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Abstract

Several optical surveys aiming to improve cosmological parameters will be carried
out within the next few years. Among them, Hyper Suprime-Cam (HSC), the next-
generation prime focus camera of the Subaru Telescope, will open a window to
explore the universe through weak lensing (WL) measurements. One promising cos-
mological probe is cluster abundance that will be measurable by combining Atacama
Cosmology Telescope (ACT), the millimeter-wave Sunyaev-Zel’dovich (SZ) survey,
with the HSC survey. For this, it is important to observationally study scaling re-
lations between the SZ effect and WL mass estimates. One concern is that the WL
mass measurement of high-redshift clusters is not yet established by using the data
of Suprime-Cam, the current prime focus camera of the Subaru Telescope.

We carried out follow-up observations of ACT-CL J0022-0036 through the Suprime-
Cam. This cluster was discovered in 200-deg2 of early data from equatorial region
of the ACT Survey through the SZ effect. The cluster has the strongest SZ signal
in the survey region, and lies at z = 0.81. Thus this cluster is suitable to test the
feasibility of WL measurements of high-redshift clusters.

For data analysis, we use a suite of new data reduction software and WL mea-
surement algorithms which are being developed for the HSC. Photometric redshifts
are used for a clean separation of background galaxies from cluster members and
foreground galaxies. The total signal-to-noise ratio of WL signal against statistical
error is about 3.6, showing significant detection despite such a high-redshift cluster
using ground-based data.

After careful investigation of systematic uncertainties, we obtain the mass of the
cluster, which is defined as the three-dimensional mass within a spherical region of
a given radius inside of which the mean interior density is 200 times the mean mass
density, as

M200 = (0.72+0.33
−0.27(stat.)

+0.12
−0.06(syst.))× 1015M⊙/h.

The result of our study has proved that WL mass measurements of high-redshift
galaxy the clusters are possible and provides the first step to improve cosmological
constraints with survey data of the ACT and HSC in the future.

We also test the ΛCDM paradigm through the mass of the high-redshift massive
cluster. We find that this high-redshift massive cluster is consistent with the ΛCDM.
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Chapter 1

Introduction

In a past decade, the tremendous progress of observation techniques has helped to
enable precision cosmology, establishing the standard paradigm of structure forma-
tion, known as the ΛCDM model. Cold dark matter (CDM) plays a central role
in structure formation of the universe through gravity. In the CDM model, small
objects collapse first and then merge to form more massive objects. The accelerating
expansion of the universe was observed. To explain the acceleration, a cosmological
constant Λ was introduced into Einstein’s equation, which is now generalized as dark
energy.

The cosmic acceleration was discovered by a series of supernovae surveys in late
1990s [84, 79], and several ambitious projects were carried out to measure cosmolog-
ical parameters to establish the ΛCDM model, such as precise measurement of the
temperature anisotropies in the cosmic microwave background (CMB) radiation by
Wilkinson Microwave Anisotropy Probe (WMAP) [47], and baryon acoustic oscilla-
tions (BAO) through the large scale galaxy clustering observed by Sloan Digital Sky
Survey (SDSS) [78], and so on. Some optical surveys aiming to put a more stringent
constraint on cosmological parameters including the nature of dark energy will be
carried out in the coming decade. Hyper Suprime-Cam (HSC)1 and Dark Energy
Survey (DES)2 plan to start several thousand square-degree survey by ground-based
telescope within a few years. The Large Synoptic Survey Telescope (LSST)3 will
carry out even wider ground-based telescope survey covering more than twenty thou-
sand square degrees in the coming decade. These wide, deep optical surveys will
make it possible to introduce newer cosmological probes such as cosmic shear, the
tiny weak gravitational lensing (WL) effect induced by cosmic structure, and cluster
abundance, the number of clusters as a function of mass and redshift.

To improve the cosmological constraints through the cluster abundance, the

1http://www.naoj.org/Projects/HSC/index.html
2http://www.darkenergysurvey.org/
3http://www.lsst.org/lsst/science/development
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cutting-edge millimeter-wave surveys such as Atacama Cosmology Telescope (ACT[28][94])
and South Pole Telescope (SPT[21]) have already started. Their high angular res-
olution and temperature sensitivity make it possible to detect clusters by Sunyaev-
Zel’dovich (SZ) effect [102][93] (for short summary, see Appendix C) which is caused
by inverse Compton scattering between CMB photons and electrons in hot gas of
a cluster. The SZ effect is independent of redshift of a cluster, meaning that very
distant clusters are as easy to detect as nearby clusters. Thus the SZ effect is
the powerful tool to explore early universe (z ∼ 0.7) when the cosmic acceleration
begins.

However, the SZ effect itself does not provide robust mass estimates of clusters
since physical assumptions such as dynamical equilibrium and hydrostatic equilib-
rium are needed. Thus it is necessary to observationally develop the a relationship
between the SZ observable and cluster mass, so-called the cluster mass-observable
scaling relations. Among several observables used for estimating cluster mass, in-
cluding X-ray and optical, WL is unique since it does not need any physical as-
sumptions described above and does provide mass estimates including dark matter.
WL requires general relativity only. Therefore WL mass estimates will give a robust
scaling relation between the SZ effect and cluster mass.

Since the HSC is in collaboration with the ACT, it is possible to study the
scaling relation. The HSC is the next-generation prime focus camera of the 8.2-m
Subaru Telescope [35] located at the summit of Mauna Kea, which covers 1.5-deg
diameter field of view. The unique capabilities of the Subaru Telescope such as
photon collecting power and excellent image quality enable us to carry out precise
WL measurements. The HSC will start its survey from 2013 to observe 1500 deg2,
spending five years. The ACT has already observed more than 1500 deg2, and its
successive survey, ACTPol[69], plans to observe 4000 deg2 in first three observing
seasons which overlaps with the HSC survey region. It is expected to have O(102)
SZ-selected clusters with mass limit M > 1014M⊙ in the HSC survey region. Im-
provement to the cosmological constraints should be obtained by applying the scaling
relation obtained by clusters in the overlapped region to the entire survey area of
the ACT/ACTPol. Although the SPT is in collaboration with the DES, they will
not be able to probe the early universe since the DES is not as deep as the HSC.

One outstanding concern lies in WL measurements of high-redshift clusters. By
using the Suprime-cam[60], the current prime focus camera of the Subaru Telescope
whose field of view is about one seventh of that of the HSC, WL mass measure-
ments of nearby clusters (z ∼ 0.2) and intermediate redshift (z ∼ 0.5) have been
established[76][75]. However, the feasibility of WL measurements on high-redshift
clusters (z ∼ 0.8) is not clear yet.

We test the feasibility of the high-redshift WL mass measurement by carrying
out follow-up observations of a cluster, ACT-CL J0022−0036 (hereafter ACTJ0022),
by the Suprime-Cam. ACTJ0022 was discovered by the ACT through the SZ effect.
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This cluster has the highest signal-to-noise ratio in 200-deg2 of equatorial region that
was observed by the ACT in 2009. In addition the cluster has one of the brightest
SZ signals. These facts imply the cluster is extremely massive, ∼ 1015h−1M⊙, and
at high redshift. In fact, long slit spectroscopy of the brightest cluster galaxy (BCG)
using the Apache Point and Gemini South Observatories gave a cluster redshift of
z = 0.81. Therefore ACTJ0022 is an appropriate sample to test the feasibility of
the WL mass measurement on high-redshift clusters.

In addition to the feasibility test, the cluster will provide cosmological implica-
tions. Based on the cluster abundance, Mortonson et al. [62] developed a framework
which enables us to test the ΛCDM model before the surveys produce their large
amount of data. In this framework, even a single massive cluster can rule out the
ΛCDM model at a certain confidence level (CL). Since a cluster at high redshift
provides a high level of exclusion, the ACTJ0022 is an appropriate sample to test
the ΛCDM model through the framework.

To give a robust estimate of cluster mass through WL, it is important to select
background galaxies carefully. One or two colors (difference of magnitudes between
two bands) have been often used for low- and mid- redshift clusters [76][75]. However,
since our cluster is at high redshift, we must define a reliable catalog of background
galaxies using photometric redshifts. For this purpose we took data in Br′i′z′Y .

We applied the WL measurement algorithm, which we are developing for future
wide field surveys such as the HSC, to the cluster image data. The shearing effect
caused by WL is too small to measure from a single galaxy, but it can be extracted
by summing up an adequate number of observed galaxy shapes to cancel out their
intrinsic shapes. Currently measurement of WL signal is limited by statistics. How-
ever, a large amount of data become available after the wide-filed surveys are carried
out in the coming decade. At this stage, it is important to suppress systematics of
WL measurement. It is pointed out the WL measurement method which has been
widely used, such as KSB [40], has 10−20% systematic errors. We implemented an-
other method proposed by Bernstein and Jarvis [10] and later improved by Nakajima
and Bernstein [64], so-called EGL method.

In addition, we extended the EGL method for the multiple-exposure analysis
in a straightforward way. Traditionally, a stacked image is used for WL analy-
sis. However, image stacking mixes different signatures of each exposure, which is
embedded in point spread function (PSF), and lose the original information. The
EGL method can perform simultaneous multiple-exposure fitting, combining the
likelihoods constructed by using a PSF model of each exposure. In this thesis, we
provide a new prescription to remove exposures which do not have enough quality
for WL measurements.

We made use of the HSC pipeline, the software suite being developed for the
data reduction of HSC survey data. Since the Suprime-Cam uses same CCDs as the
HSC, it is valuable to test and improve the pipeline with the cluster data.
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The outline of this thesis is as follows. First, we will give an overview of the
ΛCDM model, and describe details of the framework to test the ΛCDM model and
basics of WL in Chapter 2. In Chapter 3, an overview of observational apparatus
will be presented. The EGL method and its test will be described in Chapter 4. The
analysis of ACTJ0022 and discussions of the result will be presented in Chapter 5
and Chapter 6, respectively. Finally we will conclude our study in Chapter 7.

16



Chapter 2

Cluster Cosmology and Weak
Lensing Mass Measurement

2.1 ΛCDM Model

In this section, we briefly review the ΛCDM model, the standard model of the uni-
verse that has been in good agreement with a series of observations. Λ stands for
the cosmological constant that explains the current accelerating universe. CDM
is in abbreviation for cold dark matter that plays an important role in structure
formation. In section 2.1.1, we describe smooth, expanding universe including fun-
damental equations, dynamics of the universe, and the cosmological constant. Then
in Section 2.1.2, we explain the structure formation including cold dark matter and
formation of astronomical objects such as galaxies and clusters.

2.1.1 Smooth, Expanding Universe

Fundamental Equations of Expanding Universe

We assume a homogeneous and isotropic universe. “Homogeneous” means that there
are no special places in the universe, and “isotropic” means that there are no special
directions in the universe. This assumption is based on the fact that there are no
special observers; human beings are not special at all. This is called the cosmological
principle. The assumption is the case for very large scale of the universe( >∼ 1Gpc),
and has been supported by many observational facts such as Cosmic Background
Explorer (COBE) [90]. Under this assumption, the metric of the universe is written
as

ds2 = −c2dt2 + a2(t)

[

dr2

1−Kr2
+ r2

(

dθ2 + sin2 θdφ2
)

]

, (2.1)
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which is called Robertson-Walker metric. Here c is the speed of light, a(t) is the scale
factor, and K is the spatial curvature. xi = (r, θ, φ) is called comoving coordinates,
which is invariant with the expansion of the universe. For instance, a galaxy moving
with the expansion of the universe is fixed on the comoving coordinates. The scale
factor a(t) is normalized to unity at present t0 (hereafter we use subscription “0”
for denoting a quantity at present):

a0 ≡ a(t0) = 1, (2.2)

and related with the redshift

z ≡ λ0 − λe
λe

, (2.3)

where λe is the wavelength of an emission line at source and λ0 is that at an observer,
as follows:

1 + z =
1

a
. (2.4)

In addition, the scale factor is related to Hubble parameter as

H =
ȧ

a
. (2.5)

For energy-momentum tensor, the following form of perfect fluid is used

Tµν = (ρc2 + P )uµuν + Pgµν , (2.6)

where uµ denotes 4-velocity, and ρ and P denotes energy density and pressure of
the fluid, respectively. Substituting Eq. (2.1) and (2.6) into the Einstein equation

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν , (2.7)

where Rµν is Ricci tensor, R is Ricci scalar, Λ is cosmological constant, and G is
gravitational constant, the following equations are obtained:

(

ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
+

Λc2

3
, (2.8)

ä

a
= −4πG

3c2
(ρc2 + 3P ) +

Λc2

3
. (2.9)

The former equation is often called the Friedmann equation. To characterize the
perfect fluids, the following form of the equation of state is often assumed:

P = wρc2. (2.10)
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Relativistic particles, or radiation, have w = 1/3, while non-relativistic particles, or
matter, have w = 0. With Eq. (2.8) and (2.9), the energy density depends on the
evolution of the universe as

ρ = ρ0a
−3(1+w) = ρ0(1 + z)3(1+w). (2.11)

Thus matter density and radiation density depends on the scale factor as ρm =
ρm,0a

−3 and ρr = ρr,0a
−4, respectively. The matter density depends on the physical

volume of the universe, while the radiation distance has an additional factor of a
since its wavelength becomes longer as the universe expands. If the cosmological
constant is regarded as energy-moment tensor, its energy density and pressure is
written as

ρΛ =
Λc2

8πG
, (2.12)

PΛ = − Λc4

8πG
. (2.13)

Thus the cosmological constant can be regarded as the perfect fluid having equation
of state PΛ = −ρΛc2, and its energy density no longer depends on the scale factor.
In general, the perfect fluid having the equation state

PDE = wρDEc
2 (w < −1

3
) (2.14)

is called dark energy. From (2.9), dark energy accelerates expansion of the universe.
Next, we derive the evolution of Hubble parameter. Hereafter we ignore radiations
since their energy fraction is sufficiently small at present. We introduce the critical
density

ρc =
3H2

8πG
, (2.15)

and density parameters are defined as

Ωm =
ρm
ρc
, (2.16)

ΩΛ =
ρΛ
ρc
. (2.17)

Then Eq. (2.8) is written as

H2(z) = H2
0

[

Ωm,0(1 + z)3 − Kc2

H2
0

(1 + z)2 + ΩΛ,0

]

≡ H2
0E(z)

2. (2.18)

From observational results, the universe is almost flat, i.e, K ∼ 0. Combined with
Baryon acoustic oscillation and Hubble constant measurement, WMAP[47] yielded
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H0 = 70.2 ± 1.4 km/s/Mpc, Ωm,0 = 0.275 ± 0.0151, ΩΛ,0 = 0.725 ± 0.016. The
dark energy equation of state parameter, w, is −1.10 ± 0.14. A time-dependent
equation of state in the form of w = w0 + w(1− a), with Type Ia supernovae data,
w0 = −0.93± 0.13 and wa = −0.41+0.72

−0.71. The present value of Hubble parameter is
often written as

h ≡ H0

100kms−1Mpc−1 . (2.19)

Cosmological Distances

In the universe, definition of distance is no longer unique. Therefore it is necessary to
define cosmological distance. Here we introduce two definitions, comoving distance
and angular diameter distance.

Comoving Distance Comoving distance is defined as the distance between ob-
server to source measured in present cosmological time:

χ(z) ≡
∫ r

0

dr√
1−Kr2

=

∫ t0

t

cdt

a(t)
=

∫ z

0

cdz

H(z)
. (2.20)

Using comoving distance, Eq. (2.1) can be rewritten as

ds2 = −c2dt2 + a2(t)
[

dχ2 + r2(χ)(dθ2 + sin2 φ)
]

, (2.21)

where

r(χ) =











1√
−K

sinh
[√

−Kχ
]

(K < 0)

χ (K = 0)
1√
K
sin

[√
Kχ

]

(K > 0).

(2.22)

Angular Diameter Distance Suppose we measure the distance ds between
(r, θ, φ) and (r, θ + dθ, φ). From Eq. (2.1),

ds2 = a2(t)r2dθ2. (2.23)

Angular diameter distance is defined as

DA(z) =
ds

dθ
= a(t)r =

r [χ(z)]

1 + z
. (2.24)

1This value is calculated by combining baryon density and dark matter density.
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2.1.2 Structure Formation

So far we have considered the homogeneous, isotropic universe. However, at small
scales, there exist highly concentrated structures such as galaxies and clusters of
galaxies. If the universe were perfectly homogeneous at early times, these structures
would not exist. In fact, primordial small fluctuations exist in the early universe.
Then gravitational instability amplifies the fluctuations, and structures begin to
form. In the process of structure formation, it is known that dark matter plays an
important role. Dark matter occupies about 80% of matter in the universe, and
helps to form highly concentrated objects, galaxies and clusters. Dark matter can
be classified into some categories. Among them, we will explain hot dark matter
and cold dark matter. Then we will describe how the highly concentrated objects
are formed.

Hot Dark Matter and Cold Dark Matter

At early times the universe is dominated by radiation. As described in Section 2.1.1,
the energy density of radiation falls down earlier than that of matter. Thus after
the epoch when these densities are equal aeq, matter dominates the universe, and
then structure formation begins. Since dark matter does interact only through
gravity or weak force, in relativistic epoch relativistic dark matter particles have
relativistic velocity. As a result smaller fluctuations than horizon at aeq, ∼ 30 Mpc,
are disappeared. This effect is known as free streaming, and such a dark matter is
called hot dark matter. This model predicts super-cluster size strictures are formed
first, which is called the “top-down” scenario. On the other hand, cold dark matter
becomes non-relativistic at early stage, and does not cause free streaming. As a
result, small scale structures are formed first, and then they grow towards large
scale. This is called the “bottom-up” scenario, and is strongly supported by current
observational results.

Formation of Astronomical Objects and Prediction of its Abundance

The mass density fluctuation is defined as

δ(x, t) ≡ ρm(x, t)− ρ̄m(t)

ρ̄m(t)
, (2.25)

which defined in comoving coordinates. Here ρm(x, t) denotes matter density at
position x and time t and ρ̄m(t) denotes mean matter density at time t. It is known
that a probability distribution function of the density fluctuation follow Gaussian in
high precision. Following fluid dynamics, within the regime of “linear” fluctuation,
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δ ≪ 1, the time evolution of density fluctuation is written as2

δ̈k + 2
ȧ

a
δ̇k − 4πGρ̄mδk = 0, (2.26)

where δk(t) is the Fourier transformation of δ(x, t):

δk(t) =

∫

δ(x, t)e−ik·xd3x. (2.27)

Note that Eq. (2.26) does not depend on k. Thus fluctuation of different k evolves
independently, which is the advantage of linear theory. The solution of Eq. (2.26) is
written as

δk(t) = C1(k)D1(t) + C2(k)D2(t), (2.28)

where C1(k) and C2(k) is arbitrary time-independent function, D1(t) is a growing
solution, and D2(t) is a decaying solution. As the universe evolves, the D2 decays.
Thus the time evolution of matter fluctuation is described by D1(t), which is called
linear growth factor. The Fourier counterpart of correlation function 〈δ(x)δ(x′)〉
becomes

〈

δkδk
〉

= (2π)3P (k)δ(k + k′), (2.29)

where P (k) is called power spectrum. Note that the power spectrum does not depend
on the direction of k, because the universe is isotropic. The power spectrum reflects
statistical nature of matter fluctuation, and is extremely sensitive to cosmological
parameters, which has been used by various observations.

