

V

LL

j < 1:005

�! ���̄

jg

S
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j < 0:72 jg

V

RR

j < 0:18

jg

S

LR

j < 0:95 jg

V

LR

j < 0:12 jg
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j < 0:079
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j < 2:01 jg

V

RL

j < 0:52 jg

T

RL

j < 0:51

jg

S
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j < 2:01 jg

V

LL

j < 1:005
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into a

ount that �Æ and � parameters had been pre
isely measured by �! `��̄ de
ays, substitutions

of the SM values �Æ = 0:75 and � = 1:0 lead Q

�

`

R

= 2��. In the same way as �̄, we evaluate the upper

limit of �� < 1:2 at 95% 
on�den
e level. Thus we obtain the upper limit as

Q

�

`

R

< 2:4 (95% C:L): (8.23)

Obviously, we 
annot make any 
on
lusive de
ision at 
urrent pre
ision. It is desired to do further

pre
ision tests by future experiments.

8.5 Relationship with the right-left symmetri
 model

As mentioned in the introdu
tion, the measurement of Mi
hel parameters strongly 
ontributes to

the 
onstraint of physi
s models BSM whi
h have di�erent 
hirality stru
ture from the SM. The

right-left symmetri
 model [80, 81℄ predi
ts right-handed 
harged-weak 
urrent and exhibits Mi
hel

parameters BSM. The pre
ise measurement of �� parameter, indeed, 
onstrains a mixing parameter

of this model, however, it turns out to be impossible to give essential 
onstraint with 
urrent pre
ision.

It is required to improve the sensitivity by two order of magnitude to make it have an in�uen
e on

the BSM parameters. The dis
ussion is given in Appendix F.

133



Chapter 9

Measurement of the bran
hing ratio

B(�

�

! `

�

��̄
)

In this 
hapter, we present the measurement of bran
hing ratio of B(�

�

! `

�

��̄
) for ` = e or �

based on further optimization of sele
tion 
riteria for already sele
ted events des
ribed in Chapter 4.

We give a small dis
ussion on the obtained results of bran
hing ratios.

9.1 Event sele
tion

Sin
e our goal of this measurement is to a
hieve an a

ura
y of a few per
ents, tens of thousands

events turn out to be suÆ
ient in terms of statisti
al un
ertainty. Unlike the measurement of Mi
hel

parameters, we 
an optimize sele
tion 
riteria more stringently so that the purity of signal be
omes

suÆ
iently high � 70%. Moreover, rather than tuning sele
tion 
riteria based on an optimization of

statisti
al un
ertainty

�

, we put highly emphasis on the redu
tion of systemati
 un
ertainties.

To avoid dupli
ative generation of MC events, we start from already sele
ted events ex
ept the

E

LAB

extra



ut, whi
h is dedi
ated to the Mi
hel parameter measurement. The additional sele
tion 
riteria

are summarized in Table 9.1. Here, to determine sele
tion 
riteria, we take into a

ount following

things:

�

1

O and

4

O: these sele
tion 
riteria are intended for redu
tion of the systemati
 un
ertainty from

`ID eÆ
ien
y 
orre
tion. Be
ause of notable ba
kgrounds in forward and ba
kward parts, the


orre
tion fa
tors R

`ID

in this region are not pre
isely estimated and we ex
lude them.

�

2

O: this requirement is also intended to redu
e R

eID


orre
tion un
ertainties.

�

3

O

6

O: both sele
tion 
riteria play 
ru
ial roles in the suppression of ba
kgrounds.

Figures 9.1 to 9.5 show the situations of the additional sele
tions. The bla
k points with error bars

indi
ate experimental distributions and open and 
olored histograms represent MC simulations for

signal and ba
kground modes, respe
tively. Ea
h 
olor of histogram is same as explanations in

Se
. 4.4. To draw MC histograms, the s
ale fa
tor is determined a

ording to the number of entries

just after the se
ond sele
tion des
ribed in Chapter 4.

The step-by-step redu
tion of the signal eÆ
ien
y and the number of sele
ted events are summa-

rized in Tables 9.2 and 9.3.

�

In many optimization of sele
tion 
riteria, people often maximize a �gure of merit de�ned by FOM = S=

p

S + B,

where S and B are numbers of signal and ba
kgrounds, respe
tively. The idea of this optimization is to enhan
e the ratio

of signal number in terms of statisti
al �u
tuation of both signal and ba
kgrounds.
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Table 9.1: Additional sele
tion 
riteria

Ele
tron mode

1

O: The ele
tron dire
tion must lie region de�ned by �

LAB

e

< 126

Æ

.

2

O: The ele
tron momentum must ex
eed E

LAB

e

> 1:5 GeV.

3

O: The invariant mass of 
ombined momenta of e and 
 must ex
eed M

e


> 0:1 GeV=


2

.

4

O: The extra gamma energy E

LAB

extra


must be smaller than 0:2 GeV.

Muon mode

5

O: The muon dire
tion must lie region de�ned by 51

Æ

< �

LAB

�

< 117

Æ

.

6

O: CMS angle between � and 
 must satisfy 
os�

�


> 0:99.

7

O: The extra gamma energy E

LAB

extra


must be smaller than 0:3 GeV.

Table 9.2: Redu
tion of eÆ
ien
y in ea
h step for �

+

�

�

! (�

+

�

0

�̄)(e

�

��̄
) 
andidates.

Step after N

MC


and

N

MC

sig

"

sig

(%) purity (%) Ns

MC


and

y N

EX

2nd sele
tion z 7299848 2218523 7.96 30.4 1373878 1373878

Common 
ut 5466585 1810009 6.49 33.1 1028846 1023518

1

O 5326747 1775999 6.37 33.3 1002528 1005165

2

O 2419038 838600 3.01 34.7 455278 460944

3

O 88214 55331 0.198 62.7 16602 16395

4

O 67677 47515 0.170 70.2 12737 12302

y Ns

MC


and

means s
aled number of MC events at the step just after presele
tion.

z The di�eren
e in number of signal events and eÆ
ien
y from Table 4.3 
omes from

de�nition of signal. Herein, all radiative events are in
lusively 
ounted.

Table 9.3: Redu
tion of eÆ
ien
y in ea
h step for �

+

�

�

! (�

+

�

0

�̄)(�

�

��̄
) 
andidates.

Step N

MC


and

N

MC

sig

"

sig

(%) purity (%) Ns

MC


and

y N

EX

2nd sele
tion 1478977 376484 6.30 25.5 258089 258089

Common 
ut 463368 242321 4.06 52.3 80860 83062

5

O 280847 155064 2.60 55.2 49009 52316

6

O 131722 87477 1.46 66.4 22986 24909

7

O 115564 82633 1.38 71.5 20167 21624

y Ns

MC


and

means s
aled number of MC events at the step just after presele
tion.
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Figure 9.1:

1

O

5

O: Distribution of the 
osine of polar angle of lepton: (a) ele
tron mode (b) muon

mode.
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Figure 9.2:

2

O: Distribution of momentum of ele
tron.
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Figure 9.3:

3

O: Distribution of the invariant mass of 
ombined momenta of e and 
 M

e


: (a) overall

view (b) enlarged view.
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Figure 9.5:

4

O

7

O: Distribution of E

LAB

extra


: (a) ele
tron mode (b) muon mode.

9.2 Method

The bran
hing ratio 
an be determined using equation

B(�

+

! �

+

�

0

�̄)B(�

�

! `

�

��
) =

N

obs

(1 � f

bg

)

2�

��

L"̄

; (9.1)

where B(�

+

! �

+

�

0

�̄) = (25:52 � 0:09)% [7℄ is a bran
hing ratio of �

+

! �

+

�

0

�̄ de
ay, N

obs

is

the number of observed events, f

bg

is fra
tion of ba
kground events, �

��

= (0:919 � 0:003) nb

�1

is

the 
ross se
tion of e

+

e

�

! �

+

�

�

produ
tion at �(4S ) resonan
e energy, L = (703 � 10)fb

�1

is the

integrated luminosity for �(4S ) resonan
e energy, and "̄ is an average sele
tion eÆ
ien
y of signal

events.

The "̄ is evaluated by MC simulation. Here, as explained in Se
. 2.1, the de�nition of radiative

de
ay is events whose energy of gamma in tau rest frame ex
eeds 10 MeV. The 
orre
tion between

the experimental distribution andMC simulation is performed by using R(x) = "

EX

(x)="

MC

(x), whi
h

is originally extra
ted to measure the Mi
hel parameters (the detailed method of the extra
tion is

explained in Chapter 6). The average sele
tion eÆ
ien
y of MC simulation is expressed as:

"̄

MC

=

Z

dx S (x)"

MC

(x); (9.2)

where S (x) is the PDF of signal and "

MC

(x) is the sele
tion eÆ
ien
y. Sin
e what we need is an

eÆ
ien
y in the experimental situation, we 
hange Eq. (9.2) by

"̄

EX

=

Z

dx S (x)"

EX

(x) =

Z

dx S (x)"

MC

(x)

"

EX

(x)

"

MC

(x)

(9.3)

�

Z

dx S (x)"

MC

(x)R(x) =

"̄

MC

N

sel

X

x2S "

MC

R(x) = "̄

MC

¯

R: (9.4)
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Thus we evaluate the average of

¯

R a

ording to the sele
ted signal distribution and multiply it with

the sele
tion eÆ
ien
y of the MC simulation.

9.3 Evaluation of systemati
 un
ertainties

In Table 9.4, we summarize 
ontributions of systemati
 un
ertainties. To estimate systemati
 un
er-

tainty of

¯

R values, we use following method.

The systemati
 un
ertainties of R

`ID

and R

�ID

values are estimated by a 
omparison of the eÆ-


ien
ies of the experiment and MC simulation and observation of time variation (dependen
e on the

run ID numbers). For R

`ID


ase, we 
on�rm it using J= ! `

+

`

�

pro
ess. This 
he
k is intended

to take into a

ount the di�eren
e of environment be
ause two-photon pro
ess e

+

e

�

! e

+

e

�

`

+

`

�

is

mu
h 
leaner than typi
al B and � de
ays.

The systemati
 un
ertainties of R

�

0

ID

and R


ID

values are estimated by a 
omparison between hRi

and unity, where the bra
ket is evaluated with respe
t to signal events.