At scale smaller than <∼ 10 Mpc, the linear perturbation theory is no longer
applicable. Thus the formation of astronomical objects such as clusters and galax-
ies should be described by “non-linear” fluctuation, where analytical approach is
difficult. Press and Schechter [80] predicted how many galaxies and clusters are
formed, combining the linear perturbation theory and spherical collapse model, a
simple model to investigate the non-linear theory. This prediction indicates that the
number of astronomical objects exponentially decreases at high mass end and thus
the number of massive clusters is sensitive to a cosmological model. Based on this
theory, a lot of works have been done to find a fitting function to describe result of
N-body simulations. Here we show one example by Tinker et al. [95]. In general,
the mass function is often written as

dn

d lnM
=
ρ̄m,0

M

∣

∣

∣

∣

d ln σ

d lnM

∣

∣

∣

∣

f(σ, z), (2.30)

where σ(M, z) is the rms of linear density fluctuation smoothed over spheres of
comoving radius R = (3M/4πρm,0)

1/3, i.e., for the smoothed fluctuation

δR(x, z) =

∫

δ(x′)W (x− x′;R)d3x′, (2.31)

2We assumed pressure is negligible since we are interested in the matter dominated universe.
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where W (x;R) is a smoothing function,

σ2(M, z) =
〈

|δR(x, z)|2
〉

(2.32)

=
1

(2π)3

∫

P (k, z)W̃ 2(kR)d3k (2.33)

=

[

D(z)

D(0)

]2
1

(2π)3

∫

P (k, 0)W̃ 2(kR)d3k (2.34)

=

[

D(z)

D(0)

]2

σ2(M, 0), (2.35)

where W̃ is the smoothing function in Fourier space, for which Tinker et al. [95]
used a top-hat function. Practically σ2(M, 0) is often calculated through P (k, 0)
which is given by a software called CAMB3. Tinker et al. [95] found the following
fitting function for simulations based on WMAP first year results [91]

f(σ, z) = A

[

(σ

b

)−a

+ 1

]

e−c/σ2

, (2.36)

where A = 0.186(1 + z)−0.14, a = 1.47(1 + z)−0.06, b = 2.57(1 + z)−0.011, and c =
1.19. The cluster mass is defined as

M∆ = ∆
4πr3∆
3

ρ̄m,0, (2.37)

which means halo mass within a spherical region with comoving radius r∆ that is
defined as the average density of the enclosure is equal to ∆ times the mean matter
density at present, ρ̄m,0. The fitting function is shown in Fig. 2.1.

2.2 Testing ΛCDM Model with a Massive, High-

redshift Cluster

2.2.1 Theory

Clusters of galaxies are the most massive structures in the universe, and they reflect
the growth of structure in the universe. For example, cluster abundance, which
describes how many clusters exist at a given mass and redshift, can be predicted by
a cosmological model, as described in Section 2.1.2. Comparing the prediction with
observed cluster abundance, one can constrain the cosmological model. For example,
one of the pioneering works to constraint cosmological parameters by cluster abun-
dance was done by Kitayama and Suto [45], and the recent constraint was provided

3http://camb.info/
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Figure 2.1: The three sets of points denote measured mass function with ∆ = 200,
800, and 3200 (from top to bottom) for simulations based on WMAP first year
results. Solid curves denote mass function Tinker et al. [95] derived. This figure is
taken from Tinker et al. [95].

by Vikhlinin et al. [99], both of which were based on X-ray observables. Sehgal
et al. [88] presented constraints on cosmological parameters based on SZ-selected
galaxy clusters detected by millimeter-wave survey conducted out by ACT, using
scaling relation between SZ signal and cluster mass. They used 9 optically confirmed
high-mass clusters in 455 square degrees of sky. A lot of surveys including optical,
X-ray, and millimeter aim to constrain cosmological parameters by observing more
clusters.

On the other hand, it is possible to test the ΛCDM paradigm by using a single
extreme massive cluster. This test is based on the fact that exponential suppression
of the cluster abundance at high mass gives robust upper bounds on the number
of high mass clusters. Mortonson et al. [62] provides the framework to give the
confidence level (CL) at which the observation of a cluster of mass M and redshift
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z can falsify the ΛCDM model4. The framework tells a tension the newly observed
cluster mass has against the probability of the number of the cluster derived from a
known data set, such as CMB, SNe, BAO and so on. In this section, we summarize
their framework.

They quantified two types of CL for statistical uncertainties. The first is called
parameter variance, which is associated with the uncertainties on the mean cluster
number > M and > z, N̄(M, z). The uncertainty is represented by probability
distribution function which is derived by propagating the uncertainty of a given
data set through the ΛCDM model. They take the one-tailed 100p% CL upper
limits on the mean number N̄Pp(M, z). For example, the mean number of clusters
N̄(M, z) is less than N̄P.95(M, z) with 95% probability.

The second CL is called sample variance. They assumed the distribution of the
cluster number in a sample follows Poisson statistics. For a mean cluster number
N̄ , the probability that no cluster is observed in a random sample of sky fsky is
s ≡ e−N̄fsky . They defined the sample variance 100s% CL and the corresponding
mean cluster number in full sky as

N̄Ss(fsky) ≡ −f−1
sky ln s. (2.38)

If the ΛCDM model predicts the mean number of cluster above M and z is N̄Ss in
the full sky, and if one or more such clusters are observed in a survey covering fsky
of full sky, the ΛCDM model is excluded at 100s% CL.

Next, they combined these two types of uncertainties. The mass and redshift
limit within a certain area of sky which corresponds to 100s% sample CL and 100p%
parameter CL can be found by solving

∫ log(−f−1
sky ln s)

−∞
d log N̄P

(

log N̄ |M, z
)

= p, (2.39)

where P
(

log N̄ |M, z
)

is the probability distribution of the cluster number density
above M and z for the ΛCDM model. They defined joint CL where s = p, and
hereafter when we write CL, it means the joint CL. PlottingM and z satisfying this
equation with s = p = 0.95 gives an exclusion curve of the ΛCDM model at 95%
CL on M -z plane.

For computing the expected mean number of clusters with > M and > z for
a full sky, N̄(M, z), they integrated the product of mass function dn/d lnM and
comoving volume element dV (z) = r2drdΩ/

√
1−Kr2 = cr2(χ(z))dzdΩ/H(z):

N̄(M, z) =

∫ ∞

z

dz′
4πcr2(χ(z′))

H(z′)

∫ ∞

M

dM ′

M ′
dn

d lnM
(M ′, z′). (2.40)

For the mass function, they adopted the fitting function provided by Tinker et al.
[95] that is written in Section 2.1.2. They used M200 for cluster mass.

4Actually their framework can be extended to test quintessence.
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Figure 2.2: M -z exclusion curves taken from Mortonson et al. [62] and slightly
modified. Even a single massive cluster above the curve falsifies the ΛCDM model
at 95% CL. upper panel: The exclusion curve in three cases of sky coverage. lower
panel: Observed cluster mass with the exclusion curve of 300-deg2; SPT-CL J0546-
5345 (M200 = (8.23± 1.21)× 1014M⊙) and XMMU J2235.3-2557 (M200 = 7.7+4.4

−3.1 ×
1014M⊙). Red open points are without Eddington bias correction, and black solid
points are with Eddington bias correction.

Using the constraints from Type Ia SN [44], CMB [49], BAO [77], and Hubble
constant measurement [85], they drew the M -z exclusion curves of 95% CL for the
ΛCDM model as shown in Fig. 2.2. The upper panel shows the exclusion curves
for three cases of sky coverage. As the sky coverage becomes larger, the probability
to find massive clusters becomes higher. Thus a more massive cluster is needed to
rule out the ΛCDM model. As the redshift goes higher, the exclusion curve goes
down. This is because in early universe the structure does not grow enough to form
a lot of massive clusters. In the lower panel, they plotted mass estimation of two
massive clusters with the exclusion curve of 300-deg2 sky coverage. The one is SPT-
CL J0546-5345 [18] at z = 1.07 whose mass is determined by YX (the product of
gas mass and temperature), the estimator from X-ray observation. The cluster is
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the first z > 1 cluster discovered through SZ survey by the SPT in 2008 covering
175 deg2. The other is XMMU J2235.3-2557 [92] observed by XMM-Newton whose
mass is estimated from Tx (temperature). The survey covered 283 deg2.

When plotting an observed mass, we should correct Eddington bias which is the
combined effect of a steep mass function and measurement uncertainty. Since the
mass function is steep at high mass end, scattering from low masses to high observ-
ables is more likely than scattering from high masses to low observables. Therefore,
Eddington bias correction always reduces the observed mass. In the lower panel of
Fig. 2.2, the cluster masses with and without Eddington bias correction are shown
in black solid points and red open points, respectively. Both of the cluster mass of
SPT-CL J0546-5345 and XMMU J2235.3-2557 do not exclude ΛCDM model.

Their framework is being currently widely used. Williamson et al. [101] tested
ΛCDM by using their cluster samples found in 2500-deg2 survey conducted by the
SPT. Jee et al. [36] applied the framework to high-redshift clusters at z >∼ 1.

2.2.2 Sample Selection

To test the ΛCDM model with the framework provided by Mortonson et al. [62], it
is important to select a massive, high-redshift cluster of galaxies in a survey region.
For example, collecting follow-up observations of such clusters is not appropriate to
use the framework, since it is impossible to reasonably define the survey area.

We selected a cluster of galaxies, ACTJ00225, discovered by a survey conducted
by the ACT6. Since the SZ effect is independent of redshift, the ACT is able to
efficiently find high-redshift clusters. ACTJ0022 has the highest signal-to-noise ratio
(SN) of all clusters found in the 200-deg2 survey around equatorial region7 that
overlaps with SDSS Stripe-82 [2]. It is among the largest of the SZ signals, but
there are others with comparable amplitudes. The high SN suggests a compact SZ
profile. If a cluster is large, the SZ profile is contaminated by the CMB and thus
SN is decreased. The size of the SZ signal suggests the cluster is massive. The
combination of compact and massive means high redshift. Note that a low-redshift
cluster can be compact if it is not massive. Long slit spectroscopy of the BCG using
the Apache Point and Gemini South Observatories are carried out to give a cluster
redshift. It is revealed that the cluster is in fact at high redshift, z = 0.81.

Surveys conducted by the ACT are reasonably uniform. Sensitivity maps of
the surveys are shown in Fig. 2.3 for the illustrative purpose, which is taken from
Hand et al. [31]. Note that this map does not completely coincide with the 200-deg2

5Information of ACTJ0022 is provided by Tobias Marriage in private communication.
6Summary for the instrumental aspect of the ACT can be found in Appendix C.2.
7The details of the survey are not able to be presented in this thesis, since they are not published

yet.
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Figure 2.3: Sensitivity maps around an equatorial region surveyed by the ACT. This
figure is taken from Hand et al. [31]. The gray-scale encodes the noise rms in µK of
a map match-filtered for cluster detection. Red point shows a position of luminous
red galaxy that is irrelevant to our study.

equatorial region where ACTJ0022 has the highest SN. The mean sensitivity of this
200-deg2 is ∼ 40 µK and the sensitivity is within only a few factors.

When the cluster is used for the test of the ΛCDM model in the framework, the
most conservative limits are obtained by assuming full sky survey. In this case, the
cluster is considered to be the one that is most likely above the exclusion curve,
although there is high possibility that more massive or distant clusters exist in
regions other than the 200-deg2 equatorial region. We can obtain the second most
conservative limits by assuming that the 200-deg2 is observed, considering that the
completeness at mass and redshift level of ACTJ0022 is essentially unity since the
cluster has the highest SN and the high SZ signal, and the noise level is rather
uniform in the survey8. In this study, we considered the cluster to be most likely
above the exclusion curve in the 200-deg2 region, although there is possibility that
more massive or distant clusters may exist in region where noise level is higher than
that of the position of ACTJ0022. In fact, we could shrink the survey area and draw
the exclusion curve by removing the regions with high noise level. However, we take
200-deg2 since this is reasonably conservative and the removal of higher noise regions
would not drastically change the exclusion curve.

8Completeness is defined as the ratio between the number of clusters that intrinsically exist in
the sky and the number of clusters that are actually observed. In general, clusters with high SN
has high completeness. In SZ surveys, massive and high-redshift clusters have high SN. Note that
high-redshift clusters are compact, less contaminated by the CMB as described in text, and thus
have high SN.
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2.2.3 Cluster Mass Indicators

There are several mass indicators of a cluster of galaxies (for a detailed review, see
Voit [100]). For example, SZ signals itself can be used for estimating mass, since it
represents gas pressure. Similarly X-ray observables (luminosity and temperature)
and velocity dispersions of member galaxies can be used as a mass estimator. How-
ever, from these observables, cluster mass can be estimated under an assumption of
dynamical equilibrium or hydrostatic equilibrium.

Another mass indicator is optical richness, the number of member galaxies that
are above some luminosity threshold. However, since most of the cluster mass is
from dark matter, it is not straightforward to convert this observable to cluster
mass.

WL is a unique indicator since it directly gives mass estimate including dark
matter. Both dark matter and baryons contribute to WL, and we do not need any
physical assumptions except for general relativity. We used WL for estimating mass
of the cluster to test the ΛCDM model with the framework.

2.3 Estimation of Cluster Mass throughWeak Lens-

ing

2.3.1 Basics of Weak Lensing

Figure 2.4 shows a typical lensing system of thin lens approximation, where the
distances between source galaxies, a lens, and an observer are much larger than
the size of lens. Although in general there are a lot of gravitational lenses between
the observer and the source galaxies, thin lens approximation works well in the WL
caused by a cluster, so-called cluster-galaxy lensing. Assuming that angles appearing
in Fig. 2.4 are small, Dsθ = Dsβ +Dlsα̂, where Ds and Dls is the angular diameter
distance between the observer and source, the lens and source, respectively. Thus
light from a source is distorted as

β = θ −α(θ), (2.41)

where β is the position of the source in absence of the lens, θ is the position of
the lensed, (or observed) source, and α is scaled deflection angle α ≡ Dls/Dsα̂.
Equation (2.41) is called lens equation. The deflection angle is written as

α(θ) =
Dls

Ds

α̂(θ) =
2

c2
Dls

Ds

∫

dz∇LΦ, (2.42)

where Φ is Newton potential, z is a physical coordinate along the line of sight,
and ∇L is derivative along the direction perpendicular to the line of sight, i.e.,
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Figure 2.4: Typical weak lensing system in the limit of thin lens approximation.
This figure is taken from Bartelmann and Schneider [9] and slightly modified.
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∇L=D
−1
l ∇θ, where Dl is angular diameter distance between the observer and lens.

The lens potential ψ is defined as

α(θ) = ∇θψ. (2.43)

Next, let us consider how a source having finite size is mapped by the gravita-
tional lensing. The center of source is mapped as

β0 = θ0 − α(θ0). (2.44)

The small deviation from this center in the source plane, δβ, is mapped to the lens
plane as

δβ = Aij(θ0)δθ, (2.45)

where Aij(θ0) is called Jacobian matrix;

Aij(θ) = δij − ψ,ij(θ). (2.46)

We define convergence κ ≡ 1
2
(ψ,11 +ψ,22) and shear γ ≡ (1

2
(ψ,11 −ψ,22), ψ,12). Using

these parameters,

A =

(

1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)

. (2.47)

The WL regime is defined as the limit of κ ≪ 1 and γ ≪ 1. WL maps a source as
shown in Fig. 2.5. Convergence κ just changes the size of the source, and shear γ
distorts the source. The first component of shear elongates the source along x-axis
and the second component elongates it along the axis rotated by 45 degrees from
x-axis. Shear is spin-2 quantity, i.e., γ = γ exp(2φi), where φ is position angle of
the ellipse.

WL magnifies the flux of source. Since WL does not generate any photons,
surface brightness of the source b(β) is conserved. Thus the magnification effect
µ(θ) is represented as

µ(θ) ≡
∫

d2θb(θ)
∫

d2βb(β)
=

1

|det(A)|

∫

d2θb(θ)
∫

d2θb(θ)
(2.48)

=
1

(1− κ)2 − γ2
. (2.49)

Note that the direct observable from galaxy shape measurement is so-called
reduced shear g = γ/(1− κ), and Eq. (2.47) is written as

A = (1− κ)

(

1− g1 −g2
−g2 1 + g1

)

. (2.50)

Actually the matrix in Eq. (2.50) is elliptical coordinate transformation.
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Figure 2.5: Illustration of how WL maps a source.

2.3.2 Cluster Mass Reconstruction

In this section, we show how the WL observable, shear, is connected to mass of a
cluster.

First, convergence κ is related to mass density of the lens object projected to
lens plane, Σ(Dlθ), via

κ(θ) =
4πG

c2
DlsDl

Ds

Σ(Dlθ) (2.51)

≡ Σ(Dlθ)

Σcr

, (2.52)

where Σcr is called critical surface mass density.
Next, we reconstruct the convergence from observed shear. Taking a polar co-

ordinate (θ, φ) whose origin is the center of cluster, we define E-mode, γ+, and
B-mode, γ×, as shown in Fig. 2.6. γ+ is the tangential/radial component. When it
is tangential, γ+ is positive. γ× is the component rotated by 45 degrees from γ+. In
this coordinate, convergence and shear is written as

κ =
1

2

(

∂2ψ

∂θ2
+

1

θ

∂ψ

∂θ
+

1

θ2
∂2ψ

∂φ2

)

, (2.53)

γ+ = −1

2

(

∂2ψ

∂θ2
− 1

θ

∂ψ

∂θ
− 1

θ2
∂2ψ

∂φ2

)

, (2.54)

γ× =
∂

∂θ

(

1

θ

∂ψ

∂φ

)

. (2.55)
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Figure 2.6: Definition of E-mode and B-mode.

The average of γ+ within an annulus [θ, θ + δθ] yields

〈γ+〉(θ) ≡ 1

2π

∫ 2π

0

dφγ+(θ, φ)

∣

∣

∣

∣

θ=const.

(2.56)

= −1

2

[

d2〈ψ〉(θ)
dθ2

− 1

θ

d〈ψ〉(θ)
dθ

]

, (2.57)

where 〈ψ〉 ≡
∫ 2π

0
dφ
2π
ψ. In a similar way,

〈κ〉(θ) = 1

2

[

d2〈ψ〉(θ)
dθ2

+
1

θ

d〈ψ〉(θ)
dθ

]

. (2.58)

Also we define the average of the convergence within a circle whose radius is θ as

κ̄(< θ) ≡ 1

πθ2

∫ θ

0

θ′dθ′
∫ 2π

0

dφκ(θ′, φ) (2.59)

=
1

θ2

∫ θ

0

dθ′
d

dθ′

(

θ′
d〈ψ〉(θ′)
dθ′

)

(2.60)

=
1

θ

d〈ψ〉(θ)
dθ

. (2.61)

Thus for arbitrary mass distribution, the following relation is satisfied;

〈γ+〉 = −〈κ〉(θ) + κ̄(< θ). (2.62)
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When θ is sufficiently outside of the cluster, 〈κ〉 ∼ 0, so that Eq. (2.62) becomes

〈γ+〉 = κ̄(< θ) =
Σ̄(< θ)

Σcr

. (2.63)

The projected mass of the cluster inside of θ can be estimated as

M2D(< θ) = π (Dlθ)
2 Σcr(〈γ+〉). (2.64)

This mass estimate is independent from model. We do not rely on any physical
assumption such as hydrostatic equilibrium, and directly measure the mass including
dark matter. However, There are two concerns. First, what we actually observe is
reduced shear, not shear itself, as described in Section 2.3.1. Since the convergence
is large around the center of the cluster, there is a discrepancy between reduced
shear and shear. Second, since 〈γ+〉 (or more precisely 〈g+〉), is invariant under the
transformation κ → κ + λ (κ → λκ + (1 − λ)) where λ is constant number, there
also exists degeneracy when we estimate the cluster mass from shear.