The bin-by-bin values of su
h systemati
 un
ertainties should be 
onsidered as 100% 
orrelated

values. Therefore, this 
ontribution is evaluated as an average Æ

¯

R

syst:

=

D

ÆR

syst:

E

, where the bra
ket

h i means it is evaluated with respe
t to sele
ted events. On the other hand, the statisti
al �u
tuation

of bins should be regarded as independent values, hen
e we vary the 
entral value of ea
h bin R

i

and see the 
hange of Æ

¯

R

stat:

= hR + ÆRi � hRi. We repeat the variation ten times and the average

of the residuals

D

Æ

¯

R

stat:

E

is taken as its un
ertainties. It turns out that su
h statisti
al �u
tuations are

negligible 
ompared to the systemati
 errors of overall bins.

The un
ertainty of B(�

+

! �

+

�

0

�̄) is taken from PDG average value [7℄ and that of �(e

+

e

�

!

�

+

�

�

) is taken a

ording to Ref. [77℄.

The statisti
al un
ertainty of MC events are basi
ally ignored be
ause its �u
tuation is small for

N

MC

� N

EX

. The un
ertainty of N

obs

are purely statisti
al ones.

The evaluation of systemati
 e�e
t of purity f

bg

is estimated based on a sideband information.

The sideband events are sele
ted by following 
riteria: M

e


< 0:1 GeV=


2

and 0:90 <
os�

e


< 0:94

for the ele
tron mode and 0:90 <
os�

�


< 0:99 for the muon mode, where other sele
tion 
riteria

are 
ommon with that of signal extra
tion. Suppose that N

S

and N

B

are number of sele
ted events

in signal and ba
kground regions and b is number of ba
kground events in signal region. Using MC

simulation, we estimate a ratio A = b=N

B

. Both signal and ba
kground regions are 
lose in phase

spa
e, then the ba
kground 
omposition of these regions are assumed to be 
lose as well. Thus it is

justi�ed A

EX

� A

MC

and the number of ba
kground events in signal region is estimated as

b

EX

= N

EX

B

A

EX

� N

EX

B

A

MC

: (9.5)

Be
ause b

MC

is obtained dire
tly from MC simulation, a 
omparison between b

MC

and Eq. (9.5)

enables us to evaluate the systemati
 e�e
t due to the ba
kground in
lusion. The systemati
 un-


ertainties from the estimation of b are 4:4% for ele
tron and 5:0% for muon modes, respe
tively.

Taking ea
h fra
tion into a

ount, we estimate resulting a

ura
ies of purity are 1:3% and 1:5%.

The e�e
t of dete
tor response are estimated by varying sele
tion 
ut parameters. Table 9.5 lists

up the evaluated systemati
 
ontributions from variation of sele
tion 
riteria. We 
he
ked the e�e
t

of sele
tion 
riteria of photon energy threshold in the laboratory frame and parameters listed in Ta-

ble 9.1, be
ause, of all sele
tion 
riteria, they have essential impa
ts on the redu
tion of eÆ
ien
y.

The magnitude of variation of photon energy threshold is determined based on the information of

linearity of energy response. A

ording to Ref. [43℄, a systemati
 shift between in
ident photon

energy vs measured energy was observed, parti
ularly below 100 MeV and the magnitude was ap-

proximately 2%. We varied the threshold by 5 MeV (whi
h 
orresponds to �5%) in
luding the

margin fa
tor. The variation of other sele
tion 
riteria are determined based on the propagation of
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the error matrix of momenta and energies. In a similar way as the in
lusion of dete
tor response in

the 
al
ulation of PDF (explained in Se
. 5.4.5), pre
ision of the measurement of 
ut parameters are

estimated by a residual Æ = x

org

� x

shift

, where x

org

and x

shift

are the original measured and shifted

values, respe
tively, and x

shift

are determined a

ording to the error matrix. The root mean square

(RMS) of Æ de�nes the order of variation: for the momentum and energy, we vary 3� RMS, whereas


onstru
ted parameters, namely, M

e


and 
os �

�


, are varied by 1 � RMS. Of all variations, notable

systemati
 un
ertainty is observed in the 
ut by M

e


. As Fig. 9.3 suggests, this is reasonable be-


ause the sele
tion by M

e


> 0:2 GeV=


2

is one of the most stringent sele
tion 
riteria to redu
e the

external bremsstrahlung.

In this measurement, we de�ned the radiative de
ay �

�

! `

�

��̄
 by the 
ondition of photon

energy threshold of E

�




= 10 MeV in the tau rest frame. More 
on
retely, to evaluate the sele
tion

eÆ
ien
y by MC simulation, we do not use events whose energy of photons are less than the thresh-

old. In the real experiment, however, we 
annot pre
isely determine the photon energy in the tau

rest frame (be
ause we are not able to spe
ify not only the tau dire
tion but also the energy of tau),

a

ordingly there is a 
han
e that a soft event, whi
h has a smaller-energy photon than threshold, is

re
onstru
ted also as a signal. The 
ut value of photon energy in the laboratory frame are 80 MeV

and 100 MeV in the barrel and end
ap regions, respe
tively, and this requires an enhan
ement of

boost at least by a fa
tor of ten, i.e., 
(1 + �) � 10 when dire
tion of boost and photon movement

are same. Indeed, this is barely possible in a limited phase spa
e and it turns out that the soft events

are in
luded in the sele
ted events with fra
tions of 1:1% and 0:3% for ele
tron and muon events,

respe
tively. We take these fra
tions as sour
es of systemati
 un
ertainties due to the experimental

ambiguity of E

�




threshold.

We also 
he
ked the impa
t of a variation of shape of photon energy spe
trum mainly due to

the un
ertainty of theoreti
al model. As explained many times, we measure the bran
hing ra-

tio de�ned with the threshold of E

�




= 10 MeV on the basis of the photon energy requirement

E




= 80 MeV (or 100 MeV) in the CMS. That is to say, we estimate the total number of radia-

tive events (E

�




> 10 MeV), denoted as N

10

, using the number of partially sele
ted events with

E




> 80 (100) MeV, denoted as N

80

. It follows from this that this measurement relies on the ratio

N

10

=N

80

(equivalently the shape of photon energy spe
trum) whi
h is mainly determined by theoreti-


al assumption. However, the inputs of parameter whi
h a�e
ts the shape�masses of ele
tron, muon

and tau, and beam energies�are pre
isely measured and do not seriously vary the ratio N

10

=N

80

. In-

deed, we varied these values by 5%, whi
h is obviously 
onservative evaluation, and found that

N

10

=N

80

shifted only 0.06%.

9.4 Result

In Table 9.6, we show the result of measurements separately for the four 
on�gurations: (e

�


; �

+

�

0

),

(e

+


; �

�

�

0

), (�

�


; �

+

�

0

) and (�

+


; �

�

�

0

). They are 
ombined to give

B(�

�

! e

�

��̄
)

E

�




>10 MeV

= (1:82 � 0:02 � 0:10) � 10

�2

; (9.6)

B(�

�

! �

�

��̄
)

E

�




>10 MeV

= (3:68 � 0:02 � 0:15) � 10

�3

; (9.7)

where �rst error is statisti
 and se
ond is systemati
. We also obtained these bran
hing ratio as a

fun
tion of E

LAB

extra



ut value as shown in Fig. 9.6.

9.4.1 Ratio of bran
hing ratio Q = B(�

�

! e

�

��̄
)=B(�

�

! �

�

��̄
)

As summarized in Table 9.4, the dominant systemati
 
ontribution 
omes from the re
onstru
tion

eÆ
ien
y 
orre
tion for �

0

. This un
ertainty 
an be removedwhen we measure the ratio of bran
hing
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Table 9.4: List of various systemati
 
ontributions (%)

Item (e

�


; �

+

�

0

) (e

+


; �

�

�

0

) (�

�


; �

+

�

0

) (�

+


; �

�

�

0

)

R

trg

1:2 1:2 0:7 0:7

R


ID

1:0 1:0 0:4 0:4

R

`ID

1:9 1:9 1:1 1:1

R

�ID

0:7 0:7 0:7 0:7

R

�

0

ID

3:6 3:6 3:3 3:3

R

re


0:7 0:7 0:7 0:7

Luminosity 1:4 1:4 1:4 1:4

B(�! ��

0

�) 0:4 0:4 0:4 0:4

�(ee! ��) 0:3 0:3 0:3 0:3

f

bg

1.3 1.3 1:5 1:5

Dete
tor response 1.5 1.5 0.6 0.6

Ambiguity of E

�




threshold 1.1 1.1 0.3 0.3

Model un
ertainty negligible negligible negligible negligible

Total 5:3 5:3 4:3 4:3

Table 9.5: Systemati
 
ontributions due to dete
tor response

Cut ID Variation of sele
tion 
riteria �B=B (%)

Ele
tron mode

E

LAB




threshold : E

LAB




< 80 MeV (or 100 MeV) 5 MeV 0.05

1

O: �

LAB

e

< 126

Æ

3:4

Æ

0.01

2

O: E

LAB

e

> 1:5 GeV 9 MeV=
 0.01

3

O: M

e


> 0:1 GeV=


2

14 MeV=


2

1.3

4

O: E

LAB

extra


< 0:2 GeV 50 MeV 0.7

Total 1.5

Muon mode

E

LAB




threshold : E

LAB




< 80 MeV (or 100 MeV) 5 MeV 0.05

5

O: 51

Æ

< �

LAB

�

< 117

Æ

1:7

Æ

0.3

6

O: 
os�

�


> 0:99 0.002 0.5

7

O: E

LAB

extra


< 0:3 GeV 50 MeV 0.05

Total 0.6
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Table 9.6: Summary of result

item (e

�


; �

+

�

0

) (e

+


; �

�

�

0

) (�

�


; �

+

�

0

) (�

+


; �

�

�

0

)

N

obs

6188 � 79 6114 � 78 10458 � 102 11170 � 106

1 � f

bg

y

(%) 70:2 � 0:9 70:2 � 0:9 71:5 � 1:0 71:5 � 1:0

"̄

MC

(%) 0:172 0:169 1:26 1:27

¯

R 0:85 � 0:04 0:85 � 0:04 0:93 � 0:03 0:93 � 0:03

"̄

EX

(%) 0:146 � 0:007 0:144 � 0:007 1:28 � 0:05 1:29 � 0:05

B

E

�




>10 MeV

(%) 1:81 � 0:02 � 0:10 1:82 � 0:02 � 0:10 0:356 � 0:003 � 0:015 0:377 � 0:003 � 0:016

y

The de�nition of signal is di�erent from the main analysis. In the measurement of the bran
hing ratio,

events generated as radiative leptoni
 de
ay and whose photon energy ex
eeds E

�




= 10 MeV are in
lusively

treated as signal. Therefore, for instan
e, even if the bremsstrahlung of ele
tron in �

�

! e

�

��̄
 is

re
onstru
ted as signal photon, it is still 
ategorized as signal.
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Figure 9.6: Bran
hing ratio of �

�

! `

�

��̄
 de
ay as a fun
tion of E

LAB

extra



ut:(a) ` = e and (b) ` = �.

Red, blue and magenta lines respe
tively represent bran
hing ratio of �

�

! `

�

��̄
, �

�

! `

�

��̄
 and

�

+

! `

+

��̄
. Orange region shows result of the measurement by BaBar [37℄. Bla
k, green and red

lines are theoreti
al predi
tions for LO, in
lusive and ex
lusive modes, respe
tively [40℄. The error

in
ludes both statisti
al and systemati
 un
ertainties.
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Table 9.7: Comparison of the ratio Q (E

�




> 10 MeV)

Theory

Leading order 5.007

Next leading order in
l. 4.793

Next leading order ex
l. 4.605

Experiment

CLEO 4.9 � 0.3 � 0.6 [36℄

BaBar 5.01 � 0.06 � 0.19 y [37℄

This measurement 4.95 � 0.06 � 0.20

y

Systemati
 un
ertainty is naively 
al
ulated from

referen
e values, where 
an
ellation is not taken

into a

ount.

ratio Q = B(�

�

! e

�

��̄
)=B(�

�

! �

�

��̄
). Moreover, other 
ommon systemati
 sour
es, R

re


,

R

�ID

, the integrated luminosity, the bran
hing ratio of �

+

! �

+

�

0

�̄ de
ay and the 
ross se
tion

�(e

+

e

�

! �

+

�

�

) also disappear. The obtained ratio is

Q =

B(�

�

! e

�

��̄
)

E

�




>10 MeV

B(�

�

! �

�

��̄
)

E

�




>10 MeV

= 4:95 � 0:06 � 0:20; (9.8)

where the �rst error is statisti
 and se
ond is systemati
. As the information of Q value is summa-

rized in Table 9.7, our result well supports the LO 
al
ulation as well as the measurement of BaBar

experiment.

9.5 Dis
ussion

9.5.1 Treatment of double photons

As mentioned in the introdu
tion, the bran
hing ratio measurement by BaBar experiment is 
onsis-

tent with the theoreti
al LO 
al
ulation but not with NLO predi
tion for �

�

! e

�

��̄
 de
ay mode.

However, there is a room for dis
ussion be
ause of the treatment of two photons in NLO 
al
ulation.

In Ref. [40℄, the authors de�ne three types of de
ays: an in
lusive mode is de�ned as an event whi
h

has at least one hard photon, an ex
lusive mode is de�ned as an event whi
h has one and only one

hard photon and doubly de
ay whi
h has two hard photons. Here, the hard photon means the energy

ex
eeds 10 MeV in � rest frame. Figure 9.7a shows a s
hemati
 view of the energy 
on�guration of

two photons.

In this measurement, we reje
t additional photons in two ways. First, if two photons whose ener-

gies ex
eed 80 MeV enter the 
one around lepton dire
tion, the events are reje
ted. However, even

if two photons are generated inside the 
one, their 
lusters in ECL 
an merge and behave as a single

emission on
e both photons are produ
ed towards almost same dire
tion (typi
ally a few degrees in

laboratory frame). The other is a reje
tion using the extra gamma energy whi
h is de�ned as a sum

of all photon 
lusters whi
h do not have asso
iated 
harged tra
ks. Sin
e the photon 
luster 
andi-

dates are determined if the energy ex
eed 40 MeV, a soft photon whi
h does not rea
h this energy

thresholds 
an survive from our sele
tion 
riteria. Consequently, there is a possibility that we fail to

reje
t additional photons if their energies are small. Here, it is worthy to note that these experimental

thresholds are not so far from a threshold used in theoreti
al 
al
ulation (10 MeV) be
ause the boost
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of � by 
 � 3 
auses an enhan
ement of photon energy in laboratory frame. This situation is drawn

in Fig. 9.7b. Be
ause of the fa
tor of boost, the magnitude relationship between the experimental

and theoreti
al energy thresholds is obs
ure but at least there is an additional region in (E


1

; E


2

)

plane in whi
h we experimentally fail to veto the additional photon even if we attempt to measure

the ex
lusive bran
hing ratio. Thus above dis
ussion may imply that experimental measurement

should show a value between the ex
lusive and in
lusive bran
hing ratios. With 
urrent a

ura
y,

we 
annot 
on
lude whether our result agrees with the predi
tion of in
lusive bran
hing ratio but it

is reasonable to reje
t that of ex
lusive one.

To evaluate the e�e
t of NLO e�e
ts more pre
isely, it is inevitable to update the generator

of �

�

! `

�

��̄
. Current version of the TAUOLA generator does not take into a

ount the NLO

e�e
ts, hen
e the double emission of photons are not properly ex
luded, i.e., the eÆ
ien
y of a single

emission of photon is neither well de�ned nor estimated. This improvements would be also important

for muoni
 de
ay to redu
e a possible systemati
 bias on the sear
h for its lepton �avor violating

de
ays like �

+

! e

+


 and �

+

! e

+

e

�

e

+

. In Appendix D, we introdu
e the theoreti
al information of

the doubly radiative de
ay with generated distributions of �nal state kinemati
 variables.

(a) (b)

Figure 9.7: S
hemati
 view of energy of two photons: (a) an in
lusive mode is represented by

a region en
losed by a red dashed-line while an ex
lusive mode is drawn by blue re
tangles: (b)

experimentally it is diÆ
ult to de�nitely reje
t weak photons even if they ex
eed the theoreti
al

energy threshold, whi
h result in a possibility to in
lude �lled region.

9.5.2 Anomalous four-point intera
tion

As pointed in Ref. [78℄, the kinemati
 properties of emitted photon re�e
ts the inner stru
ture of

de
ay and thus the radiative leptoni
 de
ay 
an reveal a 
ertain physi
s BSM in a di�erent way from

the ordinary leptoni
 de
ay. However, unfortunately, there are not so many available theoreti
al

studies dedi
ated to the radiative mode.

We then 
onsider the addition of anomalous four-point s
alar and tensor intera
tions in the SM

Lagrangian as:

y

L �

g

p

2

W

�

"

¯

 (�

�

)


�

1 � 


5

2

 (�) �

e�

S

�

m

�

A

�

¯

 (�

�

) (�) +

ie�

T

�

m

�

A

�

¯

 (�

�

)�

��

 (�)

#

+ h:
:; (9.9)

where �

S

�

and �

T

�


hara
terize the magnitudes of these intera
tions. From theoreti
al point of view, the

naive in
lusion of Eq. (9.9) does not make sense due to the violation of Gauge invarian
e. However,

there is a possibility that these terms 
an appear as parts of U(1) 
 SU(2) symmetri
 intera
tions of

¯

 (�

�

)jDj

2

 (�) and

¯

 (�

�

)�

��

i[iD

�

; iD

�

℄ (�), where D

�

is the 
ovariant di�erential operator.

y

Similar intera
tions have been studied in the spe
trum of �

�

! `

�

��̄ by DELPHI 
ollaboration [79℄.
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�

�

�




`

�

`

Figure 9.8: Feynman diagram of anomalous four point s
alar and tensor intera
tions.

As the Feynman diagram is shown in Fig. 9.8, the anomalous intera
tion gives an additional

amplitude ofM

a

for �

�

! `

�

��̄
 de
ay and interferes with that of the SM as:

jM

tot

j

2

= jM

SM

+M

a

j

2

� jM

SM

j

2

+ 2<fM

SM

M

�

a

g; (9.10)

where we ignored small fa
tor of jM

a

j

2

. The shift of spe
trum by 2<fM

SM

M

�

a

g is given by

�

 

d�(�! `��̄
)

dxdyd


�

`

d


�




!

S

= �

4m

5

�

G

2

F

��

S

�

3(4�)

6

x�

�

`

z

"

� z

n

(1 + �

2

� x � y + z)(z � 3x) + (y � z)(x � z � 2�

2

)

o

+ 3y(z � 2�

2

)(1 + �

2

� x � y + z)

#

; (9.11)

for the s
alar type intera
tion and

�

 

d�(�! `��̄
)

dxdyd


�

`

d


�




!

T

= �

4m

5

�

G

2

F

��

T

�

3(4�)

6

x�

�

`

z

"

z(�3x + x

2

+ 13xy � 9y + 9y

2

) + z

2

(�7x � 17y + 7) + 6z

3

+ �

2

n

�18y + 18xy + 18y

2

+ z(8 � 3x � 37y) + 9z

2

o

� 18�

4

y

#

; (9.12)

for the tensor type intera
tions, where x, y, z and � are normalized kinemati
 variables de�ned as

x = 2E

�

`

=m

�

, y = 2E

�




=m

�

, z = 2p




� p

`

=m

2

�

= xy(1 � �

�

`


os �

�

`


)=2 and � = m

`

=m

�

, respe
tively.

Integrating the di�erential variables numeri
ally in the phase spa
e, we obtain

�(�

�

! `

�

��̄
)

E

�




>10 MeV

= �

SM

E

�




>10 MeV

�

1 + 


`

�

N

�

�

; (N = S ; T ) (9.13)




S

e

= 2:01 � 10

�3

; (9.14)




S

�

= 8:73 � 10

�3

; (9.15)




T

e

= 6:17 � 10

�3

; (9.16)




T

�

= 3:19 � 10

�2

: (9.17)

Taking into a

ount the good agreement of the observed bran
hing ratio with that of the SM theoret-

i
al predi
tion, j�B(�

�

! ���̄
)=B(�

�

! ���̄
)j < 4:3% gives

�

�

�

�

S

�

�

�

�

< 4:9 (68% C:L); (9.18)

�

�

�

�

T

�

�

�

�

< 1:3 (68% C:L): (9.19)

This is the �rst attempt to 
onstrain these 
oeÆ
ients.
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Chapter 10

Future prospe
ts and 
on
lusion

10.1 Future experiment and expe
ted improvements

The Belle II is an upgrade proje
t of the Belle experiment using Super KEKB a

elerator and Belle I

I dete
tor, whi
h is planning to start physi
s data taking from 2017. The key of the next-generation

proje
t is to a
hieve 40 times higher instantaneous luminosity than KEKB (L = 8:0 � 10

35


m

�2

s

�1

)

and 
olle
t �fty times larger integrated luminosity. Using mu
h more abundant data set of e

+

e

�

!