Another important relation is that the average of B-mode becomes zero:

〈γ×〉 = 0. (2.65)

This relation originates from the fact that gravitational lensing is induced by a scalar
potential. This quantity can be used for a systematic test of analysis.
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Chapter 3

Observational Apparatus

In this chapter we describe the observational apparatus of the Subaru Telescope/Suprime-
Cam. The observatory is located at the summit of Mauna Kea, Hawaii. The Subaru
Telescope/Suprime-Cam is a unique combination able to provide deep and wide
imaging with high image quality, and has been leading wide field imaging astron-
omy.

3.1 Subaru Telescope

The Subaru Telescope [35, 1] is a 8.2-m optical-infrared telescope located at a lati-
tude of 19◦49′43′′N, longitude of 155◦28′50′′W, and altitude of 4139m. The structure
of telescope is shown in Fig. 3.1. It has a height of 22.2 m, width of 27.2 m, and
weight of the moving assembly of 555 tonnes. The Subaru Telescope has four foci; a
prime focus, Cassegrain focus, optical Nasmyth focus, and infrared Nasmyth focus.
The wide-field prime focus where the Suprime-Cam is mounted, is a unique feature
among 8-10 m telescopes, which offers a ∼ 30′ field of view with an excellent image
quality better than 0.′′23 and extremely small vignetting right up to the edge of the
field.

The primary mirror is a monolithic mirror whose physical diameter is 8.3 m,
thickness is 20 cm, and weight is 22.8 tonnes. The mirror is made of Ultra Low
Expansion (ULE) glass coated with aluminum. The diameter of effective reflecting
surface is 8.2 m and the focal length is 15 m, which corresponds to F/1.83. The re-
flectivity of a number of microscope slides, which was placed in the coating chamber
together with primary mirror when the re-aluminization is conducted in August of
2010, is shown in Fig 3.2. They indicates the reflectivity of the primary mirror. The
primary mirror is actively supported by 261 actuators which undistorts the mirror
distortion induced by elevation angle (Fig. 3.3). The support force is updated every
100 ms. This feature allows for a mean surface error of 14 nm.
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Figure 3.1: Schematic view of structure of Subaru Telescope.
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Figure 3.2: Indicative reflectivity of primary mirror, which is actually measured
from microscope mirrors coated in the same condition as primary mirror in August,
2010.

Figure 3.3: Picture of actuators which actively support the primary mirror.
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Figure 3.4: Aerial view of Subaru enclosure.

The Subaru Telescope adopted a cylindrical enclosure rather than a traditional
hemi-spherical dome as shown in Fig. 3.4. This helps to prevent the turbulent flow
from growing along the enclosure and degrading observation condition. The height
and diameter at base of the enclosure is 43 m and 40 m, respectively. The outer
wall is covered with aluminum panels to reduce the temperature difference between
the enclosure and the ambient air.

Although it is possible for the telescope to be pointed at elevation angles of
89◦ ≥ El ≥ 15◦, it is recommend to observe in elevation angles of 85◦ ≥ El ≥ 30◦

to avoid fast movement of the telescope near to the zenith and extinction around
lower elevation angles. The telescope can be slewed until 270◦ in each azimuth
direction from south. The maximum slew rate of the telescope is 0.◦5/s. The blind
positioning error is less than 1.0′′. The field of view of auto guider camera is 30′′ with
the pointing accuracy of 0.′′07. The guiding error is less than 0.′′1 rms, including
seeing effect, with a guide star brighter than magnitude 16.

Figure 3.5 shows statistics of FWHM seeing size measured by the auto guider
camera. The median seeing is 0.′′6-0.′′7 FWHM. This figure shows that seeing of the
later half of night is better. This is probably because better thermal equilibrium
between the inside of enclosure and the ambient air is achieved. The clear sky ratio
at the summit of Mauna Kea is around 60-80% according to statistics from May
2000 to 2011. The atmospheric transmittance curve at the summit in the case of
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Figure 3.5: Seeing statistics measured by auto guider camera. The squares, trian-
gles, circles show the measurement time before 21:00, 21:00-26:00, and after 26:00
Hawaiian standard time, respectively. The data was taken from May 2000 to Nov.
2008.

airmass1 1.2 is shown in Fig. 3.62.

3.2 Suprime-Cam

3.2.1 Overview

The Suprime-Cam[60], which stands for Subaru Prime Focus Camera, covers the
field of view as wide as 34′ × 27′ with sub-arcsec imaging of 0.′′2 per pixel, since
it is mounted at the prime focus of the Subaru Telescope. The prime focus is a

1When measuring magnitude, atmospheric extinction is taken into account as

m(λ) = m0(λ) + κ(λ)X(z), (3.1)

where m(λ) is the magnitude of the observed object at the surface of the earth, m0(λ) is the
magnitude of the observed object after the light goes through the atmosphere, κ(λ) is called
extinction coefficient, and X(z) is airmass. Airmass, which is a function of zenith distance of the
object z, represents the number of times the quantity of the atmosphere along the line of sight to the
object greater than the quantity of the atmosphere in the direction of zenith. X is approximated
by sec(z). The second term can be calculated by integrating the atmospheric transmittance curve.

2http://www.astro.caltech.edu/~capak/cosmos/filters/
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Figure 3.6: Atmospheric transmittance curve at the summit of Mauna Kea when
airmass is 1.2.

notable and unique feature among 8-10 m class telescopes. While the seeing of
the Suprime-Cam is routinely better than 0.′′7, which is one of the best seeing of
ground-based telescopes and only 10 times larger than that of WFPC2 on board
the Hubble Space Telescope, the Suprime-Cam realizes more than 100-times wider
field of view than WFPC2. This feature has presented many unique opportunities
to research in various fields. The picture of Suprime-Cam is shown in Fig. 3.7.

Since the Suprime-Cam saw first light in 1999, various components have been
upgraded. The most major upgrade was done in July 2008, when its CCDs and
electronics were replaced. In this section, we describe the latest specification of
Suprime-Cam which was used for taking data in this thesis.

The schematic of Suprime-Cam which describes its main components is shown
in Fig. 3.8. The prime focus unit (PFU) is mounted on the top ring of the telescope.
The Suprime-Cam is loaded from the top of the PFU. The light reflected from the
8.2-m primary mirror first goes through the optics called wide field corrector, and
then comes into Suprime-Cam. The wide field corrector is fixed to the PFU, while
the camera is rotated by an instrument rotator together with an auto-guider. The
design of the wide field corrector consists of three main lens and atmospheric dis-
persion corrector (ADC). The ADC corrects chromatic aberration especially caused
when effective thickness of atmosphere becomes larger at lower elevations, which
realizes high image quality across the field while maintaining 34′ × 27′ field of view.
For instance, at a zenith distance of 60◦ or less, the diameter which contains 80%
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Figure 3.7: Picture of Suprime-Cam.
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of energy of a point source on an image plane is less than 22 µm (0.′′30) for the
wavelength of 400 nm, 13 µm (0.′′18) for the wavelength of 546.1 nm, and 23 µm
(0.′′31) for the wavelength of 1000 nm. The transmittance of the wide field corrector
is shown in Fig. 3.9.

The shutter has two sliding doors. The one is used when opening the shutter and
the other is used when closing the shutter, which makes the exposure time uniform
over the field of view. The shortest exposure time is 1.2 s.

Then the light goes through a filter and photons having a certain range of wave-
length are selected. The Suprime-Cam adopts two photometric filter systems; the
one is the Johnson-Morgan-Cousins system [38][25][12], and the other is Sloan Dig-
ital Sky Survey (SDSS) system[30]. The available broadband filters are B, V , Rc,
Ic from the Johnson-Morgan-Cousins system, and g′, r′, i′, z′ of the SDSS system.
In addition, a redder filter called Y which covers around 10000 Å was added. The
actual filter response is shown in Fig. 3.10.

Finally, the light arrives at CCDs through a window of the dewar. 10 CCDs
are mounted on a focal plane which is actively cooled down to −100◦C inside of
the dewar to suppress dark current of the CCDs. A cooler and vacuum device
are used to realize the temperature. Holes converted from the photons are read-
out from the CCD, and then are processed and converted into digital signal in the
readout electronics called Mfront2[67]. The CCDs and readout electronics were re-
placed in July 2008, as described above. The digitized signal is then comes into the
CCD/Instrument Controller called Messia-V[66], and then sent to the remote work-
station in the observation room via Gigabit Ethernet. Details of CCDs, Mfront2,
and Messia-V are described in Section 3.2.2. The length of the cable is required to
be about 500 m long, so that optical fiber is employed. The remote workstation is
connected to the data archive system where the data is actually stored. It is also
connected to the telescope control system.

3.2.2 CCD and Electronics

The Suprime-Cam employs 10 chips of p-type 2k × 4k fully-depleted CCD, which is
developed by the collaboration of NAOJ and Hamamatsu Photonics K.K (HPK)[41],
to cover 34′ × 27′ field of view. Figure 3.11 shows the alignment of the CCDs on
the focal plane. The gap between neighboring CCDs is 14′′ − 16′′. Each CCD has
DET_ID, which is a one-digit detector ID, and DETECTOR, which is a name of detector.

The specification of the CCD is summarized in Table 3.1. Each CCD has 4
outputs, and each output reads out 512 × 4096 pixels. The operating temperature
is set to -100◦C to suppress dark current, as described in the previous subsection,
which realizes the dark current of a few e/hour/pixel.
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Figure 3.8: Schematic of Suprime-Cam.
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Figure 3.9: Transmittance of wide field corrector.
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Figure 3.10: Actual filter response of Suprime-Cam. (left): B, V , Rc, Ic from the
Johnson-Morgan-Cousins system. (right): g′, r′, i′, z′ from the SDSS system. The
reddest band Y is added.

44



14-16’’ 14-16’’ 14-16’’ 14-16’’

14-16’’ 14-16’’ 14-16’’ 14-16’’

14-16’’

DET_ID

DETECTOR

6

chihiro

7

clarisse

2

fio

1

kiki

0

nausicaa

9

ponyo

8

san

5

satsuki
4

sheeta

3

sophie

Figure 3.11: Alignment of CCDs on the focal plane of Suprime-Cam.

The CCD is back illuminated and fully depleted to realize high quantum effi-
ciency (QE). Figure 3.12 shows QE of CCDs. The solid line denotes QE of a CCD
currently used by the Suprime-Cam, while dashed line denotes a CCD used by the
Suprime-Cam until July 2008 which was manufactured by MIT Lincoln Labora-
tory (MIT/LL). Although the MIT/LL CCD is also back illuminated and depleted,
HPK CCD realizes 40% higher QE at redder wavelength. This is because HPK CCD
adopts thicker depletion; HPK CCD has 200 µm thick, while MIT/LL has 40 µm
thick.

The Messia-V issues CCD readout clock following the command from the remote
workstation in the observation room. The readout clock is driven by the Mfront2
and sent to the CCDs. Signals from each CCD output come out of the dewar and
comes back to Mfront2. First, the signals are amplified by a factor of 3.0, processed
in correlated double sampling (CDS) to remove kTC noise, and digitized into 16 bit
by analog digital converter (ADC). The integration period of CDS is set to 2 µs.
The conversion factor, or gain of CCD, is ∼3.0 e/ADU. Finally the digitized signals
are sent to the Messia-V, sent to the remote workstation via the Giagabit Ethernet,
and stored in the data archive system in fits format3. The current readout speed
is set to 133 kpixels/sec with the 2µs of the CDS integration period, which realizes
18 sec for reading out a whole exposure. The total readout noise of the CCD and
readout electronics is ∼10 e. The nonlinearity of the system is shown in Fig. 3.13.

3http://fits.gsfc.nasa.gov/fits_standard.html
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Figure 3.12: Quantum efficiency of CCD. Solid line denotes quantum efficiency of
CCD used by Suprime-Cam which was upgraded in July 2008. This CCD was man-
ufactured by Hamamatsu Photonics K.K. Dashed line denotes quantum efficiency of
CCD used by Suprime-Cam before the upgrade, which was manufactured by MIT
Lincoln Laboratory.
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Format 2048×4096
Pixel size 15µm
Pixel scale 0.′′2
Signal outputs 4
Charge transfer efficiency 0.999999(parallel), 0.999998(serial)
Node sensitivity ∼5µV/e
Full-well capacity >150,000e
Operating temperature -100◦C
Dark current at operating temperature a few e/hour/pixel

Table 3.1: Specification of CCD employed by Suprime-Cam.

This shows the nonlinearity mainly comes from the CCD. The specification of the
readout system is summarized in Table. 3.2

Number of CCD 10
Number of total signal outputs 40
Readout speed 133 kpixels/sec/output
Readout time 18 sec
Data resolution 16 bit
Image size 173 Mbytes
Data rate 10 Mbytes/sec
Gain 2.5-3.7 e/ADU
Readout noise 10 e

Table 3.2: Specification of Suprime-Cam readout system.
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Figure 3.13: Nonlinearity of Suprime-Cam readout system. Dashed line denotes the
nonlinearity of MFront2. Solid line denotes nonlinearity combined with a CCD.
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Chapter 4

Development of High Precision
Weak Lensing Measurement
Algorithm

4.1 General Description of Weak Lensing Mea-

surement

In this section, we describe a procedure to measure the distortion effect due to WL,
so-called shear. We focus on a general procedure which is commonly done by WL
measurement. The shearing effect due to WL is small and hidden by the intrinsic
ellipticity of a galaxy. Thus one cannot obtain the shear from a single galaxy. Shear
is extracted by averaging ellipticities of an adequate number of galaxies to cancel out
their intrinsic ellipticities. We first describe how to measure ellipticity of a observed
galaxy image in Section 4.1.1, and then how to extract the shear signal from the
ensemble of galaxy ellipticities in Section 4.1.2

4.1.1 Measuring Ellipticity of Each Galaxy Image

Figure 4.1 shows a forward process, i.e., how an object is observed after it is sheared
by WL and/or affected by other observational effects. A galaxy having intrinsic
shape is sheared by WL. Mathematically this is an elliptical coordinate transfor-
mation as described in Eq. (2.50). When the light passes through the atmosphere
(unless the telescope is in space) and optics, photons are scattered. As a result, the
image is smeared and distorted. Emission from the sky and detector noise causes a
background which is added to the whole image. The detector sums up the photons
in each pixel. The observed image is noisy due to Poisson noise in the number of
photons coming into each pixel. The atmospheric dispersion, optical aberration, and
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Figure 4.1: Illustration of forward process. This figure is taken from Bridle et al.
[15].

pixelation is called the point spread function (PSF) 1, which is mathematically rep-
resented by convoluting a kernel to the sheared galaxy. Note that optical distortion
is not convolution, so that it should be treated as coordinate transformation.

The atmospheric dispersion and optical aberration smears and distorts the galaxy
image. Thus it is necessary to correct PSF to obtain galaxy ellipticity. For correction
of PSF, star images are used. Stars are considered to be a delta function so that
stellar images are the impulse response of PSF. In general, any weak measurement
method extracts shape information from PSF such as second order moments, and
then perform PSF correction.

4.1.2 Extracting Weak Lensing Signal

Suppose that one has galaxy ellipticities after PSF correction. Shear signals can be
extracted by averaging the ellipticities to cancel out the intrinsic ellipticities galaxies
have.

However, before going into details, let us define ellipticity in different ways.

1There is another definition which does not include the pixelation into PSF. In this thesis, We
treat this effect as a part of PSF.
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Given that an ellipse has major axis a and minor axis b, ellipticity can be defined as

g =
a− b

a+ b
. (4.1)

Note that this is same as WL shearing effect, i.e, reduced shear g as defined in
Section 2.3.1. We call this definition shear with italics. Another possible definition
is

e =
a2 − b2

a2 + b2
, (4.2)

which corresponds to a quantity derived from second order moments measured on
the ellipse

e =
Ixx − Iyy
Ixx + Iyy

, (4.3)

where the direction of x-axis is taken along the major axis. We call the definition
distortion with italics. There is a useful equation to convert between them;

g = tanh
(

tanh−1 (e) /2
)

. (4.4)

Since the shearing effect is an elliptical coordinate transformation, the observed
ellipticity e′ can be written as

e′ = e⊕ δ, (4.5)

where e and δ is the intrinsic ellipticity of the galaxy and lensing shear, respectively.
We use ⊕ as the addition operator for ellipticity and shear. Note that this operation
corresponds to applying a coordinate transformation twice, so that it is no longer a
simple linear operation. When the ellipticitiy, or shear, is defined in distortion, and
each component is represented as

e = (e1, e2) = (e cos 2θ, e sin 2θ) , (4.6)

where θ is position angle, Eq. (4.5) is written as

e′1 =
e1 + δ1 + (δ2/δ

2)
[

1−
√
1− δ2

]

(e2δ1 − e1δ2)

1 + e · δ , (4.7)

e′2 =
e2 + δ2 + (δ1/δ

2)
[

1−
√
1− δ2

]

(e1δ2 − e2δ1)

1 + e · δ , (4.8)

which is derived by Miralda-Escude [59]. Next, we define the shear estimator as

δ̂ = 〈e′〉 . (4.9)
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Note that the shear estimator does not give shear itself since adding ellipticities
is not simple linear addition as shown in Eq. (4.7) and (4.8). Given that δ ≪ 1,
we consider how to approximate shear up to the first order. Taylor expansion of
Eq. (4.9) is

δ̂ = 〈e〉+ de′

dδ

∣

∣

∣

∣

δ=0
δ (4.10)

Since the distribution of galaxy shapes is assumed to be intrinsically isotropic, the
first term of Eq. (4.10) is zero. Thus shear can be written as

δ =
δ̂

R , (4.11)

where R is called responsivity. Note that when we assume isotropic distribution of
galaxy shape, R becomes scalar. When we adopt simple average for 〈〉 in Eq. (4.9),
the responsivity becomes

R = 1− 〈e2〉
2
. (4.12)

Here, we used Eq. (4.7) and (4.8). In the real measurement, the number of galaxies
used for shear estimate is finite. Thus, statistical variance due to galaxy intrinsic
shapes exists, which is written as

Var(δ̂) =
〈e2〉
N

. (4.13)

This noise is called shape noise, and is often a major source of error in cluster-galaxy
lensing analysis. Note that the derived δ is in the definition of distortion, so that
we have to convert it into shear to obtain reduced shear.

In real analysis, since there is a measurement error of galaxy ellipticity, the
responsivity can be optimized by down-weighting ellipticities having noisier mea-
surement. In addition, it can be further optimized using the information of intrinsic
galaxy distribution. For example, galaxies having larger ellipticity can be down-
weighted compared to the ones with smaller ellipticity since the former has larger
shape noise. Bernstein and Jarvis [10] derived the following optimum responsivity

R =

∑

[

w
(

1− k0 − k1e2

2

)

+ e
2
dw
de

(1− k0 − k1e
2)
]

∑

w
, (4.14)

where

k0 = (1− f)σ2
SN , (4.15)

k1 = f 2, (4.16)

f =
σ2
SN

σ2
SN + σ2

e

, (4.17)
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and w is weight function

w =
1

√

e2 + (1.5σe/(1− e2))2
. (4.18)

Here, σ2
SN = 〈e2〉 /2, where 〈〉 denotes simple average and σe is measurement noise

of each galaxy. Note that ellipticity appearing in these equations are in distortion
definition. Although they assumed Gaussian distribution for intrinsic galaxy ellip-
ticity, it is confirmed that this responsivity yields a few percent accuracy on shear
estimate.

4.2 Overview of High PrecisionWeak Lensing Mea-

surement Algorithm

In this thesis, we use the Elliptical Gauss-Laguerre (EGL) method originally devel-
oped by Bernstein and Jarvis [10] and modified by Nakajima and Bernstein [64] for
galaxy shape measurement. Here we will briefly explain the method; for details, see
the aforementioned papers.