B

¯

B, e

+

e

�

! �

+

�

�

, e

+

e

�

! 

̄, et
, further pre
ision tests of the SM will be
ome available. Most

notably, improvements of analyses whose un
ertainties are statisti
al dominant will be main goals of

this proje
t. The measurement of �̄ and �� is truly a part of this subje
t. In Table 10.1, we summarize

the information of the upgrade.

�

Considering the improvement of the gain of statisti
s by a fa
tor of 50, we 
an roughly expe
t

seven times better statisti
al un
ertainty than this analysis, a

ordingly the measurement of the �̄ and

�� will be systemati
 dominant. Here, we dis
uss possible solutions to maintain the sensitivity.

First of all, it is worth noting that many sour
es of the systemati
 un
ertainties, whi
h are listed

in Table 7.1, are evaluated by �tting the Mi
hel parameters with and without the e�e
t of original

sour
es of un
ertainties. The variation of �tted �̄ and �� values is taken as their e�e
ts on the Mi
hel

parameters. For this reason, the magnitude of su
h un
ertainties largely depend on the sensitivity of

�tted Mi
hel parameters to the spe
tra of MC distribution, where amount of statisti
s of experimental

events has a notable 
ontribution to the pre
ision. However, it will not be so straightforward to

�

For more details, see e.g. [82℄ (physi
s) and [83℄ (a

elerator and dete
tor).

Table 10.1: Upgrade of the Belle experiment

Item Belle Belle II

A

elerator KEKB Super KEKB

Beam Energy (E

e

�

; E

e

+

) (GeV) (8.0, 3.5) (7.0, 4.0)

Current (I

e

�

; I

e

+

) (A) (1.6, 1.2) (3.6, 2.6)

Instantaneous lumi. (
m

�2

s

�1

) 2:1 � 10

34

8:0 � 10

35

Integrated lumi. (ab

�1

) 1.0 50

Dete
tor Belle Belle II

Vertex dete
tor Four layers of SVD Pixel [84℄ & strip [85℄ (2 + 4 lays.)

Tra
king CDC In
rease granularity of CDC [86℄

PID TOF & ACC TOP [87℄ & ARICH [88℄

Calorimeter ECL Improve readout ele
troni
s [89℄

Computing KEK main International grid 
omputing [90℄
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in
rease the statisti
s of MC events be
ause a 
orre
t evaluation/validation of the pro
edure requires

the generi
 �� MC sample, where various ba
kground modes are required to be simulated as well.

In general, both dete
tor simulation and store of data for generi
 �� MC events are very heavy

and tend to be substantial problem.

y

In fa
t, in this analysis, we use generi
 MC sample that is

only �ve times as large amount as that of real experiment. To maintain sensitivity for the Belle II

analysis, it will be ne
essary to prepare at least several times (order of 5-10) larger amount of MC

data sample than the statisti
s of real Belle II experiment.

z

Moreover, even in the situation of Belle

analysis, we need approximately ten hours to 
al
ulate the PDFs using �fty CPUs. To a

ommodate

50 times larger pro
essing, new breakthrough in the handling of 
omputation would be required.

At the time of writing, a use of graphi
al pro
essing unit (GPU) re
eives more and more people's

attention. GPU was originally developed to 
al
ulate huge amount of simple data for the graphi
s

of 
omputer games but nowadays they are made use of in many s
ien
e �elds like a neural network,

an e
onomi
s, a liquid simulation and so on. Their ex
ellent 
ost performan
e may realize the huge

amount of 
al
ulation.

Se
ond, the 50 times larger data set may enable us to adopt more stringent sele
tion 
riteria

so as to in
rease the purity of signal within a realisti
 statisti
al un
ertainty. In this analysis, we

are required to retain both sele
tion eÆ
ien
y and purity then resulting statisti
al and systemati


errors are almost 
ompatible. However, it is not impossible to apply more strong sele
tion 
riteria.

For example, the 
ontamination from the extra bremsstrahlung for � ! e��̄
 
andidates 
an be

redu
ed by applying a sele
tion 
riteria for the invariant mass of lepton and photon m

e


. As shown

in Fig. 10.1, the extra bremsstrahlung 
an be ex
luded on
e we require m

e


> 0:1 � 0:2 GeV though

this drasti
ally degrades the eÆ
ien
y. Similarly, for muon mode, a stringent 
ut on the 
os�

�


(e.g.


os�

�


> 0:99) may be reasonable. Nevertheless, as des
ribed in Se
. 5.6.2, the sensitivity of the

Mi
hel parameters generally depends on a spe
i�
 sele
tion 
ut even if statisti
s is same. Therefore,


autious study of the sensitivity may be important. In fa
t, as mentioned in Ref. [91℄, the sensitivity

of e�e
t BSM would be maximum around �

�


� 180

Æ

. Therefore, it will be reasonable to allow

events like j
os�

�


j > 0:98 to enhan
e sensitivity. However, it is worth to mention that this indi
ates

a 
ontamination from ba
kground in this region also highly a�e
ts the �tted Mi
hel parameters.

Third, as the method des
ribed in Se
. 5.4.3 and mentioned in Se
. 5.6.3, dedi
ated treatment

of ba
kgrounds whi
h is 
urrently 
lassi�ed as others are ne
essarily to a
hieve further pre
ision.

The simpli�
ation of the T = B

sel

=S

sel

into produ
ts of subsets of T s generally dis
ards the high-

dimension 
orrelations in the phase spa
e and delivers a systemati
 bias. There are some possible

strategies to over
ome this situation. Using more abundant data, it is possible to tabulate the subset

of T s in larger dimension of phase spa
e. In this analysis, we tabulate the subset as a fun
tion of

three variables at maximum. We may be able to extend up to four variables. Another possibility is

to �nd more pre
ise way of the redu
tion of T . Although the dimension of phase spa
e is �xed to

be twelve, the possible de�nition of T is almost in�nity, hen
e trial and error are inevitable. Modern


omputer te
hnologies like deep learning may help this dis
overy.

Finally, to realize pre
ise analyses of radiative de
ays (not only �! `��̄
 but also other pro
esses

like � ! �
, b ! s
) in the environment of forty times as large instantaneous luminosity as Belle,

the suppression of beam ba
kground plays a 
ru
ial role in their su

esses. Sin
e physi
s pro
esses

su
h as radiative Bhabha s
attering ee ! ee
 and ISR emission are proportional to luminosity, their

existen
e does not 
ause a substantial in
rease of the systemati
 e�e
ts while the beam ba
kground

may be mu
h stronger than the fa
tor of forty. To over
ome the (possibly) severe situation of the

beam ba
kground, the readout ele
troni
s of the Belle II ECL will be upgraded, where waveform

signals from the PIN photo diodes atta
hed on the CsI 
rystal are �tted to dete
t the hit timing

pre
isely. The requirement of the 
orresponden
e of the hit and 
ollision timing using this new

y

The amount of data for 703 fb

�1

(whole available �(4S ) data) of generi
 MC is approximately 5 TB.

z

This 
orresponds to �2 PB when Belle MC is assumed.
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(b) enlarged

Figure 10.1: Distribution of the invariant mass of ele
tron and photonm

e


for �

�

! e

�

��̄
 
andidate:

(a) overall view (b) enlarged view. As explained in Chapter 4, yellow and green histogram represent

the extra bremsstrahlung.

te
hnique may give a signi�
ant improvement in the purity. Even at Belle, in some latter period, it is

not impossible to a

ess the hit time information but we did not use them.

Taking into a

ount all fa
ts listed above, it is not far from realisti
 to expe
t an improvement of

systemati
 un
ertainty by the same gain as statisti
al, i.e., a gain of the fa
tor of

p

50 � 7.

10.2 Con
lusion

We present a measurement of the Mi
hel parameters �̄ and �� of the � lepton using 703 fb

�1

of

�(4S ) beam energy data 
olle
ted with the Belle dete
tor at the KEKB e

+

e

�


ollider. The Mi
hel

parameters are fundamental nature of � and � leptons, whi
h 
hara
terize the spe
tra of daughter

parti
les from their leptoni
 de
ays. The generalized amplitude of leptoni
 de
ays is written as a

superposition of ten 
ontributions, in whi
h the s
alar, ve
tor and tensor intera
tions are summed

for ea
h 
on�guration of 
hiralities of mother and daughter 
harged leptons. The Mi
hel parameters

are de�ned as bilinear 
ombinations of the dimensionless 
oupling 
onstants of ten amplitudes. The


omparison of experimentally measured Mi
hel parameters vs the Standard Model predi
tion is thus

the model independent veri�
ation of physi
s beyond the Standard Model.

The ordinary Mi
hel parameters �, �, � and �Æ have been pre
isely measured in �

�

! `

�

��̄ (`

= e or �) and their previous measured values are 
onsistent with the Standard Model predi
tions.

Whereas, �̄ and �� parameters 
an be measured only if we observe a photon from leptoni
 de
ay, or

radiative de
ay, �

�

! `

�

��̄
. The angular distribution of photon with respe
t to the daughter lepton

movement indire
tly exposes the polarization of daughter lepton and this enables us to understand

another aspe
t of internal stru
ture of the weak intera
tion.

�̄ and �� parameters are extra
ted from the radiative leptoni
 de
ay �

�

! `

�

��̄
 and the tagging

� de
ay �

+

! �

+

(! �

+

�

0

)�̄ of the partner �

+

to exploit the spin-spin 
orrelation in e

+

e

�

! �

+

�

�

.

Be
ause of the suppression of sensitivity from the small mass of ele
tron, �̄ parameter is extra
ted
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only from �

�

! �

�

��̄
 mode. �̄ and �� are simultaneously �tted to the kinemati
 distribution to be

�̄

�

= �1:3 � 1:5 � 0:8 (10.1)

(��)

�

= 0:8 � 0:5 � 0:3: (10.2)

In the ele
tron mode, �� is �tted by �xing �̄ value to the Standard Model predi
tion of �̄ = 0 and the

optimal value is

(��)

e

= �0:4 � 0:8 � 0:9: (10.3)

The �rst errors are statisti
al and the se
ond are systemati
. This is the �rst measurement of both

parameters for the � lepton. These values are 
onsistent with the SM expe
tation within the errors.

Based on the measured values of �̄ and ��, we obtained the upper limit of the 
oupling 
onstant

on g

N

i j

s. Combining linear 
ombination of � and �� values we obtain

jg

T

RL

j < 0:55 (95% C:L): (10.4)

From observed �� value, we also tried to obtain upper limit of the normalized probability that �

lepton 
ouples with a right-handed daughter lepton as

Q

�

R

< 2:4 (95% C:L): (10.5)

This is the �rst experimental 
onstraint for the tau lepton.