4.2.1 Gauss-Laguerre Basis Functions

The EGL method attempts to extract shape information from any object by rep-
resenting the observed image as a linear combination of complete orthogonal basis
functions [also see 83, 54]. The basis function used in the EGL method is a set
of Gauss-Laguerre (GL) basis functions, which is given in two-dimensional polar
coordinates (r, θ) with respect to the reference center:

ψσ
pq(r, θ) =

(−1)q√
πσ2

√

q!

p!

( r

σ

)m

eimθe−r2/2σ2

L(m)
q

(

r2

σ2

)

(p ≥ q), (4.19)

where m ≡ p− q and L
(m)
q (x) are the Laguerre polynomials [3];

L
(m)
0 (x) = 1, (4.20)

L
(m)
1 (x) = (m+ 1)− x, (4.21)

(q + 1)L
(m)
q+1(x) = [(2q +m+ 1)− x]L(m)

q (x)− (q +m)L
(m)
q−1(x). (4.22)

The basis functions also satisfy ψ̄σ
pq = ψσ

qp, where¯denotes the complex conjugate.
The lowest order function ψσ

00 is a Gaussian function with width σ. In general, an
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image (surface brightness distribution) I(θ) is represented as

I(θ) =
∑

p,q

bpqψ
σ
pq(θ). (4.23)

Since I(θ) is real, it can be proven that b̄pq = bpq.
Figure 4.2 shows real parts and imaginary parts of the GL functions. The func-

tions ψσ
pq with p = q are circularly symmetric, with p zero-crossing nodes in the

radial functions. On the other hand, the functions ψσ
pq with p 6= q represent angu-

lar anisotropies; for example, the dipole anisotropies are described by ℜ(ψσ
10) and

ℑ(ψσ
10), and the quadruple anisotropies are by ℜ(ψσ

20) and ℑ(ψσ
20), where ℜ and ℑ

denotes real part and imaginary part of a complex number, respectively. Includ-
ing the higher-order GL functions allows for more degrees of freedom to represent
complex radial and angular dependencies of an image.

4.2.2 Modelling PSF

By using the orthogonal, complete set of GL basis functions (Eq. (4.19)), we can
model an image of a star as

I∗(θ) =
∑

i

b∗iψ
σ∗

i (θ − θ0), (4.24)

where we have used the collapsed notation i ≡ (p, q) for simplicity and θ0 is the
centroid of a star. The coefficients b∗i can be estimated via χ2 fitting by comparing
the observed image of a given star with the model;

χ2 =

Npix
∑

α=1

[I∗(θα)−
∑

i b
∗
iψ

σ∗

i (θ − θ0)]
2

σ2
α

, (4.25)

where θα denotes the α-th pixel in the image, the summation runs over pixels used in
the fitting, σα is the noise of the α-th pixel. This fitting is a linear algebra problem,
so the best-fit coefficients can be obtained analytically, which is computationally
fast.

However, to do this χ2 minimization, we must first determine the Gaussian
width σ∗ and the centroid for the basis functions. First, the width σ∗ is computed
by searching for the best-fit Gaussian function to the star image, varying the width
parameter σ∗. Secondly, the centroid is determined by searching for the coordinate
satisfying the condition b∗10 = 0, so that it does not have dipole. We use the “dogleg”
algorithm [51] for this non-linear minimization, analytically calculating derivatives
of b10 with respect to the centroid.
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Figure 4.2: Gauss-Laguerre basis functions. They are used for modelling PSF.
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In principle, any PSF can be represented by the GL expansion. However, in
reality a typical PSF is more extended in the radial profile than the lowest-order GL
basis functions (e.g., Gaussian), and it is necessary to include the GL functions up
to much higher orders to adequately represent the stellar image.

4.2.3 Modelling Galaxy to Extract Shear Estimator

Given our PSF estimate, the ellipticity of a galaxy, which gives an estimator of
weak lensing shear, is estimated as follows. Since the lensing shear distortion is
equivalent to an elliptical coordinate transformation, a galaxy image is modelled in
a sheared coordinate system rather than in the sky plane (the observed coordinate
system). We can define a new set of basis functions in the new coordinate system
via transformation:

ψ
σgE
i (θ) ≡ ψ

σg

i (E−1θ). (4.26)

Here E represents a coordinate transformation from the sky plane that includes a
two-dimensional translation x0, a shear g, and a dilution µ:

E−1θ =
e−µ

√

1− g2

(

1− g1 −g2
−g2 1 + g1

)

(θ − x0) . (4.27)

Thus the coordinate transformation is specified by 5 parameters. For instance, if
an isophote of ψ is a unit circle, then the remapping E, parametrized by {x0, g, µ},
leads the isophote of ψE to be an ellipse with center, ellipticity, and width given by
the parameters {x0, g, µ}. Including the PSF convolution, an image of a galaxy is
modelled as

Imodel(θ) =
∑

i,j

b∗i bj

[

ψσ∗

i ⊗ ψ
σgE
j

]

(θ), (4.28)

where⊗ denotes convolution. In the equation above, we assumed that the PSF at the
galaxy position can be properly obtained by interpolating the PSFs at positions of
stars. Making use of the nature of this complete orthogonal system, the convolution
of two GL functions can be carried out as follows:

[

ψσ∗

i ⊗ ψ
σg

j

]

(θ) =
∑

k

Ck
ijψ

σo

k (θ), (4.29)

where σ2
o = σ2

g + σ2
∗. To calculate the convolution in Eq. (4.28), we conform the

coordinate of ψσ∗(θ) to that of ψσgE(θ) (i.e. ψσg(E−1θ)):

ψσ∗

i (θ) =
∑

j

E−1
ij ψ

σ∗

j (E−1θ). (4.30)

For details of these two equations, see Bernstein and Jarvis [10] and Appendix B. Us-
ing these equations, the convolution in Eq. (4.28) is analytically calculated (although
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Figure 4.3: Elliptical Gauss-Laguerre basis functions convolved with PSF that is
shown at upper right. They are used for modelling a galaxy.
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a Jacobian depending on µ exists due to the convolution in the sheared coordinate
system, which can be absorbed in the galaxy coefficients bi). The observed galaxy
image is fitted to the model shape as

χ2 =

Npix
∑

α=1

[

Iobs(θα)−
∑

i biΦ
σoE
i (b∗;θα)

]2

σ2
α

, (4.31)

where
ΦσoE

i (b∗;θ) ≡
∑

jkl

b∗jE
−1
jk C

l
kiψ

σo

l (E−1θ). (4.32)

This is a linear algebra problem, and therefore the χ2 minimization for a given
elliptical coordinate can be done via the linear algebra calculation to obtain the
galaxy coefficients bi, given the PSF coefficients b∗i .

To find best fit parameters {x0, g, µ}, we carry out the circularity test that is
defined in Nakajima and Bernstein [64] as follows. Relying on the fact that (in the
weak lensing limit) a shear looks like an elliptical coordinate transformation of the
galaxy image, we search for the elliptical coordinate for which the best-fit coefficients
b20 = 0 to find g, where quadrupole anisotropy of the galaxy image vanish. Note that
ℜ (b20) = 0 and ℑ (b20) = 0 corresponds to g1 = 0 and g2 = 0, respectively. Similarly,
the condition for finding x0 and µ is b10 = 0 and b11 = 0. The former vanishes dipole
anisotropy of the galaxy image on the elliptical coordinate, as used in PSF modelling,
and the latter requires that the size of the galaxy is most confined to the lowest-order
function, the Gaussian function with the coefficient b00. In practice, we again use the
“dogleg” algorithm for this non-linear least squares problem of finding the best-fit
parameters (

∑

i |bi|2 = 0), where i runs over coefficients which we want to constrain.
To find the best-fit solution based on a numerical computation sufficiently quickly
for each galaxy, the allowed tolerance is that the absolute value of real part and
imaginary part of each coefficient should be smaller than 10−5: |ℜ (b10) | < 10−5 and
so on.

In practice, we fix the size parameter µ in Eq. (4.31). This is needed especially
for fitting galaxies as small as PSF. In this case, if we do not fix µ, the fitter tries to
shrink the model function to fit the central part of the object. However, the central
part does not have enough number of pixels to give a shape information, which
leads to misestimation of ellipticity. Instead of matching the size by minimizing
Eq. (4.31) with changing µ, we determine σg in Eq. (4.29) as follows and fix µ.
First, to estimate apparent (or observed) size, we fit the galaxy with non-convolved
elliptical GL function by minimizing

χ2 =

Npix
∑

α=1

[

Iobs(θα)−
∑

i biψ
σini
o E

i (θα)
]2

σ2
α

, (4.33)

58



where E = {x, g, µ} and σini
o is the initial guess for the observed galaxy size which

we set to 3.5 pixels, the typical size of PSF. Then we obtain apparent galaxy size,
σini
o e

µ, and σg is calculated as

σ2
g =

(

σini
o e

µ
)2 − (fp − 2) σ2

∗. (4.34)

Here we introduced parameter fp to further enlarge the galaxy size. Note that
fp = 1 gives the galaxy size naturally defined from observed galaxy size and PSF
size if Gaussian profile is assumed for them. We use fp = 1.2 as a default value to
enlarge galaxy size. The effect of fp will be discussed in Section 4.3.3.

4.2.4 Covariance and Signal-to-noise Ratio

Since we carry out linear χ2 minimization for both of the PSF fitting and galaxy
fitting to obtain b, the covariance of b is estimated as

Cov(bi, bj) =
[

A−1
]

ij
, (4.35)

where

Aij ≡
Npix
∑

α

Imodel
i (θα)I

model
j (θα)

σ2
α

. (4.36)

Here Imodel
i is the model basis functions of PSF or galaxy described above. Then

this covariance is propagated to that of fitting parameters E = {x0, g, µ} as

Cov(Ei, Ej) =

(

db

dE

)−1

ik

Cov(bk, bl)

(

db

dE

)−1

jl

. (4.37)

Signal-to-noise ratio is defined as

ν =
f

√

Var(f)
, (4.38)

f =
∑

p

bpp. (4.39)

Note that f picks up all flux of the model.

4.2.5 Summary of Elliptical Gauss-Laguerre Method

This EGL method is a so-called “forward-fitting method,” since the measured galaxy
image is compared with a model image that is convolved with the PSF, where PSF
is a priori estimated from images of stars. Hence this method does not involve a
deconvolution of the seeing effect.
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The advantage of this method is that any image can, in principle, be accu-
rately modeled when including sufficiently high orders of the GL eigenfunctions.
Another advantage of this method is, as emphasized in Nakajima and Bernstein
[64], the forward-fitting procedure can handle pixelization, finite sampling, alias-
ing, and masking due to cosmic rays and bad pixels. Furthermore, the method
can straightforwardly be extended to a simultaneous fitting of multiple exposures
in modelling the images of the same galaxy, where the different PSFs in each image
are properly taken into account.

However, when applying the method to real data, we can include only a finite set
of basis functions and need to truncate the expansion at some order. More precisely,
we have several truncations in our model fitting. First, for both the PSF and galaxy
image fitting, we need to truncate the higher-order GL basis functions in the presence
of noise. In the following, we will include the functions up to the NPSF- or Ngal-th
order, respectively (note that NPSF = p + q in Eq. (4.19) and so on). Secondly,
we employ the truncation for the GL basis functions used for the convolution and
coordinate transformation in Eq. (4.29) and (4.30). These calculations involve the
summation of the basis functions, and we do not necessarily stop at the same order
used for the PSF and galaxy image fitting. We can instead include higher orders
in the summations to achieve higher precision, and will include up to Nin-th order.
These truncations generally cause systematic errors in modelling the object image
[see also 14, 56, for a similar discussion].

4.3 Testing the Weak Lensing Measurement Al-

gorithm

In this section we evaluate the accuracy of the EGL method by using simple images.
The image of each object is in a separated tile, which allows us to avoid any effects of
object blending. We made PSF and galaxy separately and then convolve the galaxy
with the PSF. Several mathematical models are provided for generating the PSF and
the galaxy. One can add weak lensing shear and make so-called “ring test” images
which are convenient for testing the shape measurement accuracy. In addition, noise
can be added to test S/N dependence of a shape measurement algorithm. In this
section, we describe the concept of the ring test first, and then details about how to
make a galaxy image convolved with the PSF.

4.3.1 Ring Test

The concept of the ring test was firstly proposed by Nakajima and Bernstein [64],
and was used in the Shear TEsting Programme 2 (STEP2) that is a collaborative
project to improve the accuracy and reliability of weak lensing measurement[55].
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The ring test dramatically improves the efficiency of accuracy test of weak lensing
measurement.

The main source of statistical error in “real” weak lensing measurements is the
intrinsic ellipticity called “shape noise”. Assuming the orientation of galaxies are
random and we have a finite number, N , of galaxies, the shape noise is naively2

represented as

σ =

√

〈e2int〉
N

, (4.40)

where eint is the intrinsic ellipticity of a galaxy. Given that the typical value of eint
is 0.3, ∼ 107 galaxies are needed for the accuracy test to reach up to 10−4 level in
ellipcitiy, which corresponds to testing 1% accuracy in typical cosmological weak
lensing signals (10−2 level in ellipticity).

The ring test reduces the number of the galaxy by preparing two images of
each galaxy whose ellipticity is eint ⊕ γ and −eint ⊕ γ, where γ is weak lensing
signal. When a shear estimate for two galaxies are averaged, the intrinsic ellipticity
is cancelled out3, and thus statistical error only comes from measurement error that
is propagated from photon noise of each pixel. For instance, when measurement
error of a galaxy is 0.05, only ∼ 105 galaxies are required to sufficiently reduce the
statistical error to 10−4 level in ellipticity.

4.3.2 Image Simulation

Simulation of PSF Image

We employ the following two PSF models.

• Gaussian profile

• double Gaussian profile

The PSF of most ground-based telescopes is dominated by atmospheric turbu-
lence, which can be described well by Kolmogorov statistics[29]. The Kolmogorov
PSF has a wing outside of PSF due to the atmospheric dispersion. A simple and
commonly used approximation for PSF is a Gaussian

G(r;α) = exp(−r2/2α2), (4.41)

2In real measurement, we often use weight function when summing up galaxy shapes. Thus
the shape noise is no longer as simple as Eq.(4.40). However, this simplified equation will help to
understand a benefit of ring test.

3More precisely, we need four galaxies whose intrinsic ellipticity is rotated by 45 degrees, which
can be proven by using Eq. (4.7) and (4.8). However, this is needed only when one wants to
investigate 10−5 level in ellipticity.
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which is not adequate to obtain an accurate modelling of a real PSF, since a single
Gaussian is not able to model both the core and the wing of the PSF. However,
we use a Gaussian profile for PSF modelling as the simplest case, which has the
desirable property of being perfectly represented by the GL basis functions.

The more realistic and commonly-used PSF model is Moffat function[61]

M(r;α, β) =

[

1 +
( r

α

)2
]−β

, (4.42)

where α represents the size of the PSF, and β denotes atmospheric dispersion. Note
that in the limit of β → ∞, a Moffat profile becomes a Gaussian4. A Moffat profile
with β = 4 can describe the Kolmogorov PSF better than a Gaussian. The sum of
two Moffat functions, one with β = 7 and the other with β = 2, can describe the
wing of the PSF much better[81]. However, a single Moffat profile is most commonly
used. Instead of a Moffat profile, we use the PSF model consisting of two Gaussians
for the realistic PSF model;

I(r;α) = G(r;α) + fIG(r; fαα), (4.43)

with values of fI = 0.1 and fα = 25. Hereafter we often define the size of the
double Gaussian by FWHM of the first component, FWHM1. In this case the flux
of the 2nd component, which describes a PSF wing, amounts to 40% of that of 1st
component. The double Gaussian with these parameters has been used as one of the
PSF models in the pipeline of the SDSS. The three profiles are shown in Fig. 4.4.
One can see a Gaussain profile does not have a wing, and a Moffat profile and a
double Gaussian is close.

We simulate an image of the PSF as follows. We use the analytical PSF model
above, and include ellipticity via the elliptical coordinate transformations:

x′i = [E−1(e)]ijxj, (4.44)

where x′ ≡ (x′, y′), x ≡ (x, y) and

E−1(e) ≡ 1√
1− e2

(

1− e1 −e2
−e2 1 + e1

)

. (4.45)

Here (e1, e2) is the assumed ellipticity, (x, y) are the pixel coordinates and (x′, y′) are
the coordinates in the sheared coordinate system in which the PSF looks circularly
symmetric. That is, the circular isophote in the coordinates (x′, y′) is mapped to
the elliptical isophote in the coordinates (x, y), where the PSF value in each pixel is
obtained by substituting the radius (r′ =

√

x′2 + y′2) into the analytical PSF model.

4If α is fixed to
√
2βσ and then the limit of β → ∞ is taken, Eq. (4.42) becomes exp(−r2/2σ2).

5Representative values suggested by R. Lupton, priv. comm.
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Figure 4.4: PSF profiles. FWHM is fixed to 3.5 pixels over all profiles. For a Moffat
profile, α is calculated from the FWHM and β = 4.0. For a double Gaussian,
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Simulation of Galaxy Image

For galaxy model, we employ exponential profile. We employ the following formal-
ism;

I(r; re) = exp

(

−1.6721

(

r

re

))

. (4.46)

Here re is the half light radius which is defined as distance from center satisfying
∫ re
0

2πrdrI(r)
∫∞
0

2πrdrI(r)
=

1

2
. (4.47)

Note that in Gaussian case, re is equal to a half of the FWHM.
We account for the intrinsic ellipticity and weak lensing shear as follows. In the

weak lensing lensing limit, the shearing effect on a galaxy image is equivalent to an
elliptical coordinate transformation. Therefore we can simulate a galaxy image in-
cluding these two effects by mapping the analytic model via the elliptical coordinate
transformation;

x′i = [E−1(e)]ij[E
−1(γ)]jkxk, (4.48)
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in a similar manner as in Eq. (4.44), where γ is the ellipticity vector corresponding
weak lensing shear.

Next, we include the PSF convolution by numerically convolving the galaxy
image with the PSF in Fourier space. In this step, it is necessary to divide a pixel
into finer pixels to carry out precise convolution. We generate a galaxy image and
PSF image in the 25 times finer pixels than the target CCD pixel scale, and then
convolve the galaxy image with the PSF image. The values at each CCD pixel
center from the convolved galaxy image in the finer pixel coordinate are regarded
as the hypothetically observed galaxy image. Here we assume that the PSF models
already have pixelization, so that further calculation in finer pixel coordinates is not
needed.

Adding Noise

When including the pixel noise, we add random (uncorrelated) noise to each pixel
assuming a Gaussian distribution in the sky noise limit. We also include the noise
contribution from the object flux, i.e, the object plus sky photon counts, through
the noise due to the object flux is only important for the high S/N objects. We will
quantify the performance of our shape measurement method as a function of the
S/N of a given PSF or galaxy image. We employ the total S/N for a given object
defined in the same manner as in GREAT08[16]:

S/N =
F

σF
=

[

∑pixels
i I(xi)

2
]1/2

σsky
, (4.49)

where I(xi) is the object at the i-th pixel, and σsky is the rms of Gaussian sky noise
assumed to be constant over all pixels representing a single star or galaxy. Once the
S/N and sky noise level is specified for a given image, the normalization of the image
flux can then be determined from Eq. (4.49). Examples of the generated image is
shown in Fig. 4.5.