To make the measurement of �̄ and �� have further signi�
ant impa
ts on the theories BSM,

it is desired to perform more pre
ise measurement using next generation experiments. In the

improvements of the a

ura
y of these measurements, it is ne
essary to redu
e systemati
 un
er-

tainties, whi
h is already 
ompetitive to statisti
al un
ertainties of Belle data sample. The key of the

improvements will be treatment huge amount of data of the MC as well as the real experiment using

modern te
hnologies of the 
omputing.

Further optimizing the sele
tion 
riteria, we also measured the bran
hing ratio of radiative de
ays

�

�

! `

�

��̄
. The results are

B(�

�

! e

�

��̄
)

E

�




>10 MeV

= (1:82 � 0:02 � 0:10) � 10

�2

; (10.6)

B(�

�

! �

�

��̄
)

E

�




>10 MeV

= (3:68 � 0:02 � 0:15) � 10

�3

; (10.7)

where the �rst error is statisti
 and se
ond is systemati
. These values are 
onsistent with the results

by BaBar experiment.

To redu
e various systemati
 e�e
ts, in parti
ular from �

0

re
onstru
tion eÆ
ien
y, we obtained

a ratio of the bran
hing ratio

Q =

B(�

�

! e

�

��̄
)

E

�




>10 MeV

B(�

�

! �

�

��̄
)

E

�




>10 MeV

= 4:95 � 0:06 � 0:20; (10.8)

where the �rst error is statisti
 and se
ond is systemati
. The magnitude of systemati
 un
ertainty

slightly improves to give �Q=Q = 4:0%. This result does not 
hange the 
on
lusion des
ribed above.

The results are 
onsistent with the leading order theoreti
al 
al
ulation, whereas, similarly to the

result of BaBar experiment, in the ele
tron mode the measured bran
hing ratio does not prefer the

ex
lusive bran
hing ratio that is predi
ted by taking into a

ount the NLO 
ontribution. Though we

veto the multiple photon 
andidates by the sele
tion 
riteria, due to the photon energy threshold, the

experimentally measured value should not be regarded as an ideal ex
lusive mode and indeed, it is
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more plausible to think it of the middle between the ex
lusive and in
lusive modes. This arises from

the ignoran
e of the multiple photon emissions at the stage of event generation and the implementa-

tion of NLO formalism in the TAUOLA generator is required to do further analysis.

Based on the agreement of observed bran
hing ratio of radiative de
ay, we attempt to 
onstrain

the 
oupling 
onstants of anomalous four-point s
alar and tensor intera
tions. Integrating the dif-

ferential de
ay width due to interferen
e between the anomalous and the SM amplitudes, we eval-

uate the expe
ted shift of bran
hing ratio and obtained upper limits are j�

S

�

j < 4:9 (68% C:L) and

j�

T

�

j < 1:3 (68% C:L). This is the �rst attempt to 
onstrain the four-point intera
tions.
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Appendix A

Measurement of the bran
hing ratio

B(�

�

! `

�

��̄
) (validation)

As one of a validation of our pro
edures, we measure the bran
hing ratio of �

�

! `

�

��̄
 de
ay

for ` = e or �. The agreement of the bran
hing ratio with previous measurements tells us the

additional 
onsisten
y for the estimation of R as well as an evaluation of ba
kgrounds 
ontamination

for �

�

! `

�

��̄
 de
ays.

A.1 Method and evaluation of systemati
 un
ertainties

Taking into a

ount the 
on�rmation purpose of this measurement, we must use 
ompletely same

sele
tion 
riteria as that of the measurement of Mi
hel parameters. The method of the measurement

of the bran
hing ratio and its systemati
 un
ertainty are same as presented in Chapter 9. Sin
e it

is diÆ
ult to de�ne the sideband region, we use same value as a di�eren
e of ba
kground amount

des
ribed in Chapter 9. Taking into a

ount a fra
tion of ba
kgrounds, estimated systemati
 e�e
t

on the purity f

bg

is 2.9% and 2.1% for ele
tron and muon modes, respe
tively. In Table A.1, we

summarize the 
ontributions of the systemati
 un
ertainties for ea
h item.

A.2 Result

Table A.2 shows information of extra
ted values. Based on these information, we obtain thatB(�

�

!

e

�

��̄
) = (1:83 � 0:00 � 0:11)% and B(�

�

! �

�

��̄
) = (0:348� 0:001� 0:019)%. This result agrees

with the measurement by BaBar experiment.

A.3 Dis
ussion and 
on
lusions

A.3.1 E

LAB

extra


dependen
e

The in
onsisten
y of the experimental result with the NLO theoreti
al predi
tion may 
ome from

double emission of photons. The stability of the measurement towards the extra gamma energy

E

LAB

extra



ut is useful prove of the veri�
ation of this e�e
t be
ause the additional emission of photons

is suppressed by this 
ut. We measure the bran
hing ratio for samples separately sele
ted by di�erent

extra gamma energy 
ut from 0:00 GeV to 0:45 GeV with 0:05 GeV step. Sin
e E

LAB

extra


is de�ned as a

sum of energy of separate photon 
lusters whi
h ex
eeds 40 MeV in laboratory frame, the sele
tion

with E

LAB

extra


= 0 GeV means we do not allow any photon 
lusters in the event o

urren
e. Figure A.1

shows the dependen
e of the bran
hing ratio on the extra gamma energy 
ut. Sin
e the statisti
s
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Table A.1: Summary of systemati
 
ontributions (%)

item (e

�


; �

+

�

0

) (e

+


; �

�

�

0

) (�

�


; �

+

�

0

) (�

+


; �

�

�

0

)

R

trg

2:8 2:8 1:8 1:8

R


ID

0:6 0:6 1:7 1:7

R

`ID

3:0 3:0 2:8 2:8

R

�ID

0:7 0:7 0:6 0:6

R

�

0

ID

3:5 3:5 3:5 3:5

R

re


0:7 0:7 0:7 0:7

Luminosity 1:4 1:4 1:4 1:4

B(�

+

! �

+

�

0

�̄) 0:4 0:4 0:4 0:4

�(e

+

e

�

! �

+

�

�

) 0:3 0:3 0:3 0:3

f

bg

2.9 2.9 2:1 2:1

Total 6:4 6:4 5:8 5:8

Table A.2: Summary of result

item (e

�


; �

+

�

0

) (e

+


; �

�

�

0

) (�

�


; �

+

�

0

) (�

+


; �

�

�

0

)

N

obs

391954 � 626 384880 � 620 35198 � 188 35973 � 190

1 � f

bg

y

(%) 33:0 � 1:1 33:0 � 1:1 57:4 � 1:3 57:4 � 1:3

"̄

MC

(%) 4:825 4:786 3:880 3:859

¯

R 0:89 � 0:05 0:89 � 0:05 0:92 � 0:05 0:92 � 0:05

"̄

EX

(%) 4:28 � 0:24 4:25 � 0:23 3:58 � 0:19 3:56 � 0:18

B (%) 1:84 � 0:00 � 0:12 1:82 � 0:00 � 0:12 0:344 � 0:002 � 0:020 0:353 � 0:002 � 0:020

y

The de�nition of signal is di�erent from the main analysis. In the measurement of the bran
hing ratio,

events generated as radiative leptoni
 de
ay and whose photon energy ex
eeds E

�




= 10 MeV are in
lusively

treated as signal. Therefore, for instan
e, even if the external bremsstrahlung of ele
tron in �! e��̄
 is

re
onstru
ted as signal photon, it is still 
ategorized as a signal.

have overlaps, they are systemati
ally 
orrelated ea
h other. The variation of the bran
hing ratios

towards the di�erent extra gamma energy 
ut are within the range of un
ertainties. These stabilities

of the bran
hing ratio imply that the measurements are more or less strong for the 
ontaminations

from ba
kgrounds be
ause di�erent 
ut value generally 
hanges the fra
tions of various ba
kground

modes. Here, we 
an see a good agreement with the theoreti
al leading order 
al
ulation while it

is diÆ
ult to judge whi
h next-leading order 
al
ulation is more preferable, namely, an in
lusive or

an ex
lusive bran
hing ratio.

�

Our result is 
onsistent with measurement by BaBar experiment [37℄

within its un
ertainty.

A.3.2 Con
lusions

As one of a validation of the pro
edures of the measurement of the Mi
hel parameters, we measure

bran
hing ratio of �

�

! `

�

��̄
 de
ay using tagged �

+

! �

+

�

0

�̄ de
ay. The observed results are

B(�

�

! e

�

��̄
) = (1:83� 0:00� 0:10)% and B(�

�

! �

�

��̄
) = (0:348� 0:001� 0:019)%. Sin
e the

sele
tion 
riteria is not optimized for the bran
hing ratio measurement, the systemati
 e�e
ts turn

�

For these de�nitions, see Se
. 2.3 or Se
. 9.5
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 (GeV)γextra
LABE

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

B
r

0.016

0.0165

0.017

0.0175

0.018

0.0185

0.019

0.0195

0.02

)γ ν ν e → τBr(
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Figure A.1: Bran
hing ratio of �

�

! `

�

��̄
 de
ay as a fun
tion of E

LAB

extra



ut:(a) ` = e and (b) ` = �.