4.3.3 Results

Dependence on Ngal

Test 1: Gaussian PSF We begin with the simplest case, i.e., Gaussian PSF
which is the lower order of the GL functions. We set the PSF FWHM to 3.5 pixel
which corresponds to 0.7′′ for the Suprime-Cam, the typical size of PSF. For galaxy
profile, we use exponential profile with three cases of different size; the half light
radius is half, equal, and one and half of that of PSF (0.875 pixel, 1.75 pixel, and
2.625 pixel, respectively). Also we prepared three cases of ellipticities, i.e., 0, 0.2,
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Figure 4.5: Exmaples of generated images for ring test. Exponential galaxies whose
re = 0.875 pixel and e = 0.1 convolved with circular double Gaussian PSF whose
FHWM1=3.5 pixel are shown. Left panel is images without noise, while right panel
is images with noise (S/N = 20). For each panel, a galaxy whose position angle is
0 deg, 45 deg, 90 deg, and 135 deg is shown in lower left, lower right, upper left,
and upper right, respectively.
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and 0.4. For each type of galaxies, we prepared four images whose position angle is
0 degrees, 45 degrees, 90 degrees, and 135 degrees to carry out the ring test. For all
the rotated galaxies, we applied constant shear g = (0.02, 0). We did not add any
noise on the images.

We applied the EGL method with NPSF = 12, Nin = 20, and fp = 1.2, varying
Ngal. Shear is estimated by using responsivity shown in Eq. (4.12). The result is
shown in Fig. 4.6. The estimated first component of the shear whose input value is
0.02 is plotted as a function of Ngal. In general, as Ngal becomes higher, the shear
estimate comes close to the right answer. This is because galaxy profile is more
completely represented by the GL functions. It is difficult to obtain right answer
when galaxies are small, especially when the galaxy size is smaller than that of PSF.
This implies galaxy shape information is destructed by PSF. We can expect ∼ 1%
shear recovery accuracy with Ngal = 8 except for the larger ellipticity case (e=0.4).
With Ngal = 2, ∼ 8% accuracy is expected.

Test 2: Double Gaussian PSF and Effect of fp As a realistic PSF case, we
test the EGL method with a double Gaussian profile whose FWHM1 = 3.5 pixel.
Other setups are same as test 1. The results are shown in Fig. 4.7. For larger
galaxies and smaller ellipticities, the EGL method still works well; it yields a few
percent bias when Ngal = 8. However, for galaxies having smaller size and larger
ellipticity, it is difficult to obtain the right answer with Ngal = 8. So we increased
fp to 3.0, whose result is shown in Fig. 4.8. For Ngal = 8, the EGL fit achieved a
few percent accuracy. This is probably because we forced the model to fit the outer
part of the galaxy that has rich information about the galaxy shape.

Test 3: PSF Anisotropy In reality, the PSF has anisotropy due to optical
aberration. To test this, we added ellipticity (0.01, 0) to double Gaussian profile,
which is half of the input shear. We tried fp = 1.2 and fp = 3.0. Other settings for
the EGL method are same as test 1. Figure 4.9 and Fig. 4.10 show the results for
fp = 1.2 and fp = 3.0, respectively. The difference from circular double Gaussian
case is within a few percent.
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Figure 4.6: Shear recovery accuracy when PSF is Gaussian with FWHM=3.5 pixel as
a function of Ngal, the order of GL function used for galaxy fitting. Other parameters
of the EGL fit are fixed to NPSF = 12, Nin = 20, and fp = 1.2. For galaxy model,
exponential profile having various ellipticity and size is used. The half light radius of
galaxy is set to half, equal, and one and half of that of PSF (0.875 pixel, 1.750 pixel,
and 2.625 pixel, respectively). Input shear to the simulation image is (0.02, 0) as
shown in dotted line.
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Figure 4.7: Same plot as Fig. 4.6, but PSF is double Gaussian profile whose FWHM
of the first component is 3.5 pixel.
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Figure 4.8: Same plot as Fig. 4.7, but fp is increased to 3.0.
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Figure 4.9: Same plot as Fig. 4.7, but PSF has anisotropy, e∗ = (0.01, 0). Note that
the anisotropy is half of the input shear.
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Figure 4.10: Same plot as Fig. 4.9, but fp is increased to 3.0.
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How Well the GLs Can Describe PSF?

In this section we present how well the linear combination of the GLs can describe
a realistic PSF, namely, a double Gaussian PSF with typical parameters (fI , fσ) =
(0.1, 2) and FWHM1 = 3.5 pixels. The black-bold line in the upper panel of Fig. 4.11
is the double Gaussian used for our simulation, which is normalized by the peak of
the profile. Although we used 2 dimensional profile for this study, of course, this
figure shows a slice on y = 0 plane for the illustrative purpose. The intensity falls
down to 10−3 times of the peak around 9 pixels from the center so that effect to the
shear should become less outside of this region.

We then carried out fitting to the double Gaussian profile, using GLs in the
same manner as described in Section 4.2.2. Note that this double Gaussian profile
does not have noise for simplicity. Calculating linear combinations of the GL basis
functions using the GL coefficients obtained by the fitting allows for reconstruct-
ing the modeled PSF profile. The residuals, the modeled PSF minus the double
Gaussian PSF, are shown in upper panel of Fig. 4.11. We plot the several cases
of NPSF = 2, 4, 6, 8. We show even number of orders since radial basis functions,
which will be used for representing the wing, are included only in them. There are
“flips” when NPSF is incremented, with getting close to the double Gaussian profile.
This means the PSF model is gradually tuned to the real PSF. In addition, NPSF

goes higher the number of zero crossing points increases, since the number of zero
crossing nodes of the radial basis functions also increases.

The lower panel of Fig. 4.11 shows the integrated value of the double Gaussian
and each model as a function of radius from center.

F (r) =

∫ r

0

I(r′)2πr′dr′/F (r → ∞), (4.50)

where F (r → ∞) is an integral of the double Gaussian / GL model itself over
real space. From this figure, the GL model truncated at lower NPSF estimates
PSF smaller as shown in the region around r = 3 ∼ 5 pixels, which may cause
underestimation of shear. From this figure, we decided the reliable NPSF is 8 for
double Gaussian PSF.

With Noise

We tested the accuracy of the EGL method in presence of pixel noise. First we
generated galaxy images in the same manner as the test 2 when we investigated
dependence on Ngal, and added photon noise to each pixel of an image following
Section 4.3.2. We tested three cases of S/N : 100, 50, 20, each of which has 80000
galaxies to reduce statistical error due to the pixel noise. For the parameters of the
EGL method, we tried two extreme cases: (Ngal, NPSF, Nin, fp) = (2, 8, 12, 1.2), (8,
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Figure 4.11: upper panel:A double Gaussian PSF profile (black-bold line) and the
residual between PSF modeled by the GLs and the double Gaussain (other thin
lines). The former is plotted in log scale as shown in the right vertical axis, while
the latter is in linear scale. The double Gaussian profile is normalized by the peak
of the profile, and configured with rI = 0.1, rσ=2, and FWHM1 = 3.5 pixels. Blue-
solid, green-dashed, red-dashed-dotted, cyan-dotted lines show the case of NPSF is
2,4,6,8, respectively. lower panel: A double Gaussian profile and GL PSF model
integrated from the center to radius r. Notations for lines are same as the upper
panel.

71



12, 20, 3.0). Results for each case are shown in Fig. 4.12 and 4.13 as a function of
S/N . Error bars come from photon noise. Together with the three S/N cases, the
results when S/N of a galaxy image is infinity (or non-noise) are shown at S/N=150,
which is same as the results shown in test 2 when we investigated dependence on
Ngal.

When Ngal = 2, the bias on shear estimate is within ∼10% except for (re, S/N) =
(0.875, 20). They indeed fluctuate, but there are no drastic differences from galaxies
without noise. The EGL method with Ngal = 8 is extremely biased when S/N is
small. For example, shear measurement on galaxies whose size is 0.875 pixel yields
more than 10% bias except for a galaxy with (e, S/N) = (0, 100). However, When
galaxies have large size and small ellipticity, the results are less biased. For example
when re = 0.265 and S/N ≥ 50, shear measurement on galaxies whose ellipticity is
0 or 0.2 still yield only a few % bias.

We guess the reason of the large bias in the case of Ngal = 8 as follows. Higher
order of the GLs extends towards outskirts than lower order, so they need shape
information at outer radii of the galaxy. The fit with Ngal = 8 works well when there
is no noise, since the outer radii of a galaxy have shape information, although the
amplitude is very small. However, when a galaxy image is noisy, the information
at outer radii is hidden by the pixel noise, and makes it difficult for the fitter to
converge correctly.

Another possible reason is so-called “noise rectification bias”, which is described
by Hirata et al. [32]. The probability distribution function of the pixel noise is sym-
metric around zero, since this is Poisson noise of photons. However, the process to
translate the pixel value into ellipticity is non-linear. Thus the probability distribu-
tion function of the ellipticity is no longer symmetric, and regarding the mean value
as the representative value of the estimated ellipticity will cause bias.

Practically, for large and high signal-to-noise ratio galaxies, we are able to use the
EGL method with Ngal = 8. However, the dominant source of shape measurement
is statistical error due to shape noise as described in Section 4.1.2, which scales
with 1/

√
N , where N is the number of galaxies. In many cases we may want to

use more galaxies to suppress the shape noise. Thus rather than using only large
and high signal-to-noise ratio galaxies, we might want to use smaller and low signal-
to-noise ratio galaxies. For these galaxies, we should use the EGL method with
Ngal = 2. Although there is ∼10% bias, it can suffice when shape noise is still large
like cluster-galaxy lensing analysis.
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Figure 4.12: Configuration of the galaxy image is same as Fig. 4.7 except that noise
is added as described in Section 4.3.2. Parameters of the EGL method are (Ngal,
NPSF, Nin, fp) = (2, 8, 12, 1.2). The dots at S/N = 150 is not the value obtained
by fitting a image with S/N = 150, but that without noise.
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Figure 4.13: Same plot as Fig. 4.12, but parameters of the EGL method is (Ngal,
NPSF, Nin, fp) = (8, 12, 20, 3.0).
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Chapter 5

Mass measurement of the
High-redshift Massive Galaxy
Cluster ACT-CL J0022-0036

5.1 Data

Our observations of ACTJ0022 were carried out at the Suprime-Cam[60] of the
Subaru Telescope[35], which is a wide-field camera whose field of view is 34′ × 27′.
Images were taken on December 4, 2010. We took Br′i′z′Y -band, and i′-band is
used for WL analysis, and all the band are used for photometric redshift (photo-
z). The bands for photo-z is determined by simulations based on Nishizawa et al.
[70]. In these simulations the mock catalog is made by imposing the conditions that
the catalog satisfy the redshift-magnitude relation in COSMOS photo-z catalog [34].
Note that the COSMOS photo-z catalog provides reliable redshift estimates since 30
bands data and spectroscopic subsample were used. The exposure time and number
of exposures of each band is summarized in Table 5.1. We chose the number of
exposures in order to to minimize the number of saturated stars. The nighttime
condition was clear enough for WL measurement.

filter exposure time [s] number of exposures total exposure time [s]
B 200 3 600
r′ 200 3 600
i′ 240 10 2400
z′ 270 12 3240
Y 270 12 3240

Table 5.1: Summary of exposure time of each band.
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5.2 Analysis Overview

Figure 5.1 shows an overview of the data analysis. In this analysis, a HSC pipeline,
the software suite being developed for HSC data analysis, was used. The HSC
employs 112 science CCDs, which produces ∼10000-chip data whose size is ∼ 200GB
per a night. Thus it is difficult to check if all the chips are successfully reduced at
each stage. This pipeline attempts to reduce chips in an automated way from raw
data to catalog. In addition, to make the reduction faster, this pipeline passes the
intermediate products via memory rather than using the hard drive. The core part of
the pipeline is written in C++, which is wrapped by Python. This feature enables
developers and users to combine pipeline modules in script language. The HSC
pipeline is used for chip-based data reduction, image stacking, and PSF matching.
Our WL measurement software described in Section 4 is also integrated into the
pipeline.

The flow-chart of our analysis is as follows. First, raw data of each chip enters the
chip-based data reduction stage as shown in Fig.5.1. Instrumental signature removal
(ISR) includes overscan correction, flat fielding, sky subtraction, and so on, which
will be mentioned later. Then PSF is determined by using Principal Component
Analysis (PCA) [39]. Next, the chip images are stacked to boost signal-to-noise
ratio (S/N) of each object. At this stage, mosaicing of chips is solved, and world
coordinate system (WCS) for each chip is produced. Following the WCS, chips
are stacked. Details of these two processes will be described in Section 5.3. For
obtaining good photometry, PSF is matched between different band images. Object
detection is then done on the stacked image. We use the stacked image in order
to detect fainter objects. Photometry is carried out based on the object catalog.
Details of these processes will be described in Section 5.4.1.

At this point, we are prepared to measure quantities needed for cluster mass
estimate, redshifts and shapes. Using the photometry catalog, photo-z is carried
out to obtain redshift catalog. Details of photo-z will be described in Section 5.4.2.

Shape measurement is carried out using multiple exposures rather than a stacked
image. Traditionally shape is measured using a stacked image. However, there are
some issues on the stacked image analysis.

• Stacking needs image warping. This requires pixel resampling.

• PSF of each exposure is mixed.

The first point means that original information of each pixel is destructed. At
this manipulation, pixel interpolation is carried out to resample pixel values. For
example, bilinear interpolation1 is often used, but this interpolation causes correlated
noise, which should be originally zero unless cross-talk exists. Lanczos interpolation

1Bilinear interpolation interpolates given pixel values to an arbitrary target position with weight
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might be a better solution for interpolation, which attempts not to introduce any
artificial information. This is because in Fourier space the Lanczos filter has zero
value at wavelengths shorter than twice of pixel scale2. Although it is worth testing
whether Lanczos filter provides accuracy enough for shape measurement, we do not
pursue this in this thesis. There are other reasons enough to use multiple exposures,
as described below.

The second point is that stacking process mixes PSF although it originates
from different physical situation. For instance, PSF pattern changes due to op-
tics misalignment which depends telescope elevation and other factors of telescope
mechanics, and atmospheric aberration which depends on temperature, humidity,
and wind speed/direction. By mixing these effect, PSF on stacked image becomes
complicated, and therefore it may become difficult to be modelled. Since accurate
correction of PSF is important for shape measurement, this may cause systematic
bias.

To make use of information of PSF from each chip, we adopt multiple-exposure
shape measurement. For this, we use corrected chip images and PSF information
from the chip-based data reduction stage, WCS from the image stacking stage, and
object catalog from the object detection & photometry stage. WCS is used to
transform the position of object from pixel coordinates on the stacked image to that
on each chip. Details of formulation for multiple-exposure analysis will be given in
Section 5.5.1

Another advantage of multiple-exposure shape measurement is that it is able to

based on the distance between the target position and surrounding pixels. Interpolation is first
carried out along one direction, and then that for other direction is made.

2Suppose an interpolation for discrete data is written as convolution

I(x) = (W ∗ I)(x) =
∞
∑

y=−∞

W (x− y)I(y)dy, (5.1)

where W (x) is convolution kernel, or filter. In Fourier space, the ideal interpolation is written as

W̃ (f) =

{

1 for − πfn < f < πfn
0 otherwise,

(5.2)

where fn is Nyquist frequency. This filter cuts off all signal components greater than fn, which
is beyond information provided by the discrete data, while keeping lower-frequency components
unchanged. This becomes a sinc function sin(πx)/πx in real space. However, in practice it is
extremely difficult to use sinc function since it has wide wing. Lanzcos filter add weight and
truncates the sinc function as

W (x) =

{

sinc(x)sinc(x/a) for − a < x < a
0 otherwise,

(5.3)

where a is typically set to 2 or 3. This filter still cuts off all Fourier components greater than
Nyquist frequency.
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test the quality of each exposure. This allows us to check if each exposure is adequate
for shape measurement by looking at shape-related quantity directly. Details of this
test will be described in Section 5.5.4.

Then photo-z catalog and shear catalog will be used for cluster mass estimate,
which will be described in Section 5.6, together with lensing and photo-z systematic
effects on the mass.

5.3 Data Reduction

5.3.1 Data Format of HSC Pipeline

The HSC pipeline produces three planes for a single chip. The first is an image
plane, which contains image data itself. The second is a variance plane, which
stores variance of each pixel. They are calculated from the raw image assuming
Poisson noise of photons coming into a pixel which is propagated at each stage of
the reduction. The third is a mask plane, which has the 16-bit integer on each pixel.
Different bits are used for different masks such as saturated, bad, and so on. Thus
if one encounters a pixel having nuisance masks, this pixel can be removed from the
analysis.

5.3.2 Chip-based Data Reduction

In the chip-based data reduction, instrumental signature, such as vignetting and sky
background, is removed to make an image prepared for measurements. Then the
reduction moves to calibration stage where PSF and WCS determination are carried
out. This WCS is used as an initial guess for mosaicing in image stacking. Final
stage of the reduction is photometry stage where flux and moment measurements
are performed. The measured flux is also used by image stacking to determine scale
between different chips.

Instrumental Signature Removal Stage

First, pixels having a value greater than a saturation threshold are masked as SAT.
Different saturation thresholds are set to different CCDs.

A raw chip image consists of image data regions and overscan regions. CCD has
4 outputs (or amps), each of which reads out 4177 pixels × 512 pixels. Thus raw
data has 4 stripes of image data. Between the stripes there are the overscan regions,
the part that is not exposed to light. The overscan regions record bias voltage that
is intentionally added by electronics during readout process for keeping CCD signals
inside of a dynamic range of the electronics. Using median of the overscan regions,
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the bias is subtracted. Then the overscan regions are trimmed and 4 image data
regions are assembled.

Now that we have signals only from photons, a variance plane, which was de-
scribed in Section 5.3.1, is created. Assuming Poisson statistics, the variance at
pixel (x, y) is calculated as Var(x, y) = I(x, y)/g, where I(x, y) is pixel count and g
is gain, or conversion factor, of CCD defined as how many electrons are converted
to a single count of a pixel.

Next, flat fielding is carried out, which corrects ununiformity over the field of
view. The ununiformity is caused by vignetting towards the edge of the field, un-
uniform transmittance of a filter, QE variation of pixels, and so on. By illuminating
all pixels with same brightness, we can obtain reference images called flat. In this
thesis, we use dome flat, which is created by using uniform light source inside of
the dome. The dome flat was taken on the same day as our observations. Dividing
image data by the flat, we obtain a flat-fielded image.

Interference of photons coming into CCD might cause fringe pattern, which ap-
pears especially in longer wavelength. Fringe subtraction on Y -band is carried out
by using a fringe frame, which is created from sky frames. Scaling of the fringe
frame is calculated iteratively, and then subtract the scaled fringe frame from the
chip image.

Next, known CCD defects are masked as BAD, and saturation mask (SAT) is grown
by 2 pixels to mask out pixels having photons leaking out from saturated pixels. If
there are pixels having NaN, they are masked as UNMASKEDNAN.

As a final step of ISR, sky subtraction is performed. First, the chip image
is divided into 1024 pixel × 1024 pixel patches and background in each patch is
calculated as 3-σ clipped mean. Then the background is interpolated by spline
interpolation, which is subtracted from the chip image.

Calibration Stage

First, PSF is determined. To prepare for PSF determination, defects are fixed
by interpolating pixels values surrounding the defects. The interpolated pixels are
masked as INTRP. As an initial guess for PSF, a Gaussian with FWHM=1.0 arcsec is
used. A set of pixels sharper than the PSF is regarded as a cosmic ray, and masked
as CR.

In order to find stars to be used for PSF determination, detection of bright
objects are carried out with the initial PSF. The chip image is convolved with the
PSF. Then on the convolved image, a set of connected pixels above nσ, where σ is
background noise and n is a (relative) detection threshold, are found and assembled
into a footprint. These pixels are masked as DETECTED. A single footprint is regarded
as an object. In this process the PSF plays a role of a matched filter, which is the
optimal filter for finding objects having same profile as the filter given that noise
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consists of only white noise. At this point, a lot of faint objects are included. In
order to select bright objects, footprints having a peak that is greater than nextranσ
are selected as bright objects, where nextra is called an extra threshold. Then sky
subtraction is performed again with the detected objects masked. We used finer
mesh (128 × 128) to remove small variation of sky. To mask outskirts of bright
objects, we set the detection threshold to 2. When the threshold is greater than this
value, sky is over-subtracted since the outskirts of the bright objects are regarded as
sky background. The extra threshold is set to 5. Then measurements of the bright
objects are carried out. Although various quantities based on different measurement
algorithms are measured, we explain three quantities that are related to our analysis.
The first is aperture flux, which sums up pixel value inside of 3.6′′ aperture. Second
is PSF flux which is measured by minimizing χ2 based on PSF model. This flux is
optimal in terms of signal-to-noise ratio. The last is adaptive second order moments.
Since data has noise in general, it is necessary to set weight function to calculate
second order moments:

Ixx =

∫

W (x)I(x)x2dx, (5.4)

Ixy =

∫

W (x)I(x)xydx, (5.5)

Iyy =

∫

W (x)I(x)y2dx. (5.6)

Although a Gaussian is commonly used for the weight function, adaptive moments
employ an elliptical Gaussian weight whose shape is matched to the object, which
gives more optimal estimates.

Based on these measurements, star-galaxy separation is carried out. As a first
step, objects whose PSF flux is lower than the parameter fluxLim is removed to
get rid of faint galaxies. Next, stars are selected by using the adoptive second order
moments by looking at two dimensional histogram of Ixx and Iyy. Since stars have
similar moments, objects around the peak of the histogram are likely stars. Thus
objects within 2σ from the peak are selected, and flagged as STAR3.

Finally, using these stars, PSF is determined as follows.

• Principal components, which is described below, of PSF are constructed from
star images.

3If this selection is only within 1σ, it tends to reject stars around edge of a chip whose ellipticity
is not small due to optical distortion and aberration. However, when the selection becomes more
tolerant, the possibility to pick up galaxies increases. This is because ellipticity of small galaxies
around the center of exposure may be comparable with that of stars around the edge. This
contamination might be reduced by using the second order moments measured on the coordinates
where optics distortion is corrected.
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• Interpolate the principal components to model its spatial variation.

The PSF determination in the HSC pipeline employs PCA. PCA is a mathematical
procedure which converts a set of data of possibly correlated variables into a set
of values of uncorrelated variables called principal components by using orthogonal
transformation4. The number of principal components is lees than or equal to the
number of original variables. The transformation is defined in a way that the first
order principal component has as high a variance as possible, which means that it
accounts for as much of the variability in the data as possible. Each succeeding
component has the highest variance under the condition that it is orthogonal to the
preceding components. Using linear combination of the principal components, we
can reconstruct the data.

The number of principal components, which is specified by the parameter nEigenComponents
in the HSC pipeline, is arbitrary5. If nEigenComponents is same as the number of
the original variables, the data will be fully reconstructed by the linear combi-
nation. However, it will contain a feature we do not want such as noise. Thus
nEigenComponents should not be so large, but should not be so small; this will not
capture the variations of PSF. PCA itself does not tell how many principal compo-
nents we should use, so that we have to choose nEigenComponents empirically.

The HSC pipeline constructs the principal components as two dimensional image
postage, as shown in Fig. 5.2. Next, PSF including spatial variation is modelled as

P (u, v; x, y) = K0(u, v) +
n−1
∑

i=1

aiFi(x, y)Ki(u, v), (5.7)

where (u, v) is the coordinates inside of the two dimensional image postage rep-
resenting a principal component, (x, y) is the coordinates across the chip which
corresponds to the center of PSF, Fi(x, y) is a spatial model of PSF, and Ki is
normalized principal components which are introduced to conserve the amplitude of
PSF. They are defined as

K0 ≡ k0(u, v)/
∑

u,v

k0(u, v), (5.8)

Ki ≡ ki(u, v)/
∑

u,v

ki(u, v)−K0, (5.9)

where ki is i-th the principal components. Thus sum of PSF over (u, v) is always
unity. This normalization technique comes from Alard and Lupton [5]. The HSC

4Depending on the field of application, PCA is also named the Karhunen-Loeve (KL) expansion
and principal components are named KL components.

5Although it is not common to count average of data as the number of principal components,
we include it in this thesis as 0th order component.
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Figure 5.2: Example of principal component analysis of PSF. The lower left image
is 0th order of principal components which corresponds to mean of data. The order
of principal component increases, as an image goes from the lower center to lower
right and then from the upper left to upper right.
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pipeline adopts Chebyshev polynomials defined as

T0(x) = 1, (5.10)

T1(x) = x, (5.11)

Tn+1(x) = 2xTn(x)− Tn−1(x) (5.12)

in one dimension, where x is restricted to −1 < x < 1. In fact, since the coordinates
of chip is two-dimensional,

T (2)
pq (x, y) = Tp(x)Tq(y) (5.13)

is employed, and coordinates x, y is scaled as it takes -1 and/or 1 at edges of chip.
Chebyshev polynomial is chosen to prevent polynomials from diverging around the
edge of chip; while simple polynomials diverges at the edge, Chebyshev polynomi-
als converges to -1 or 1. The coefficients in Eq. (5.7) is obtained by fitting stellar
images. The process to determine the principal components and the spatial varia-
tion is iterated for three times. At each iteration, the star candidates having larger
χ2 value are rejected. Objects used for PSF at the final iteration are flagged as
PSFSTAR. The PSF determination strongly depends on order of polynomials for spa-
tial fit, the parameter spatialOrder, as well as the number of principal components
nEigenComponents and the flux limit for bright source selection fluxLim. We will
describe how we determine the parameters in Section 5.5.2. Using the PSF, all mea-
surements such as flux and moments described above are carried out again on the
bright objects.

Next, astrometry is performed to determine the position of objects in the sky,
which will be used for the initial guess of mosaicing in the image stacking process.
First, the bright stars are matched to a reference catalog created from SDSS DR8[4],
by using astrometry.net6, the astrometry engine to create astrometric meta data
for a given image. Then based on the match list, WCS is determined in TAN-SIP
convention where the coordinate transformation from pixel coordinates to celestial
coordinates is represented by simple polynomials with order= 2.

Comparing the measured aperture flux with magnitude in the reference catalog,
magnitude zero point is determined. As a default setting, a reference catalog based
on SDSS DR8[4] is prepared. However, we have to determine magnitude zero point
of Y -band which does not exist in SDSS filter system. To solve this issue, the new
reference catalog, so-called native band catalog, is created. First, objects around
the field of ACTJ0022 were retrieved from the SDSS reference catalog. Then, using
a stellar atmosphere model provided by Castelli and Kurucz [22], the SDSS mag-
nitudes are extrapolated to Y -band as follows. Castelli and Kuruz Atlas provides
3808 stellar spectra with various parameters of metallicities, effective temperatures

6http://astrometry.net/
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and gravities. For each stellar object in the retrieved catalog, fitting to all the stel-
lar spectra is performed and the stellar model which gives the smallest χ2 value is
selected. Then convolving Y -band filter response to the spectra, Y -band magni-
tudes for each stellar objects are obtained. Note that for the filter response, mirror
reflectivity, atmospheric extinction, and camera transmittance are included. Also
magnitudes for Br′i′z′ are provided as well. We use these native band reference
magnitudes in this thesis. Since the reference construction begins from SDSS mag-
nitudes that are already calibrated to atmospheric extinction at a reference airmass
of 1.3, we do not have to correct for the airmass. On the other hand, since the
SDSS magnitudes are not corrected for Galactic extinction, we have to correct for
it, which is described in Section 5.4.1.

Figure 5.3 shows an example of output image from calibration stage. Green
bleeding masks show SAT and INTRP, blue masks show DETECTED, and magenta
masks show CR. Yellow circles with yellow texts show stars that are used for PSF
determination, and yellow circles with red texts show an object which is selected as
star candidate by star/galaxy separation but later rejected in the process of PSF
determination due to large χ2 value. Texts under the circles show object ID and the
χ2 value.

Photometry Stage

Finally, the pipeline measures various quantities of faint objects, which is called
photometry stage. First, faint object detection is performed with the extra threshold
used in the bright object detection turned off. For the detected faint objects, same
measurements described in the previous section, such as fluxes and moments, are
carried out. The results of this measurements are used in the next image stacking.

5.3.3 Image Stacking

Image stacking is carried out as follows. First, it collects the reduced chip images,
catalogs, and match list of objects on our images and reference catalog. To make
mosaic, the image stacking algorithm uses not only position of stars in the reference
catalog, but also that of slightly fainter objects lying on different exposures. Using
the latter information, precision of the mosaic is improved by a factor of 2. This
mosaicing is recorded as TAN-SIP WCS whose order = 10, which will be used by
multiple-exposure shape measurement. In addition, using photometry catalog of
each chip, scaling between different chips are determined. Typically the scaling is
within ±2%. After the mosaicing and scaling are determined, each chip image is
warped and rescaled. Warping requires resampling of pixels values. Among several
resampling algorithm available in the pipeline, we chose Lanczos3 algorithm, the
Lanczos filter truncated at a = 3 in Eq. (5.3). Thanks to the high precision mo-
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Figure 5.3: One example of reduced image. This image is ∼ 700 pixel × ∼ 450 pixel
of the center part of chip ID = 126932. For details about colors and numbers, see
text.
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saicing, astrometry accuracy of stacked image achieved ∼ 0.03′′. The RGB images
consisting of r′i′z′ stacked images are shown in Fig. 5.4. ∼ 8× ∼ 8 arcmin2 region
around the center is trimmed.

Figure 5.4: RGB image of ACTJ0022 which consists of r′i′z′ stacked images pro-
cessed by the HSC pipeline. ∼ 8× ∼ 8arcmin2 region around the center is trimmed.

5.4 Photometry and Redshift Estimation

In this section, we describe how to estimate redshift of each galaxy by using photo-z.
To obtain photo-z we need to measure colors, the difference of magnitudes between
two bands. We first explain how to measure accurate colors, and then move to
photo-z estimation.
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5.4.1 Photometry

PSF Matching

Photo-z requires good color estimates. Colors should be derived from fluxes within
identical physical aperture on an object in different bands. Since PSF changes
apparent size of objects, we should match PSF of different bands to the largest
PSF.

First, to find the largest PSF, we measured PSF of each stacked image using PSF
determination algorithm of the HSC pipeline. Then we measured size of PSF model
reconstructed at several positions of stacked images by using adaptive moments

σ = (IxxIyy − I2xy)
1/4. (5.14)

We found the size of largest PSF is ∼ 2.6 pixel, which is around the edge of r′-band
stacked image. This large PSF originates from one of the three r′ exposures.

Next, to match the PSF, we used a method developed by Alard and Lupton
[5] which is already implemented in the HSC pipeline. This method enables to
match the PSF to an arbitrary, analytical target PSF. We set the target PSF to
Gaussian with σ = 2.6 pixel. The method uses Gaussian-based orthogonal functions
to construct matching kernel. The orthogonal function is similar to GL functions
used in the EGL method; Alard and Lupton [5] adopted products of Gaussian and
polynomials for higher order. Also the kernel varies with spatial position, which
allows for a uniform target PSF across the field.

Table 5.2 shows size and ellipticity before and after PSF is matched, where the
ellipticity is calculated again by using adoptive moments of stars;

e1 =
Ixx − Iyy
Ixx + Iyy

, (5.15)

e2 =
2Ixy

Ixx + Iyy
. (5.16)

The PSF size of different bands is matched to 2.6 pixel within ∼ 1%. Similarly
ellipticity and its standard deviation is much reduced.

Object Detection and Photometry

Object detection and photometry are performed by using dual mode of SExtractor[11],
which uses a reference image for object detection and measures photometry on
another image. We carried out five measurements. For all the measurements, non-
PSF-matched i′-band image is used as a reference image to detect objects and define
which pixel belongs to an object (so-called segmentation). For photometry, we use
PSF-matched Br′i′z′Y -band images. We used MAG ISO for photometry to be used
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filter σ [pixel] e1 e2
B original 1.394 ± 0.04 0.055 ± 0.023 -0.002 ± 0.013

PSF match 2.609 ± 0.02 -0.003 ± 0.005 -0.001 ± 0.004
r′ original 2.279 ± 0.11 -0.032 ± 0.018 -0.009 ± 0.019

PSF match 2.572 ± 0.06 -0.001 ± 0.011 -0.002 ± 0.012
i′ original 1.553 ± 0.05 -0.019 ± 0.025 -0.006 ± 0.035

PSF match 2.609 ± 0.03 0.001 ± 0.008 -0.002 ± 0.012
z′ original 1.914 ± 0.06 -0.015 ± 0.020 -0.022 ± 0.026

PSF match 2.603 ± 0.04 0.001 ± 0.009 -0.003 ± 0.013
Y original 1.645 ± 0.08 0.000 ± 0.025 -0.023 ± 0.035

PSF match 2.604 ± 0.04 0.001 ± 0.008 -0.002 ± 0.012

Table 5.2: Size and ellipticity before and after PSF is matched.

for color, which measures the flux within the segmentation defined on the reference
image. Defining the segmentation on the non-PSF-matched image is the best solu-
tion, since if we define it on a PSF-matched image it will pick up pixels at outskirts
of objects and resultant photometry becomes noisy. In addition, the segmentation
defined on a PSF-matched image may pick up pixels in blended parts of neighboring
objects.

Magnitude zero point is determined by using the HSC pipeline. It measures
stellar flux in 4.8′′ aperture on the PSF-matched images. We used such a large
aperture in order to cover all the flux from stars smeared by PSF matching. Then
the flux is compared to the native catalog described in Section 5.3.2 to determine
the magnitude zero point. The errors of the zero point are B: 0.048, r′: 0.090, i′:
0.043, z′: 0.080, and Y : 0.086.

Dust Extinction

We estimated dust extinction, following the approach shown in Schlegel et al. [87].
Dust extinction affects observed magnitude of a pass band b as

mobs = mtrue +∆mb, (5.17)

where mobs is observed magnitude of an object, mtrue is true magnitude where dust
extinction is corrected, and ∆mb is dust extinction of a pass band b. ∆mb is calcu-
lated as

∆mb = −2.5 log10

(
∫

dλWb(λ)S(λ)10
−A(λ)/2.5

∫

dλWb(λ)S(λ)

)

, (5.18)

where Wb(λ) is a weight originating from telescopes and instruments at a range
of pass band b, S(λ) is the photon luminosity of the object, and A(λ) is the dust
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extinction at wavelength λ. We calculated Wb(λ) as

Wb(λ) = B(λ)R(λ)P (λ)Fb(λ)Q(λ), (5.19)

where B(λ) is the atmospheric transmittance at the summit of Mauna Kea given
by Fig. 3.6, R(λ) is the reflectivity of primary mirror of the Subaru Telescope given
by Fig. 3.2, P (λ) is the transmittance of prime focus unit of the Suprime-Cam
given by Fig. 3.9, Fb(λ) is the transmittance of a filter b given by Fig. 3.10, and
Q(λ) is the QE of the CCD given by Fig. 3.12. S(λ) is obtained by averaging the
normal elliptical galaxy spectral energy distributions (SEDs) from Kennicutt [43].
We extrapolated the averaged SED as S(λ) ∝ λ outside the range of the spectral
coverage. A(λ) are calculated from functional forms which give the ratio between
extinction at a certain wavelength λ and extinction of V -band as a function of wave
number x which corresponds to the inverse of wavelength λ, which is expressed as

A(λ)

A(V )
= a(x) +

b(x)

RV

. (5.20)

For a(x) and b(x), we employed O’Donnell [72] in the optical wavelength and Cardelli
et al. [19] in the ultraviolet and infrared wavelength. RV is defined as the V -
band extinction A(V ) and the relative extinction between B- and V - band called
reddening:

RV =
A(V )

A(V )− A(B)
≡ A(V )

E(B − V )
. (5.21)

Although the value of RV varies, the observational evidence favors RV ∼ 3.1 which
we actually used for the estimation of dust extinction. According to the dust ex-
tinction map provided by NASA/IPAC Infrared Science Archive7 which derived
reddening by using the data Schlegel et al. [87] pioneered combining the strengths of
IRAS and COBE/DIRBE, the reddening around the field of ACTJ0022 ranges from
0.0242 mag to 0.0260 mag with mean value of 0.0250 mag. Since the variation is
subtle, we adopt E(B−V ) = 0.0250 mag which yields A(V ) = 0.0074 mag with the
assumption of RV ∼ 3.1. The calculations mentioned above give the dust extinction
of each band as shown in Table 5.3.

5.4.2 Photometric Redshift

Although spectroscopy gives a good redshift estimate, it is not practically feasible
to obtain spectroscopic redshift (spec-z) of all the galaxies appear on our image. It
requires a several ten minutes for measuring spectrum of one object, and it is not
easy to perform robust spectroscopy of faint galaxies which we actually want to use
for shear estimate.

7http://irsa.ipac.caltech.edu/applications/DUST/
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filter ∆mb (mag)
B 0.098
r′ 0.066
i′ 0.050
z′ 0.036
Y 0.031

Table 5.3: Estimated dust extinction around the field of ACTJ0022-0036.

Instead, we use a technique to estimate redshifts by combining multi-passband
magnitudes of a given galaxy image, which is so-called photo-z. The photo-z has
better cost efficiency than spectroscopy since, in our case, it gives redshift estimates
of several ten thousand galaxies by using only five passband images.

In this thesis, we use the public available code, La Phare8 [8][34], which uses
template SED. The photo-z of a galaxy is estimated by minimizing χ2;

χ2(α, T, z, E) =

Nf
∑

i

[

f obs
i − αf(T, z, E)

]2

σ2
i

, (5.22)

where f obs
i is observed flux of i−th filter, f(T, z, E) is the model flux which is a

function of SED type T , redshift z, and the amount of extinction by the galaxy itself
E. The summation runs over the number of filters we use. The factor parameter α,
which is the same in all the bands, is introduced because the photo-z is estimated
only from colors.

The primary feature of galaxy spectra is 4000Å break, the strong absorption
at wavelength bluer than 4000Å in rest frame which originates from stellar spectra
having an accumulation of absorption lines of mainly ionized metals. If 4000Å break
is captured by given passbands used for photo-z, the redshift is estimated well. On
the other hand, if the spectral feature is misidentified, the redshift is drastically mis-
estimated, which is called catastrophic error. If redshifts are estimated higher than
true redshift, they may contaminate background galaxies used for shear estimate,
which will dilute shear estimate.

The template sets of SED we use are same as what is called CWW in Ilbert
et al. [33]. This is based on observed spectra by Coleman et al. [24], which is further
optimized by Ilbert et al. [33].

La Phare has a functionality to re-calibrate magnitude zero points. There exists
uncertainty on magnitude zeropoint determined by photometry. Also the template
SEDs we use do not perfectly represent spectrum of galaxies. To reduce these

8http://www.cfht.hawaii.edu/~arnouts/LEPHARE/lephare.html
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uncertainties, objects whose spec-z is already known are used, and the magnitude
zero points are shifted to minimize the difference between photo-z and spec-z. Note
that it is not calibration of photometry, but optimization for photo-z. We used SDSS
DR8[4] and BOSS[27] spectra for spec-z. The number of matched objects, including
stars and QSOs, to our catalog is 225. However, some of them saturate since our
images are deeper, so that finally we used 205 objects for the re-calibration. The
obtained shifts of magnitude zeropoints are B:0.072, r′:-0.057, i′:-0.023, z′: -0.053,
and Y :0.016.