Red, blue and magenta lines respe
tively represent bran
hing ratio of �� ! `

�

��̄
, �

�

! `

�

��̄
 and

�

+

! `

+

��̄
. Orange region shows result of the measurement by BaBar [37℄. Bla
k, green and red

lines are theoreti
al predi
tions for LO, in
lusive and ex
lusive modes, respe
tively [40℄. The error

in
ludes both statisti
al and systemati
 un
ertainties.

out to be approximately six per
ent and diÆ
ult to give a 
on
lusive de
ision. However, the result

well supports our Mi
hel parameter measurement as one of 
onsisten
y 
he
k.
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Appendix B

Des
ription of ba
kground PDFs

B.1 Ordinary leptoni
 de
ay + beam ba
kground

As explained in Se
. 5.4.2, the 
ontribution from beam ba
kground is �nally given by

� �

P

sel

(z) � B

ord

(y)

�"(z)

; (B.1)

where as de�ned before, y = fP

`

;


`

; P

�

;


�

;m

2

��

;

e




�

g and z = fP




;





g are, respe
tively variables

for the ordinary leptoni
 de
ay and beam ba
kground, B

ord

(y) is an intrinsi
 PDF of the ordinary

leptoni
 de
ay �

�

! `

�

��̄
 and �"(z) is an average eÆ
ien
y of the beam ba
kground with respe
t to

sele
ted y distribution, whi
h is expli
itly given by

�"(z) =

Z

dy "(y)"(zjy)B

ord

(y): (B.2)

The tabulation of �"(z) for a 
ertain 
ell of z (denoted as �z

(i)

) is obtained by using sele
ted MC

signal sample with a fa
tor of weight B

ord

(y)=P

signal

(y; z):

�"(z

(i)

) =

Z

dy "(y)"(z

(i)

jy)B

ord

(y) (B.3)

=

Z

z2�z

(i)

dz

Z

dy "(y)"(zjy)B

ord

(y)

�z

(i)

(B.4)

=

Z

z2�z

(i)

dz

Z

dy P

signal

(y; z) �

B

ord

(y)

P

signal

(y; z)

"(y)"(zjy)

�z

(i)

(B.5)
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(y

k

)

P
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(y

k
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k

)
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(i)

: (B.6)

The probability density fun
tion of the ordinary leptoni
 de
ay B

ord

(y) is similarly formulated as

signal. First, we 
onstru
t the intrinsi
 PDF of �

+

�

�

! (�

+

�

0

�̄)(�

�

��̄
):

�

B

ord
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(y) �

d�(�

�

��̄; �

+

�
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0

A
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A

�
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i j

B

+

i

� B

�

j

(x)

i

; (B.7)
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where tilde means a 
onstant fa
tor is ignored, i.e., the right hand side of Eq. (B.7) is not normalized.

The spin-independent and spin-dependent terms for �

+

! �

+

�

0

�̄ sides (A

+

; B

+

) are 
ommon as

signal and the ordinary leptoni
 de
ay parts are written using dimensionless kinemati
 variable x =

E

�

`

=E

�

`max

:

A

�

(x) = A

0

(x) + �A

1

(x) + �A

2

(x); (B.8)

B
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�B

1

(x) + �ÆB

2

(x)

�

n
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l

; (B.9)

A

0

(x) = x(1 � x)

q
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1
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; (B.10)
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The di�erential variables are 
onverted into CMS frame with Ja
obians (dE
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Thus we �nally obtain

� �

P
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(z) � B
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(y)
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= � �

P
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�"(z)�
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where �

ord

is a normalization of B

ord

(y).

B.2 Des
ription of PDF for 3� events

When either of two �

0

s from �

+

! a

+

1

�̄ ! �

+

�

0

�

0

�̄ de
ay is lost, this is re
onstru
ted as �

+

! �

+

�

0

de
ay. For example, if 
 from �

0

! 

 pro
ess is produ
ed outside an a

eptan
e of dete
tor, the

re
onstru
tion fails. Furthermore, even if both 
s are inside dete
tor, their s
attering with materials

leads misre
onstru
tion of �

0

. In order to des
ribe the possibility of the loss of �

0

, we de�ne e�e
tive

probability density of 3� events:

�

B

3�

(x) �

Z

dy 2 �

h

1 � "

�

0

lost

(y)

i

"

3�

extra


"

sig

extra


� B

3�

int

(x; y): (B.19)

Here, x represent the visible twelve-dimension observables and y is a set of parameters for the lost

�

0

de�ned as y = fP

�

0

lost

;


�

0

lost

g. The fa
tor inside bra
ket 1 � "

�

0

lost

(y) represents a probability that
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�

0

is not re
onstru
ted or ineÆ
ien
y, "

3�

extra


="

sig

extra


means a ratio of an eÆ
ien
y from the extra

gamma energy 
ut relative to signal distribution. B

3�

(x; y) is an intrinsi
 PDF for the 3� events

�

+

�

�

! (�

+

�

0

�

0

�̄)(`

�

��̄
). The fa
tor of 2 in the equation 
omes from number of 
ounting for two

�

0

s.

The di�erential de
ay width of �

+

(P)! �

0

(p

1

)�
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(p

2
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(p

3

)�̄(q) 
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; (B.20)

where A

+

and B

+

are spin independent and dependent form fa
tors, respe
tively. These fa
tors are

obtained by 3� hadroni
 four-ve
tor 
urrent J

�

with following relation:

A

+

= (P � J
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d�

4

is well-known Lorentz-invariant four-body phase spa
e and 
an be expli
itly de
omposed into
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where the asterisk marks it is de�ned on �

+

rest frame. Similarly the hat means value on a

+

1

and

tilde on �

+

.

�

As J

�

, CLEO model is used where stru
ture of �

+

! �

+

�

0

�

0

�̄ is 
onsidered to be a

superposition of seven amplitudes with respe
t to their partial waves [93℄:
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Breit-Wigner fun
tions of a

1

and Y . The latter is de�ned as
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h 
orresponds to S ; P or D):
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1

is numeri
ally approximated as Eqs. (B.29) to (B.35) whi
h is same implementation as

TAUOLA [94℄.
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m

0Y

and �

Y

0

are nominal mass and de
ay width of Y . These de
ay parameters are summarized in

Table B.1.

The kinemati
 variables in Eq. (B.23) are 
onverted with Ja
obians.
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Table B.1: De
ay parameters for �

+

! a

+

1

�̄ de
ay [93℄.

Y � �

0

f

2

f

0

� a

1

m

0Y

(GeV=


2

) 0.7743 1.370 1.275 1.186 0.860 1.275
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B.2.1 Extra
tion of the ineÆ
ien
ies

The produ
t of the additional eÆ
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��̄
) events are sele
ted with same 
riteria ex
ept two requirements:

number of photons in the 
one around lepton and the extra gamma energy. The fra
tion of events

whi
h are further sele
ted with the additional requirement is taken as the desired ineÆ
ien
y. Fig-

ures B.1 and B.2 show the obtained ineÆ
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ies as a fun
tion of an energy and a 
osine of polar

angle for lost �
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where x is a set of visible variables in twelve-dimension phase spa
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inside bra
ket 1� "(y) is an ineÆ
ien
y of photon, "

��

extra


="

sig

extra


is an eÆ
ien
y of extra 
 energy 
ut

relative to signal and "

PID

�!�

="

PID

�!�

is a ratio of lepton mis-identi�
ation eÆ
ien
y.
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where A, A

0

, B and B

0

are same form fa
tors de�ned in the 
onstru
tion of signal PDF. To obtain

visible di�erential 
ross se
tion at CMS frame, the di�erential variables are 
onverted with three
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where �
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1

, �
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and �
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are, respe
tively velo
ities of �
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, �
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and � in the CMS frame and n

�

, n
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and
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2

are normalized dire
tion and 
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= E

�
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. The tilde and double-asterisk mark that variables are

de�ned in � and �

0

rest frames, respe
tively. In the 
onversion from Eq. (B.46) into Eq. (B.47), we

use the fa
t that de
ay dire
tion of 
 is isotropi
 in the �

0

rest frame (be
ause �
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is pseudo s
alar

parti
le). In general, after the step from Eq. (B.46), the solution of the � dire
tion (
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determined from a set of visible variables fP
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g. As introdu
ed in Se
. 2.5, there are
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give an a

essible di�erential 
ross se
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+ d�
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, where 1 and 2 indi
ate indexes of the

two solutions.
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�) pro
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ut and a number of photon in the


one around lepton. The fra
tion of events whi
h are further sele
ted with this additional 
ut is

estimated as the ineÆ
ien
y. Sin
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B.4 Des
ription of ISR photon + ordinary leptoni
 de
ay events

The formulation of the di�erential 
ross se
tion of ISR pro
ess e
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Here, prime means the dire
tion of �
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rest frame. The expli
it formula
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are given in Ref. [67℄. Similarly to a 
onstru
tion of the PDF of beam ba
kground

des
ribed in Appendix B.1, the di�erential de
ay widths of �

+

! �

+

�

�

�̄ and �

�

! `

�

��̄ are given by

d�(�

�

! �

�

��̄)

dE

�

`

d


�

`

= A + B � S

�

�

�

; (B.56)

and

d�(�

+

! �

+

�

0

�̄)

d


�

�

dm

2

��

d

�




�

= A

0

+ B

0

� S

�

�

+

; (B.57)

then total di�erential 
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Figure B.3: The ineÆ
ien
y of 
 as a fun
tion of energy E
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in ea
h range of angle �
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. The blue

and red points represent the ineÆ
ien
y when the 
 is generated inside and outside 
one around �

respe
tively.
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The visible PDF in CMS is obtained by 
hange of variables with four Ja
obians:

�

B

ISR+ord

(x) �

d�

dP




d





dP

`

d


`

dP

�

d


�

dm

2

��

d

�




�

=

Z

�

0

2

�

0

1

d�

0

�

d�

dP




d





dP

0

`

d


0

`

dP

0

�

d


0

�

dm

2

��

d

�




�

d�

0

�

�

�

�

�

�

�

�(P

0

`

;


0

`

)

�(P

`

;


`

)

�

�

�

�

�

�

�

�

�

�

�

�

�

�(P

0

�

;


0

�

)

�(P

�

;


�

)

�

�

�

�

�

�

(B.59)

=

Z

�

0

2

�

0

1

d�

0

�

d�

dP




d





dE

�

`

d


�

`

d


�

�

dm

2

��

d

�




�

d


0

�

�

�

�

�

�

�

�(E

�

`

;


�

`

)

�(P

0

`

;


0

`

)

�

�

�

�

�

�

�

�

�

�

�

�

�(


�

�

;


0

�

)

�(P

0

�

;


0

�

;�

0

�

)

�

�

�

�

�

�

�

�

�

�

�

�

�(P

0

`

;


0

`

)

�(P

`

;


`

)

�

�

�

�

�

�

�

�

�

�

�

�

�(P

0

�

;


0

�

)

�(P

�

;


�

)

�

�

�

�

�

�

(B.60)

=

Z

�

0

2

�

0

1

d�

0

�

�

3

�

�

�

16�

2

E

2

0

h

D

0

0

AA

0

+ D

0

i j

B

i

B

0

j

i

J

1

J

2

J

3

J

4

: (B.61)

J

1

=

�

�

�

�

�

�

�(E

�

`

;


�

`

)

�(P

0

`

;


0

`

)

�

�

�

�

�

�

=

P

02

`

E

0

`

P

�

`

; (B.62)

J

2

=

�

�

�

�

�

�

�(


�

�

;


0

�

)

�(P

0

�

;


0

�

;�

0

�

)

�

�

�

�

�

�

=

m

�

P

0

�

E

0

�

P

�

�

P

0

�

; (B.63)

J

3

=

�

�

�

�

�

�

�(P

0

`

;


0

`

)

�(P

`

;


`

)

�

�

�

�

�

�

=

P

2

`

E

0

`

P

02

`

E

`

; (B.64)

J

4

=

�

�

�

�

�

�

�(P

0

�

;


0

�

)

�(P

�

;


�

)

�

�

�

�

�

�

=

P

2

�

E

0

�

P

02

�

E

�

: (B.65)

B.5 Des
ription of 3�-2� de
ay events

The 3�-2� pro
ess e

+

e
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! �

+

�

�

! (�

+

�

0

�̄)(�
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�

0

�

0

�) has a large impa
t for the �tted Mi
hel Pa-

rameters (espe
ially ��) and we analyti
ally des
ribe this distribution. This pro
ess is re
onstru
ted

when a 
harged pion from �

�

! �

�

�

0

�

0

� de
ay is mis-identi�ed as a muon and one photon from

either of �

0

is re
onstru
ted as a signal photon.