The scatter plot between photo-z and spec-z is shown in Fig. 5.5. Blue and
green dots denote the scatter before and after magnitude zeropoint re-calibration,
respectively. The solid line denotes the case that photo-z and spec-z are perfectly
consistent, i.e., zp = zs. When photo-z is out of dashed lines, zp > 1.05zs + 0.2
or zp < 0.95zs − 0.2, we regard the estimates are outlier. Outlier fraction, mean
bias, and scatter before and after the re-calibration are summarized in Table 5.4.
The latter two quantities are calculated after the outliers are removed. Although
outlier fraction is not improved very well, meas bias and scatter become a half of the
original magnitude zero points. This implies that the re-calibration does not help
to reduce catastrophic error, but once we are able to find a proper SED, it yields
better photo-z estimate. The outlier fraction is large, but this is probably due to
lack of bluer bands. Actually, our bluest band, B, overlaps 4000Å break if a galaxy
is at redshift of z ∼ 0, which does not give enough information to estimate photo-z.
If calibration samples with higher zs were available, the outlier fraction would be
smaller and give more robust re-calibration.

original calibrated
outlier fraction 0.722 0.654
mean bias∗ -0.066 -0.032
scatter∗ 0.740 0.366

∗ These quantities calculated after outliers are rejected.

Table 5.4: Photo-z statistics before and after re-calibration of magnitude zeropoint.

Figure 5.6 shows the result of photo-z estimated for ojbects whose flux in 3′′

aperture is 5 times larger than its error are selected. A peak at zp = 1.65 is sup-
pressed when we apply a selection for shape measurements which is mentioned in
Section 5.6.2. Since we can use galaxies with higher signal-to-noise ratio for shape
measrements, the peak is due to galaxies with lower signal-to-noise ratio. To check
the result of photo-z, we look at zp of the cluster. First, we select galaxies around
2000 pixel × 2000 pixel at the center of image, since typical cluster size, ∼ 2 Mpc,
at z ∼ 0.8 corresponds to ∼ 1300 pixel of our image. Then we make color-magnitude
diagram, using r′ − z′ and z′, to select the cluster from a sequence member galaxies
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Figure 5.5: The scatter plot between photometric and true redshift. Blue and green
dots denote the scatter before and after magnitude zeropoint calibration, respec-
tively.

of a cluster makes, so-called red sequence. This sequence is caused by the fact that
member galaxies of a cluster were born in same era, so that a cluster mostly consists
of early-type galaxies (elliptical and S0 galaxies) whose color is red. The member
galaxies of a cluster at resdhift of z ∼ 0.8 are expected to have a sequence around
r′ − z′ ∼ 2. We regarded the region enclosed in red lines in Fig. 5.7, 19 < z′ < 23,
r′ − z′ > −0.12z′ + 4.25, and r′ − z′ < −0.12z′ + 4.75, as the red sequence of
ACTJ0022, and selected the sample as a part of the cluster. Figure 5.8 shows the
histogram of zp of the sample. The peak is at a bin of zp = 0.775 ± 0.025, which
is shifted to lower redshift by zp ∼ 0.03 compared to known redshift of the BCG
of ACTJ0022. There are some drastical misestimations above zp

>∼ 2, which will
contaminate background galaxies as described before. Thus they should be removed
when we estimate shear signals. The outlier fraction is reduced to 0.256, which im-
plies that photo-z is determined better than lower redshift because we have enough
bandpasses covering range of SED to tell 4000Å break in this redshift range. From
this histrgam, we decided background galaxy selection as 0.95 < zp < 2.0. Note that
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Figure 5.6: Redshift distribution of our field after objects whose flux in 3′′ aperture
is 5 times larger than its error are selected.

outlier fruction is also small in Fig. 5.5 at this redshift range. Further discussions
on systematic uncertainties will be made in Section 5.6.4.

5.5 Weak Lensing Analysis

5.5.1 Simultaneous Multiple-exposure Analysis

In our multiple-exposure shape measurement scheme, χ2 in the case of single expo-
sure analysis written as Eq. (4.31) is expanded as

χ2 =

Nexp
∑

η=1

N
(η)
pix

∑

α=1

[

f
(η)
s Iobs(η)

(

x
(η)
α

)

−∑

i biΦ
σoE
i

(

b∗(η);W (η)
(

x
(η)
α

))]2

(

f
(η)
s σ

(η)
α

)2 . (5.23)

Here b∗(η) is Gauss-Laguerre coefficients of PSF of exposure η. This quantity is
determined based on PSF of each chip provided by the chip-based data reduction
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Figure 5.7: Color-magnitude diagram of the center part of our image. The region
enclosed by red lines denote bright end of red sequence of ACTJ0022.
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Figure 5.8: Redshift distribution of the red sequence selected in Fig. 5.7.

95



process, whose details are described later. Picking up pixel values belonging to
an objects from each exposure is a little bit tricky. A set of pixels attributed to
an object, segmentation, on the stacked image is provided by object detection of
SExtractor, as described in Section 5.4.1. The segmentation on the stacked image
is first transformed to the celestial coordinates and then transformed to the pixel
coordinates of each exposure η, both of which are done by using WCS provided by
the stacking process. The transformed segmentation provides a set of pixel indexes
on an exposure, x

(η)
α . Then we pick up pixel values in each exposure, which is repre-

sented as Iobs(η)(x
(η)
α ) in Eq. (5.23). W (η) is WCS for the transformation from pixel

coordinates on exposure η to celestial coordinates, which is inverse of the one used
for transforming the segmentation from celestial coordinates to pixel coordinates of
exposure η. Therefore the fitting function ΦσoEis generated on celestial coordinates.
Since there is no preference on pixel coordinates of each exposure, it is reasonable
to use the celestial coordinates. In addition, in the celestial coordinates, optical
distortion, or more precisely coordinate transformation due to optics, is already
solved. The optical distortion is not a convolution effect in objects and should not
be treated as a part of PSF. Thus fitting an object by the model generated on the
celestial coordinates is proper treatment of PSF. f

(η)
s is a scale parameter of a chip

in exposure η, which is determined by comparing photometry between chips. This
quantity is also provided by the image stacking process.

To determine b∗(η), we first reconstruct a PSF image at the position of galaxy,
using principle components of PSF provided by the HSC pipeline. Then the PSF
image is fitted by the GLs in the same manner as Section 4.2.2. However, instead
of Eq. (4.24) we use

I∗(η)(θ) =
∑

i

b
∗(η)
i ψσ∗

i (W (η)(x(η) − x
(η)
0 )), (5.24)

This model function is again generated on celestial coordinates to keep consistency
with the galaxy fitting in Eq. (5.23) and obtain purely convolution effect of PSF.
Note that the PSF image is normalized to keep the amplitude of the PSF-convolved
galaxy fitting models between different exposures unchanged.

Based on the test with simulations in Section 4.3.3, we choose (Ngal, NPSF, N, fp) =
(2, 8, 12, 1.2). Since we want to use galaxies as many as possible to reduce shape
noise, we decided to use this configuration even though there will be systematic
errors of 5-10%, which will be evaluated later.

5.5.2 PSF Determination

To evaluate PSF determination by the HSC pipeline, we checked if PSF size and
ellipticity can recover original stellar size and ellipticity. First, to measure these
stellar properties, we modelled stellar images, which is flagged as PSFSTAR by the
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HSC pipeline, by GLs as described in Section 5.5.1. Using b and σ of the GL model,
the stellar size and ellipticity are estimated as

s = σ exp

(

b11
b00 − b22

)

, (5.25)

η =
2
√
2b02

b00 − b22
, (5.26)

where the ellipticity is defined as η = η1 + iη2 (for details, see Bernstein and Jarvis
[10]). Note that η is not same as the definition of reduced shear. We converted η to
the quantity equivalent to reduced shear as

|e| = tanh

( |η|
2

)

. (5.27)

Similarly, PSF size and ellipticity are obtained by fitting PSF image reconstructed
at the position of the star.

Looking at the residual of ellipticity and size between stars and PSF, we de-
termined PSF determination parameters described in Section 5.3.2. First, at the
star/galaxy separation we set fluxLim to higher value (60000) to remove small
galaxies. Since these small galaxies have ellipticity, it will contaminate PSF de-
termination. Second, we set nEigenComponents and spatialOrder to 6 and 4,
respectively. If the number of eigen components is small, we do not have eigen
images enough to represent variations of PSF. Higher spatial order is needed to rep-
resent PSF pattern across the field well. Since typical number of stars used for PSF
determination is ∼ 40, a very high spatial order will cause overfitting.

For illustrative purposes, the measured stellar ellipticity and PSF ellipticity on
chips of exposure ID=126932 is shown in Fig.5.9 and 5.10, respectively. Also their
size is shown as color gradation in these figures. Each panel is tiled in the same
alignment as CCD chips on the focal plane. Note that these quantities are measured
in celestial coordinates, which means we see pure effect from optics aberration. Even
after optical distortion is removed, large ellipticity e ∼ 0.05 remains at the edge of
field of view.

The residual ellipticity and size of the exposure is shown in Fig. 5.11. Here we
define the residual as the quantities of PSF subtracted from that of a star. The
residual ellipticity is much smaller than original stellar ellipticity, and the pattern
looks random. Also the residual size distributes around ∼0. Scatter plot of the
stellar ellipticity and residual ellipticity of the exposure is shown in Fig. 5.12. Error
bars in this figure is calculated by propagating covariance of b shown in Eq. (4.35)
to Eq. (5.26) and Eq. (5.27). Note that the error of only stellar ellipticity is used
for residual ellipticity. We ignored the error of PSF ellipticity, since the PSF image
is much less noisier than stellar image. The average of residual ellipticity and its
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error is shown at the bottom part of each panel. Note that all the average are
less than ∼ 10−4, which is much smaller than shear signal at outskirts of a cluster
(g+ ∼ 10−2).

Figure 5.13 shows the correlation between residual ellipticity and stellar elliptic-
ity. If the stellar ellipticity is fully traced by PSF model, there is no correlation.
However, there is clear correlation in center chips such as chip ID = 1260325 and
1269324, which is a source of systematic error. The residual ellipticity distributes
symmetrically around its average ∼ 10−4 with the standard deviation ∼ 10−3. So
if we have a number of stars in the area where reduced shear is estimated, the sys-
tematic error will be averaged out. We will discuss this effect on our shear estimate
in Section 5.5.2.

Finally, we show statistics of all the one hundred chips used for our WL analysis.
Each point of Figure 5.14 denotes ellipticity averaged over a single chip. Blue dots
denote averaged star ellipticity, and green dots denote averaged residual ellipticity.
Typical residual ellipticity of a single chip is eres1 = (1.4 ± 6.5) × 10−4 and eres2 =
(0.6± 6.4)× 10−4.
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Figure 5.9: Stellar ellipticity and size across chips of exposure ID = 126932.
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Figure 5.10: PSF ellipticity and size across chips of exposure ID = 126932.
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Figure 5.11: Residual ellipticity and size between stars and PSF across chips of exposure ID = 126932.
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ē1
res =−0.000401±0.000484

ē2
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ē2
res =0.000103±0.000486

1269326

star
residual

−0.04 −0.02 0.00 0.02 0.04
e1

−0.04

−0.02

0.00

0.02

0.04

e 2

ē1
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Figure 5.12: Ellipticity distribution on chips of exposure ID = 126932. Blue dots denote stellar ellipticity and green
dots denote residual ellipticity between stars and PSF.
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Figure 5.13: Correlation between residual ellipticity and stellar ellipticity on chips of exposure ID = 126932.
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5.5.3 Star/galaxy Separation

Figure 5.15 shows object size versus magnitude of the i′-band stacked image, which
is taken from FWHM IMAGE and MAG AUTO from catalog generated in Section 5.4.1 by
SExtractor, respectively. The sequence having constant FWHM is regarded as stars.
We select objects with 3.0 pixel < FWHM < 4.0 pixel and 19.5 < i′ < 21.5 as the
stars. The FWHM of the selected samples is 3.45 ± 0.17 pixel. We select objects
above 2-σ as galaxies, i.e., FWHM > 3.8 pixel. FWHM goes up at the bright end,
which means stars are saturated and saturation bleeds enlarge the apparent size. To
avoid this contamination, objects with i′ > 19 are selected as galaxies.

5.5.4 Residual Correlation

In this section, we demonstrate an advantage of the multiple-exposure shape mea-
surement. It is able to test which exposure does not have enough quality in terms
of shape measurement. Here we consider the following quantity;

R
(η)
ij (∆θ) ≡

〈

e
star,(η)
i (θ)

(

e
gal,(all)
j (θ +∆θ)− e

gal,(all−η)
j (θ +∆θ)

)〉

, (5.28)

which is hereafter called residual correlation. This quantity is correlation between
stellar ellipticity at the position θ of an exposure η and galaxy residual ellipticity at
the position θ+∆θ, the difference between galaxy ellipticity determined by multiple-
exposure shape measurement using all exposures and galaxy ellipticity determined
by the shape measurement using all exposures but the exposure η. If PSF of a
particular exposure η is not fully corrected, this effect affects the former galaxy
ellipticity, and does not the latter galaxy ellipticity. If the correlation is significantly
inconsistent with zero, the exposure η does something bad on the shear estimate,
which indicates that the exposure should be removed from the multiple-exposure
shape measurement.

We considered ellipticity component e+ and e×, which means the component
along or perpendicular to θ and the component at 45 degrees. Figure 5.16 shows
four combinations of residual correlation as a function of separation |∆θ|. Each
panel has all ten cases of removed exposure. ID of the exposure removed from
multiple-exposure shape measurement is shown in upper right of correlation. Clearly
exposure ID = 126934 has significant correlation. PSF of the exposure has coherent
large ellipticity (∼ 0.04) which might make precise shape measurement difficult. We
hereafter remove this exposure from our analysis.
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Figure 5.14: Mean ellipticity distribution of all chips used for WL analysis.
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Figure 5.15: Size-magnitude diagram for star/galaxy separation.
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Figure 5.16: Residual correlation to test quality of exposure. Since we use ten
exposures in total, there are ten cases of residual correlation. Black horizontal line
of each correlation shows zero correlation. ID of the removed exposure is shown at
the upper right of each correlation.
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5.6 Mass Reconstruction

5.6.1 Model-dependent Estimate of Cluster Mass

Cluster mass can be defined as follows. First, we find a radius r∆ such that the
mean mass density enclosed in sphere whose radius is r∆ is ∆ times the mean mass
density at redshift z, ρm(z) = ρm(1 + z)3. Then the cluster mass M∆ is defined as

M∆ =
4π

3
r3∆ρm(z)∆. (5.29)

Alternatively, cluster mass can be defined by using critical mass density ρc(z) instead
of mean density. We denote the mass defined in this manner asM∆ρc . As Mortonson
et al. [62] calculated M -z exclusion curve as described in Section 2.2 using M200,
we use this definition throughout this section. M∆ρc will be used in Chapter 6 to
compare our result with previous works.

This spherical over-density mass is quite useful from a theoretical view, since
dark matter halo mass function derived from numerical simulations is well fitted by
analytical formula like Press-Schechter formalism [80], if halo masses are defined by
applying top-hat spherical function to simulations.

In order to estimate cluster mass, we employ the dark halo profile proposed by
Navarro Frenk & White (NFW) profile [68];

ρNFW(r) =
ρs

(r/rs)(1 + r/rs)2
, (5.30)

where ρs is central density parameter and rs is the scale radius which divides the
profile into two regimes of ρ ∝ r−1 and ρ ∝ r−3. This profile fits N-body simulations
well over a wide range of halo masses.

Using the dimensionless radius, x = Dlθ/rs, the NFW profile gives the following
convergence and shear [71];

κNFW =















2rsρs
Σcr(x2−1)

[

1− 2√
1−x2arctanh

√

1−x
1+x

]

x < 1
2rsρs
3Σcr

x = 1,
2rsρs

Σcr(x2−1)

[

1− 2√
x2−1

arctan
√

x−1
1+x

]

x > 1

(5.31)

γNFW =







rsρs
Σcr

g<(x) x < 1
rsρs
Σcr

[

10
3
+ 4 ln 1

2

]

x = 1
rsρs
Σcr

g>(x) x > 1
, (5.32)
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where

g<(x) =
8arctanh

√

(1− x)/(1 + x)

x2
√
1− x2

+
4

x2
ln
x

2

− 2

x2 − 1
+

4arctanh
√

(1− x)/(1 + x)

(x2 − 1)
√
1− x2

, (5.33)

g>(x) =
8arctan

√

(x− 1)/(1 + x)

x2
√
x2 − 1

+
4

x2
ln
x

2

− 2

x2 − 1
+

4arctan
√

(x− 1)/(1 + x)

(x2 − 1)3/2
. (5.34)

The enclosed mass within a sphere of radius r∆ can be obtained by integrating the
NFW profile up to r∆

M∆,NFW =
4πρsr

3
∆

c3∆

[

ln(1 + c∆)−
c∆

1 + c∆

]

, (5.35)

where c∆ ≡ r∆/rs By equating Eq.(5.29) and (5.35), ρs and rs can be written by
M∆ and c∆. Thus the best fit M∆ and c∆ can be obtained by minimizing

χ2(M∆, c∆) =

Nbin
∑

i

[gNFW,ri − g+,data,ri ]
2

σ2
+,data,ri

, (5.36)

where i runs over the bin number up to Nbin. gNFW(ri) is obtained as follows.
Mathematically, gNFW,ri is calculated by

gNFW,ri =

∫ ri,out

ri,in

2πrdr
κNFW(r)

1− γNFW(r)

/

∫ ri,out

ri,in

2πrdr , (5.37)

where ri,in and ri,out is inner radius and outer radius of the bin, respectively. However,
we confirmed the following is a good approximation

gNFW,ri ∼ gNFW(ri) ≡
κNFW(ri)

1− γNFW(ri)
, (5.38)

where ri is area mean of bin radius:

ri =

∫ ri,out

ri,in

2πr2dr

/

∫ ri,out

ri,in

2πrdr =
2(r3i,out − r3i,in)

3(r2i,out − r2i,in)
. (5.39)

We estimate critical surface mass density Σcr in Eq. (5.31) and (5.32) as

Σcr =
c2

4πG
D−1

l

〈

Dls

Ds

〉−1

, (5.40)
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where the mean distance ratio is calculated using photo-z

R ≡
〈

Dls

Ds

〉

=

[
∫ ∞

zlens

dzp
dNsel,zp

dzp

]−1 ∫ ∞

zlens

dzp
Dls(zp)

Ds(zp)

dNsel,zp

dzp
, (5.41)

where dNsel,zp/dzp is the redshift distribution of background galaxies based on photo-
z estimate. This quantity may become source of systematic uncertainty because of
inaccuracy of photo-z, which will be discussed in Section 5.6.4.

g+,data(ri) is i-th bin of the tangential shear calculated from data. We first convert

g
(j)
1 and g

(j)
2 , where j is object ID, in our sample to E-mode and B-mode;

g
(j)
+ = −(g

(j)
1 cos 2φ(j) + g

(j)
2 sin 2φ(j)), (5.42)

g
(j)
× = g

(j)
1 sin 2φ(j) − g

(j)
2 cos 2φ(j), (5.43)

where φ(j) is the position angle between the first coordinate axis on the sky and the
vector connecting the cluster center and the galaxy position. Then the samples are
divided into bins and g+,data,ri is calculated in each bin as follows. First, the ob-

served ellipticity, g
(j)
+ and g

(j)
× which are in shear definition, is converted to distortion

definition, g
d(j)
+ and g

d(j)
× . Then, using responsivity R (Eq. (4.14)) and weighting

function w (Eq. (4.18)), shear and its error in distortion definition is calculated as

gd+,data,ri
=

∑

j wjg
d(j)
+

R∑

j wj

, (5.44)

σd
+,data,ri

=

√

∑

j w
2
jg

d(j)2
+

R∑

j wj

. (5.45)

Then they are converted to shear definition to obtain g+,data,ri and σ+,data,ri . Simi-
larly, those quantities for × component can be calculated.