The des
ription of PDF is similar to the 3-� and �-� 
ases explained in Se
. B.2 and B.3. The

start point of formulation is
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where A
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are the form fa
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The di�erential variables are 
hanged to those of CMS by Ja
obians:
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Furthermore, using the isotropi
 nature of d�(�
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=4�, the intrinsi
 PDF is given by:
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Thus the visible PDF is
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B.5.1 extra
tion of ineÆ
ien
y

Due to the small statisti
s of the 3�-2� events, an ideal tabulation of ineÆ
ien
y is diÆ
ult when

we use the generi
 MC. In fa
t, if the explained sele
tion 
riteria is applied, the eÆ
ien
y is ap-

proximately 3 � 10

�5

, whi
h �nally gives only � 5000 events with �ve times as large statisti
s as

real experiment. This small eÆ
ien
y mainly 
omes from requirement of the likelihood of muon,

P(�=�) > 0:9, hen
e it is possible to re
over the eÆ
ien
y with relax of the 
ut. The ineÆ
ien
y 
an

be obtained by following formula:

"

inef:

= N

numerator

=N

denominator

; (B.79)

where the denominator is number of sele
ted events whi
h passed all sele
tion 
riteria ex
ept the

extra gamma energy 
ut and number of gamma in the 
one and the numerator is number of sele
ted

events whi
h passes the ex
luded sele
tion 
riteria. The tabulation of the ineÆ
ien
y is obtained

depending on the topology of the events, whi
h are 
ategorized into eighteen groups. See the Fig B.4.

The gamma A is divided into three groups: it is outside the a

eptan
e, or it is inside the a

eptan
e

but is in the 
one around lepton or not. This situation is shown in Fig. B.5. Due to the small statisti
s,

we tabulated the fa
tor as a 
onstant for ea
h 
ategorization. The obtained values are summarized in

Table B.2.
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Figure B.4: Notation of gamma. The lost gamma whose mother is same as re
onstru
ted one is

tagged as A. The other gammas are tagged B.
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Figure B.5: The gamma A is 
ategorized into three groups, while two gamma B are into six groups.

The "

a



is an eÆ
ien
y that gamma is in the a

eptan
e of dete
tor. The "

in
one

is an eÆ
ien
y that

gamma is inside 
one around lepton. In total, three lost gammas are 
ategorized into 3 � 6 = 18

groups.
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Table B.2: Obtained ineÆ
ien
y and eÆ
ien
y of extra gamma energy 
ut

ID A type B type �

inef

=�

sig

extra


error

0 1 � �

a



(1 � �
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)

2
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B.6 Des
ription of an ordinary leptoni
 de
ay+ bremsstrahlung

events

The ordinary leptoni
 de
ay �

�

! e

�

��̄ is re
onstru
ted as signal when the ele
tron produ
es a

photon a

elerated by an ele
tri
 �eld of atoms in the material of dete
tor. To 
larify the notation,

we divide all observables into three parts: we use x = fP

�

;


�

;m

2

�

;

�




�

g, whi
h is not relevant to

bremsstrahlung, y = fP

`

;


`

g and z = fP




;





g. Moreover, we further de�ne generated momentum

of ele
tron as y

0

= fP

0

`

;


0

`

g. Hereafter in this se
tion, y, y

0

and z, are evaluated in the laboratory

frame even if letters do not have LAB in the supers
ript. Based on the above notation, the PDF is

formulated as:

B

(ord+brems)

ini

(x; y; y

0

; z) = f (y

0

)B

ord:

(x; y

0

)B

brems

(y; y

0

; z) (B.80)

f (y

0

) =

L(�

`

)

1 �

E


min

E

LAB

`

log(

E


min

E

LAB

`

)

; (B.81)

where fun
tion f represents probability that ele
tron (P

0

`

;


0

`

) emits bremsstrahlung whose energy is

larger than energy threshold E


min

,

y

L(�

`

) is an amount of material per unit of radiation length. The

L(�

`

) 
an be simpli�ed as L(�

`

) = L(�

`

= 90

Æ

)=sin�

`

. For SVD1, we use L = 0:19%X

0

and 0:27%X

0

for SVD2. The energy threshold E


min

= 1 MeV is 
hosen to satisfy the 
ondition E


min

=E

`

�

�

P

e

=P

e

. The B

brems:

(y; y

0

; z) is a di�erential de
ay width of bremsstrahlung as a fun
tion of photon

and s
attered ele
tron and represented as

y

The de
rease of ele
tron energy inside material follows well known equation dE=dx = �E=X

0

. Assuming that the

�ight length in material is small, we 
an approximate the energy loss of ele
tron as � = E

0

x=X

0

. Using simpli�ed

PDF of energy of bremsstrahlung, PDF(E




)=(1 � f )�(E




� E


min

) + f =E




log(E




=E

`

), we 
an formulate a equation

� =

R

PDF(E




)E




dE




, whi
h a

ordingly gives analyti
al fra
tion f .
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(B.82)
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where 
apital letters K, P and P

0

are momenta of gamma, ele
tron and s
attered ele
tron, whi
h are

normalized in a unit of mass of ele
tron. �

0

, � and � are dire
tions of them illustrated in Fig B.6. The

visible di�erential 
ross se
tion is obtained by integrating y

0

as

�

B

(ord+brems)

vis

(x; y; z) =

d�

dP

`

d


`

dP




d
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�

d


�

dm

2

�

d

e




�

(B.85)

=
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E
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E

CMS

`

P

2LAB

`

: (B.86)

The last two fa
tors in Eq. (B.86) are Ja
obians whi
h 
onvert di�erential variables of photon and

ele
tron momenta from the laboratory frame to CMS frame.
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e

y

e

z

x

θ0

θ

Figure B.6: De�nition of the variable of bremsstrahlung of ele
tron. The dire
tion of the

bremsstrahlung photon is z-axis, and s
attered ele
tron is in the xz-plane.
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Appendix C

Cal
ulation of Ja
obians

Here, the 
al
ulations of some of Ja
obians appearing in the main text are des
ribed. In this analysis,

we use many Ja
obians to 
hange variables from ones de�ned in tau rest frame into those of the

CMS frame. Be
ause an intrinsi
 di�erential de
ay width is usually de�ned in the � rest frame,

it is required to 
onvert variables so that all di�erential variables are within a 
ommon 
oordinate

system. In prin
iple, any Ja
obians 
an be dire
tly 
al
ulated by di�erentiations of variables in

numerators with those of denominators and a 
al
ulation of determinant of the matrix. Although

the 
al
ulation itself is straightforward, it sometimes takes pains to perform the simple 
al
ulation

be
ause the number of terms tends to be very large. On the other hand, for a 
ertain set of Ja
obians

related to the Lorentz transformation, there is a more simple and easier method utilizing the nature

of Lorentz-invarian
e.

Normally, the Lorentz-invariant phase spa
e of one parti
le is de�ned as d

3

p=(2�)

3

2E

p

. However,

the (2�)

3

is a 
ommon fa
tor and not important for the derivation of Ja
obians. Therefore, in this

appendix, we forget this fa
tor and adopt an unusual Lorentz-invariant phase spa
e as d

3

p=2E

p

.

Apparently, the Lorentz-invarian
e is not broken at all. To denote the magnitude of spatial 
omponent

of four ve
tor p, we use a 
apital letter P. The di�erential variables dp

3

and dp

4

mean dp

x

dp

y

dp

z

and dEdp

x

dp

y

dp

z

, respe
tively. Moreover, we abbreviate the expli
it notation of the integration sign

R

.

C.1 Ja
obian for Lorentz-transformation

By de�nition, Lorentz-invariant phase spa
e should not 
hange when Lorentz transformation is ap-

plied to a 
ertain four momentum p! p

0

. Therefore, the following equation holds:

d
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=
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=
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P

02

E

p

: (C.1)

C.2 2-body de
ay

For massive parti
le a, we 
an 
onsider the frame in whi
h a is at rest. In this system, the phase spa
e

of two body de
ay 
an be simpli�ed. Hereafter, the result is often quoted. We 
onsider following

two body de
ay:
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a(p)! b(q)
(r).

Sin
e the four-ve
tor 
onservation holds, the delta fun
tion Æ(p� q� r) is multiplied for the Lorentz-

invariant phase spa
e. If we apply integration for four ve
tor r in the a-rest frame, the Lorentz

invariant phase spa
e 
an be expressed as:

d
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q
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q

d
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); (C.2)

where tilde means variables are de�ned in the a-rest frame and m

a

is a mass of a. Furthermore,

d

3

q=2E

q

is also evaluated in a-rest frame and Eq. (C.2) be
omes
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From se
ond to third line, an equation of the delta fun
tion

Æ( f (x)) =

1

j f

0

(x

0

)j

Æ(x � x

0

)
(
f (x

0

) = 0
)

(C.4)

is used. Thus the two-body phase spa
e is simpli�ed
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The Ja
obian whi
h appears in the de
ay of pion

�
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is also 
al
ulated by a manipulation of the Lorentz-invariant phase spa
e.
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Applying Eq. (C.5) for the Lorentz-invariant phase spa
e of three parti
les for two photons in �

0

rest

frame, we obtain another expression:
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This formula also holds when p is a on-shell parti
le.
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but the expli
it dependen
e of angles should disappear
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Though this Ja
obian does not appear in the main text, we des
ribe the deviation be
ause the method

used here is worthy to note for many appli
ation of tau physi
s. Suppose a �
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is moving to +z

dire
tion and de
ays into two photons.
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A Ja
obian related to this de
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is 
al
ulated by a 
omparison of the Lorentz-invariant phase spa
e, where � is a velo
ity of �

0

in

the CMS frame and

e







is an angular 
omponent of the photon in the �

0

rest frame (the de
ision of

photon is arbitrary). The 
hara
teristi
 feature of this system is that � is not a parameter but rather an

independent variable. If we �x the dire
tion of �

0

movement, the internal variable
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and velo
ity

of �

0

is determined by observables measured in the system outside. The dependen
e of boost from �

is taken into a

ount by the Lorentz-invariant phase spa
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.
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Here, we used a formula
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Generally, Ja
obians should not have su
h an expli
it dependen
e on the angle of 
oordinates, i.e., this kind of

dependen
e should be written as inner (or external) produ
t of parti
le four-ve
tors. Otherwise, the Ja
obian depends on

a spe
i�
 de
ision of 
oordinate but this apparently violates the isotropi
 nature of spa
e.
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The delta fun
tion in Eq. (C.16) represents Æ
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onstrains the movement of �
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onto +z axis. The Lorentz-invariant phase spa
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al
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Comparing Eqs. (C.19) and (C.27), we obtain
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The dire
t 
al
ulation of this Ja
obian is not impossible at all, but in the similar way more 
omplex

Ja
obians 
an be easily extra
ted. For example, another Ja
obian
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related to the de
ay from a moving K

L

(+z dire
tion)
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al
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where the asterisk and tilde indi
ate that variables are de�ned in K

L

and �� rest frame, respe
tively.
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by �, m
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, n

�

��

and
e
n, but this may be beyond the level of hand 
al
ulation.
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L(�) is a matrix of the Lorentz-transformation for general boost �, whi
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C.6 Re
ursive relation of the Lorentz-invariant phase spa
e

In this se
tion, we use 
onventional de�nition of phase spa
e d
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The n-body Lorentz-invariant phase spa
e is redu
ed into that of (n-1)-body as bellow:
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where asterisk means variables are de�ned in a-rest frame.

182



Appendix D

Doubly radiative leptoni
 de
ay �

�

! `

�

��̄



In this appendix, we summarize 
hara
teristi
s of the doubly radiative leptoni
 de
ay �

�

! `

�

��̄

.

The number of �nal-state parti
les are �ve and this has a seven-dimension phase spa
e when we do

not see the angular distribution of neutrinos in the ��̄ rest frame. The di�erential de
ay width in the

tree level 
al
ulation is given by
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�

+ p

�̄

rest frame, x = 2E

�

`

=m

�

and y

1;2

= 2E

�




1;2

=m

�

. The form

fa
tors�G, J, K

1

and K

2

�are fun
tions of x, y

1

, y

2

, w = 2p




1

� p




2

=m

2

�

and z

1;2

= 2p

`

� p




1;2

=m

2

�

and

their expli
it (lengthy) formulae are given in Ref. [96℄.

Figure D.1 shows the distributions of kinemati
 variables for the doubly radiative leptoni
 de
ay

�

�

! `

�

��̄

 in the �

�

rest frame 
al
ulated a

ording to Eq. (D.1). To obtain the distributions, we

apply the energy threshold for both photons, i.e., E

�




> 10 MeV. From these �gures, we 
an observe

that (similarly to the single radiative de
ay) the ele
tron mode shows narrower distribution at �

`


! 0

than muon 
ase. However, it deserves to be mentioned that in the doubly radiative de
ay, �

�


has a

broader distribution than that of the single de
ay. The shift of the momentum of lepton 
ompared to

the single de
ay may be explained by the additional energy loss from two photon emission.

To 
onsider possibilities to observe the doubly radiative de
ays, we simulate an angular distri-

bution of an opening angle of photons and the energy distribution of photons both in the laboratory

frame as shown in Fig. D.3. In this 
al
ulation, we assume a boost fa
tor of the beam energy of

KEKB a

elerator. As seen from �gure, the most probable magnitude of the opening angle is ap-

proximately 10

Æ

� 20

Æ

and this is suÆ
iently large to distinguish both 
lusters ea
h other. Moreover,

there is a region in whi
h both energies of photons are reasonably observable (E

LAB




is more than

� 0:1 GeV). Taking into a

ount the tree level theoreti
al predi
tion of the bran
hing ratio.

�

B(�

�

! e

�

��̄

) = (8:327 � 0:008) � 10

�4

; (D.2)

B(�

�

! �

�

��̄

) = (3:347 � 0:003) � 10

�5

; (D.3)

it may not be impossible to experimentally measure the bran
hing ratio.

�

This value is 
al
ulated by a software provided by the author of Ref. [96℄. The error in
ludes only un
ertainties from

mathemati
al 
al
ulation.
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Figure D.1: Distribution of variables from doubly radiative leptoni
 de
ay �

�

! `��̄

. Blue and

red lines indi
ate ele
tron and muon modes, respe
tively: (a) E

�




(b) E

�

`

(
) 
os�

�

`


and (d) 
os�

�





. For


omparison, distribution of the single radiative de
ay is drawn for (a)(b)(
) with dashed lines. The

distribution of 
os�

�


in (
) is enlarged by a fa
tor of ten.
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Figure D.2: Distribution of invariant masses. Blue and red lines indi
ate ele
tron and muon modes,

respe
tively: (a) m
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Appendix E

Dete
tor resolution

E.1 des
ription of energy response

As roughly explained in Se
tion 5.4.5, the response of dete
tor is des
ribed by the logarithmi
 Gaus-

sian. Here, the details are explained. The PDF of variable x, whi
h follows Gaussian distribution is

written as

dP

dx

=

1

p

2��

e

�

(x�x

0

)

2

2�

: (E.1)

Based on this x, we 
hange x into E with relation x = log(� � E), where � is a 
onstant whi
h

determines maximum energy. Therefore, the new variable E follows new PDF

dP

dE

=

1

� � E

1

p

2��

e

�

(log(

��E

��E

0

))

2

2�

2

; (E.2)

where E

0


orresponds nominal energy whi
h satis�es x

0

= log(� � E

0

). The most probable energy

E

p

is not generally same as E

0

and given by E

p

= � � (� � E

0

)e

��

2

. The degree of asymmetry is

represented by � =

�

E

��E

p

, where �

E

is de�ned as FWHM of E. These variables follow equations

� =

2

�

sinh

�1

�

��

2

�

and � = E

p

+

�

E

�

(� = 2

p

2 log 2), hen
e original 
onstants �, x

0

and � are obtained

by assuming E

p

, �

E

and �. As these values, given energy resolution is substituted for �

E

, E

p

is taken

from the re
onstru
ted energy and � = 0:2.
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p

= 1 GeV, �

E
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GeV are assumed.
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Appendix F

The right-left symmetri
 model

The right-left symmetri
 model [80, 81℄ is one of the natural extensions of the SM, in whi
h SU(2)

L




SU(2)

R


 U(1) gauge 
ouplings g

L

and g

R

of SU(2)

L

and SU(2)

R

subgroup are equal: g

L

= g

R

. The

symmetry spontaneously breaks into SU(2)

L


 U(1), predi
ting not only the SM W

�

and Z bosons

but also additional gauge bosons W

�

2

and Z

2

. The mass spe
trum of 
harged bosons are obtained by

a diagonalization of real symmetri
 mass matrix of SU(2)

L


 SU(2)

R

bosonsW

�

L

and W

�

R

M

2

W

=

 

M

2

L

M

2

LR

M

2

LR

M

2

R

!

(F.1)

by

 

W

�

1

W

�

2

!

=

 


os � sin �

� sin � 
os �

!  

W

�

L

W

�

R

!

; (F.2)

where � is a mixing angle, whi
h satis�es

tan 2� =

2M

2

LR

M

2

R

� M

2

L

: (F.3)

The mass eigenvalues of W

1;2

are given by

M

2

W

1;2

=

M

2

L

+ M

2

R

�

q

�

M

2

R

� M

2

L

�

2

+ 4M

4

LR

2

=

M

2

R

2

"

� + 1 �

1 � �


os 2�

#

; (F.4)

where � = M

2

L

=M

2

R

is a ratio of mass squared and observed fa
t implies it is small � � 1. Con-

sequently, the mass relation of 
harged boson is des
ribed in terms of M

R

, � and �. A

ording to

Ref. [97℄, the Mi
hel parameters �, �, �

0

= �� � 4�� + 8�Æ=3 and �

00

= 16�=3 � 4�̄ � 3 are related

with � and � as:

� =

3

4


os

4

�

 

1 + tan

4

� +

4�

1 + �

2

!

; (F.5)

� = �

0

= 
os

2

�(1 � tan

2

�)

1 � �

2

1 + �

2

; (F.6)

�

00

= 
os

4

�

 

1 + tan

4

� + 2 tan

2

�

3 � 4� + 3�

2

1 + �

2

!

: (F.7)
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Figure F.1: Contour of � and � determined by �, �

0

and �

00

. Bla
k, blue and red lines repre-

sent 
ontours of Eqs. (F.5), (F.6) and (F.7), respe
tively. � = 0:745; 0:749; 0:7499, � = �

0

=

0:1; 0:3; 0:5; 0:9; 0:99; 0:999 and �

00

= 1:001; 1:000001 are drawn.

Figure F.1 shows the 
ontours of � vs � determined by Eqs. (F.5), (F.6) and (F.7). Note that

� = 3=4 + � and �

00

= 1 � � do not have proper solutions for in�nitesimal value � > 0 and they


onverge � ! 0; � ! 0 when � ! 0, i.e., a large mass of limit of the new 
harged boson for

� = 3=4, � = �

0

= �

00

= 1. From the �gure, we 
an observe that � and �

0

have large sensitivities on

� parameter, a

ordingly it is used to determine the s
ale of M

R

(for example, � = 0:1 
orresponds

to M

R

� 250 GeV=


2

). �

0

is indu
ed by the measurement of �� parameter, it is, however, more

reasonable to use � parameter to 
onstrain � in terms of resulting experimental sensitivity. In fa
t,

with 
urrent sensitivity, we 
annot give any 
on
lusive remark. Similarly, from �

00

parameter, whi
h

is indu
ed from �̄, it is not possible to 
onstrain � and � due to its large un
ertainty.

As three equations suggest, the lepton universality predi
ts the equal 
oupling stru
ture between


harged leptons and theW

�

2

boson, it is thus mu
h straightforward to measure � parameter by means

of �! e��̄ de
ay. Current measured value of �

�

parameter, whi
h is approximately 0.2%, 
onstrains

mass M

R

> 450 GeV=


2

.
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