5.6.2 Results

We again summarize the selections we applied.

• star/galaxy separation FWHM > 3.8 pixel, i′ > 19,

• background galaxy selection 0.95 < zp < 2.0.

After these selections, number density of galaxy in the field is 18.5 arcmin−2. We
further select objects where our shape measurement is reliable. From the test with
simulations carried out in Section 4.3.3, we applied the selection S/N > 30 and
re > 0.875 pixel, where S/N and re is the definition of signal-to-noise ratio and half
light radius of a galaxy defined in Section 4.3. From these simulations, We found
that these values correspond to those defined in Section 4.2 as
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setup M200 [×1015M⊙/h] c200 χ2/d.o.f.
case 1 c200: free 0.72+0.33

−0.27 > 9.2 0.83
case 2 c200 = 4.03 0.84+0.55

−0.44 N/A 1.12

Table 5.5: Results of NFW profile fitting.

• reliable shape measurement ν > 20 and σg > 1.2.

After applying these selections, number density of the galaxy is reduced to
3.18 arcmin−2. We divided the objects lying at 1.0′ < θ < 10.0′ into 7 bins, and
calculate E-mode and B-mode. The result is shown in Fig. 5.17. The upper panel
shows tangential shear and the lower panel shows B-mode. For making it easy to
check if the B-mode is consistent with zero, we plotted g×θ, as the error is approxi-
mately proportional to inverse of radius. The signal-to-noise ratio of the tangential
shear, which is defined as

S/N =
∑

i∈bin

[

g+,data(ri)

σ+,data(ri)

]2

. (5.46)

is 3.61.
Then we performed a fit to obtain cluster mass with ∆ = 200. We carried out

two cases.

• case 1 Fit without fixing concentration parameter c200. We set a constraint to
c200 as it should be lower than 30.

• case 2 Fit with fixing c200 = 4.03, following the prediction by Duffy et al.
[26] where they derived power law to represent concentration parameter as a
function of cluster mass and redshift by using N-body simulations.

The results of both cases are summarized in Table 5.5, and fitted profiles are
shown in Fig. 5.17. For the case 1, we could not obtain c200, and only lower limit is
constrained. Contour map of χ2 of the case 1 is shown in Fig. 5.18. This showsM200

and c200 does not degenerate. Although c200 is not determined very well, this does
not affect M200 determination so much. Case 2 yields a larger mass estimate error
than case 1, although the number of fitting parameters is smaller. This is implied
by the fact that the χ2 contour at c200 = 4.03 is broader than that at c200

>∼ 10.

5.6.3 Validity Check for Error Bars

To derive the errors of the mass and concentration parameter, we assumed χ2-
distribution of Eq. (5.36). It is essential to check whether the tangential shear

111



0.001

0.01

0.1

1.0

g
+

c200 : free

c200=4.03

1.0 10.0

θ [arcmin]

-0.2

-0.15

-0.1

-0.05

0.0

0.05

0.1

0.15

0.2

g
×
×θ

Figure 5.17: Tangential shear of ACTJ0022.
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Figure 5.18: Contour map of χ2. The contours show 68% and 95% confidence limits
(corresponding to ∆χ2 = 2.3, 6.17, respectively).

signal at each bin has a Gaussian distribution or not. In addition it is necessary to
check whether the error of the tangential shear we used for Eq. (5.36) is close to 1-σ
of the Gaussian.

In order to obtain the distribution of the tangential shear signal at a certain
bin, we need lots of realizations of measured galaxy ellipticities in the bin, since the
signal is obtained by averaging tangential components of galaxies and thus we have
only one realization from the data we have. For making realizations, we randomly
rotated the orientation of each galaxy ellipticity in the bin, i.e., randomly changing
position angle of each galaxy, following the assumption that orientation of galaxies
in the sky is random. This means that we intentionally broke the alignment of
measured ellipticities induced by cluster WL, and regarded the ellipticities of the
rotated galaxies as a realization of intrinsic galaxy ellipticity distribution in each
bin. Although the distribution is expected to be slightly wider than that of the real
intrinsic ellipticity due to the contribution from WL signals, it does not essentially
affect the width we want to look at since WL signals are typically ten times smaller
than intrinsic ellipticities of galaxies. Note that the mean of the distribution is no
longer equal to the tangential shear signal we obtained, but zero. Nevertheless,
this simulation is sufficient to look at the behavior of the error of tangential shear
signals. Using the randomly-rotated ellipticities, we calculated the tangential shear
by Eq. (5.44) for each realization. Note that in fact this is not a simple average. i.e.,
it uses responsivity and weight. For each galaxy, we used the same responsivity and
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weight as the ones before the rotation, since they are unchanged under the rotation.
Since the tangential shear signal is obtained by averaging tangential components

of each galaxy, it is expected that its distribution is close to a Gaussian due to the
central limit theorem. However, when the number of galaxies used for calculating
the average is small, the distribution is not necessarily close to a Gaussian. For
illustrative purposes, we selected a certain number of galaxies ngal from the inner
most bin of our data, rotated them randomly to make realizations, and made the
tangential shear distribution, as shown in Fig. 5.19. We calculated the tangential
shear distribution for ngal = 1, 3, 5 and 10, using 105 realizations. Note that the
weight is taken into account when making the histogram. As ngal becomes larger,
the distribution becomes close to a Gaussian. Moreover, in the case of ngal = 5 and
10, the distribution is likely a Gaussian. Since the smallest number of galaxies in the
bins used for estimating mass in Section 5.6.2 is 10, all the tangential shear signals
in these bins are expected to be close to a Gaussian.

We also investigated how these distributions are close to a Gaussian more quan-
titatively. Histograms of the tangential shear signal at each bin created by using
105 realizations are shown in Fig. 5.20. Each Gaussian is fitted by minimizing

χ2(A, a, σ) =
bins
∑

i





Ni − A exp
(

− (g+,i−a)2

2σ2

)

√
Ni





2

, (5.47)

where Ni is the number of data in i-th bin of a histogram. The reduced χ2 is close to
unity, which suggests that the distribution of the tangential shear signal is close to a
Gaussian. Table 5.6 shows several estimates of error of the tangential shear signals.
The standard deviation calculated from the tangential shear distribution shown in
Fig. 5.20 agrees well with σ of Gaussian fitted to the tangential shear distribution
shown in Fig. 5.20, which also suggests that the tangential shear distributions are
close to a Gaussian. Errors calculated from data by using Eq. (5.45) are also close
to these estimates from simulations. The difference is around 5%.

Next, we propagated the tangential shear distributions obtained from the sim-
ulations to M200 with c200 fixed to 4.03. This time we used 2 × 106 realizations
to obtain a smooth distribution. For each realization, we shifted the central value
of the tangential shear signal shown in Fig. 5.17 by a tangential shear signal ob-
tained from one realization, and find the minimum of χ2 (Eq. (5.36)) by changing
M200. M200 giving the minimum χ2 is the best fit M200 for each realization. The
obtained distribution is shown in Fig 5.21. We found 68% percentile of the distri-
bution to obtain error. Assuming the central value of mass estimate is same as that
obtained in Section 5.6.2, we obtained the mass estimate from the distribution as
M200 = 0.84+0.53

−0.39 × 1015M⊙/h. This error agrees with that obtained in Section 5.6.2
in ∼ 10% level. Thus we concluded that calculating the error of tangential shear
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Figure 5.19: Dependency of tangential shear distribution on the number of galaxies
used for calculating the tangential shear. We used 105 realizations to calculate the
distribution of each case.
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bin error from dataa hist. standard deviationb hist. σ c

1 0.073 0.0695 0.0696 ± 0.0002
2 0.045 0.0470 0.0471 ± 0.0001
3 0.051 0.0476 0.0476 ± 0.0001
4 0.031 0.02981 0.02983 ± 0.00007
5 0.019 0.01881 0.01881 ± 0.00004
6 0.013 0.01270 0.01271 ± 0.00003
7 0.0091 0.00918 0.00919 ± 0.00002

a errors calculated from data by using Eq. (5.45)
b standard deviation calculated from tangential shear distribution shown
in Fig. 5.20
c σ of Gaussian fitted to tangential shear distribution shown in Fig. 5.20

Table 5.6: Estimates of error of tangential shear signals.

signals by Eq. (5.45) and then minimizing χ2 (Eq. (5.36)) reasonably gives a good
estimate for the error of cluster mass.

5.6.4 Systematic Uncertainties

In this section we investigate systematic uncertainties on the cluster mass estimate.

Photometric Redshift

We consider two systematic effects caused by inaccuracy of estimating redshifts of
galaxies. The first is dilution effect, which is caused by the uncertainly of determin-
ing redshift of each galaxy. If the background sample we selected in Section 5.4.2
have foreground galaxies, they dilutes tangential shear signal. Using the spec-z and
photo-z, this contamination rate is calculated as

fc ≡
Nsel,zp(zs < 0.8)

Nsel,zp

, (5.48)

where Nsel,zp is the number of galaxies after a selection based on photo-z is applied.
The second is the uncertainty of the mean distance ratio in Eq. (5.41). If we

know the true redshift distribution of the objects selected by photo-z,
dNtrue

sel,zp

dzs
, the

true distance ratio is written as

Rtrue
sel,zp ≡

〈

Dls

Ds

〉true

=

[

∫ ∞

zlens

dzs
dN true

sel,zp

dzs

]−1
∫ ∞

zlens

dzs
Dls(zs)

Ds(zs)

dN true
sel,zp

dzs
. (5.49)
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Figure 5.20: Tangential shear distribution of each bin obtained from 105 realization.
Bin ID shown at upper left of each panel increases from the inner bin to outer bin
in Fig. 5.17.

117



0 1 2 3 4 5
×1015M200

0

2000

4000

6000

8000

10000

12000

14000

N
u
m
b
er

Figure 5.21: Distribution of cluster mass obtained by propagating the distribution
of tangential shear obtained by simulations.
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Note that the integral begins from zlens on zs plane, since objects actually in front
of the lens is not lensed. Comparing the mean distance ratio derived from photo-z
written in Eq. (5.41) with Rtrue

sel,zp
, we are able to estimate the systematics.

To estimate these systematic errors, we have to know both of spec-z and photo-
z. Since we have only a few spec-z for objects in our field, as used in magnitude
zero point re-calibration in Section 5.4.2, we made two other catalogs having spec-z
and photo-z for all the objects. In the process of making the catalog, we regarded
photo-z derived from COSMOS 30-band photometric catalog as spec-z, as well as
described in Section 5.1

The one is the mock simulation catalog, which is generated based on Nishizawa
et al. [70]. This catalog has the magnitude of each band obtained by convolving the
filter response to a given SED. The catalog is slightly different from the observation;
the limiting magnitude and photometric band selection are i′ = 26.2 and Bi′z′Y , and
galaxy types are randomly distributed over the redshift. The i′-band magnitude and
spec-z distribution is realistic, since they are matched to the COSMOS photometric
catalog. We run the photo-z code for this catalog to obtain photo-z.

The other is toy-spectroscopic redshift catalog (hereafter toy-specz), which is
generated based on the COSMOS 30-band photo-z catalog. We run photo-z code
to obtain photo-z using Br′i′z′ magnitudes of the COSMOS catalog. Note that we
are not able to use Y -band, since the COSMOS catalog does not have it. Since
the limiting magnitude of our sample (25.6 th) is different from that of COSMOS
(26.0 th), we have to modify redshift distribution of the COSMOS catalog to use
them in Eq. (5.49):

dN true
sel,zp

dzs

∣

∣

∣

∣

∣

ACTJ

=
dN true

sel,zp

dzs

∣

∣

∣

∣

∣

COSMOS

×
dN/dz|theory (i′ < 25.6)

dN/dz|theory (i′ < 26.0)
, (5.50)

where dN/dz|theory is obtained from fitting formula for 30-band photo-z sample
provided by Ilbert et al. [34].

Table 5.7 and 5.8 show the results. In addition to the selection we actually
made, 0.95 < zp < 2.0, the result for selection 0.95 < zp is shown in the tables.
After cutting out zp above 2.0, the contamination rates are reduced by 10% or
less. This fact means that the selection we decided in Section 5.4.2 also works for
the simulations to remove outliers. Although the contamination rates are slightly
different between the two simulations, we estimate the systematics as fc = 0.10.
The systematics are propagated to the mass estimate as follows. First, due to the
contamination, the dilution of true shear is estimated as

〈γ〉meas = (1− fc) 〈γ〉true . (5.51)

Thus we estimate the systematic uncertainty due to dilution effect to be +10% of
the tangential shear signal. Shifting the center value of tangential shear signal of
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each bin by +10% and fitting the tangential shear signals again, we found that of
mass estimate is shifted by +12%.

From Table 5.8, we adopt ±7% systematics for the measured mean distance
ratio, Rmeas. The systematic uncertainty δRmeas is propagated to the reduced shear
of NFW profile as

gNFW (ri) → gNFW (ri)

(

1 +
δRmeas

Rmeas

)

, (5.52)

which results in the shift of the center value of the cluster mass by ±8%.

setup 0.95 < zp < 2.0 0.95 < zp
mack simulation 0.10 0.25

toy-specz 0.07 0.18

Table 5.7: Contamination rates.

setup 0.95 < zp < 2.0 0.95 < zp
mack simulation 0.29(0.30) 0.26(0.38)

toy-specz 0.30(0.28) 0.27(0.31)

Table 5.8: Estimated true mean distance ratio. Values in the parenthesis are the
distance ratio calculated by using photo-z

PSF Determination

As described in Section 5.5.2, there are correlations between residual ellipticity and
stellar ellipticity. However, they symmetrically distribute around its average (∼
10−4), so that they will be reduced to ∼ 10−4 level if a lot of stars are used for
determining PSF. We calculated the tangential component of residual ellipticity to
directly investigate its effect on tangential shear. Its standard deviation all over the
exposures, σ∗

SN , is 0.0042.
We estimate this effect for each bin of tangential shear as follows. First, the

shape noise of each galaxy is naively written as

σ+ =
σSN

√

ngalA
, (5.53)

where σSN is the standard deviation of galaxy ellipticity, ngal is the number density
of galaxies, and A is an area of the bin. On the other hand, the scatter originating
from residual ellipticity can be written as

σ∗
+ =

σ∗
SN

√

n∗nexpA
, (5.54)
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where n∗ is the stellar number density and nexp is the number of exposures. Here
we assumed residual ellipticities in different exposures do not correlate with each
other. By equating Eq. (5.53) and (5.54), we obtain

σ∗
+ =

√

ngal

n∗nexp

σ∗
SN

σSN
σ+. (5.55)

We used 9 exposures for the multiple exposure fitting. From Section 5.6.2, n∗ ∼ 3.18,
and we found n∗ ∼ 0.45 arcmin−2 and σSN ∼ 0.18. Therefore σ∗

+ ∼ 0.02σ+. This
means that residual ellipticity increases the shape noise by only 7 × 10−3%. Thus
we neglect these systematics.

Shape Measurement

We carried out similar simulations of the EGL method described in Section 4.3, in
order to quantify the systematic uncertainties from shape measurement precisely.
We divided S/N -re plane, where S/N and re is signal-to-noise ratio and half light
radius of a galaxy as defined in Section 4.3.2, into meshes whose central values are
S/N = (20, 30, 40, 80, 150) and re = (0.8, 0.875, 1.0, 1.2, 1.8, 2.5, 3.3). The border of
each mesh is the middle of the centers of neighboring meshes. Figure 5.22 is the bias
map on the S/N -re plane which shows multiplicative bias in terms of b = 100(gmeas−
gtrue)/gtrue, where gmeas is measured shear and gtrue is true shear. We calculated total
bias by averaging these biases with weighting the number of galaxy in each mesh.
The value of borders are converted to the parameters of the EGL method, ν and σg,
as descrided in Section 5.6.2. Note that although in S/N < 30 there is large bias on
small galaxies, our selection is S/N > 30, as described in Section 5.6.2. The total
bias is −6% compared to true value of shear, which corresponds to the systematic
uncertainty increasing the mass estimate by +7%.

Combine Systematic Uncertainties

The systematic uncertainties with respect to the center value of mass estimate are
summarized in Table 5.9.

For fitting of case 1 in Section 5.6.2, after combining the systematic uncertainties,
mass estimate becomes

M200 = (0.72+0.33
−0.27(stat.)

+0.12
−0.06(syst.))× 1015M⊙/h. (5.56)

Therefore statistical error is dominant in the cluster mass estimate.
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Figure 5.22: Bias map of shape measurement.

source systematics [%]
dilution +12

mean distance ratio ±8
shape measurement +7

totala +16
−8

a added in quadrature

Table 5.9: Systematic bias.

122



Chapter 6

Discussion

6.1 Comparison with Previous High-redshift Clus-

ter Lensing Measurement

Although there are several precedents that carried out WL measurements of high-
redshift galaxy clusters, most of them were done by using the Hubble Space Tele-
scope (HST). Since the HST is in space, the PSF is much smaller than that of
ground-based telescopes. Shapes of distant, small galaxies can be extracted effi-
ciently once one has deep images. For example, Umetsu and Futamase [96] detected
dark matter concentrations in the field of Cl 1604+4304 (z = 0.897) through WL
measurements on images taken by the Wide-Field Planetary Camera 2 (WFPC2),
and Jee et al. [36] performed systematic studies of 22 high-redshift clusters (z >∼ 1)
taken by the Advanced Camera for Surveys (ACS) by estimating mass through weak
lensing measurements. Note that the field of view of these instruments (WFPC2:
2.5′×2.5′ and ACS: 3′×3′) is much smaller than that of the Suprime-Cam (34′×27′),
and it is difficult to observe an entire cluster by a single field of view.

As a pioneering work done by using a ground-based telescope, Luppino and
Kaiser [50] carried out WL measurements on MS 1054-03 (z = 0.83) through the
UH 2.2m telescope. They detected tangential shear signals at the 5-10% level, and
demonstrated the signals change depending on object selection by I-band magnitude
and R−I. A few other works also measured high-redshift cluster lensing and showed
tangential shear signals. For example, Clowe et al. [23] observed cluster of galaxies
whose redshift of 0.807 (CL J1122.9-1136) and 0.960 (CL J1103.7-1245), using ESO
Distant Cluster Survey (EDisCS) images taken by Focal Reducer and low dispersion
Spectrograph (FORS2) of the Very Large Telescope (VLT). The images consist of
IV B bands, and they used color cuts to select background galaxies. It seems that the
tangential shear signal of CL J1122.9-1136 is significant, while that of CL J1103.7-
1245 is not.

123



Our work is one of the few cases in which tangential shear is significantly de-
tected. The unique point of our work is that we used photometric redshift to se-
lect background galaxies. For low redshift clusters (z <∼ 0.3), when we carry out
Subaru/Surpime-Cam-like deep observations, most of observed galaxies are in the
background. Thus color cuts work efficiently and robustly (for example, see Okabe
et al. [76]). However, for our high-redshift cluster, as seen in Fig. 5.6, more than
half of the observed galaxies lie in the foreground. Thus photometric redshift gives
a more robust background galaxy selection than the color cuts.

6.2 Concentration Parameter

Our NFW fit implies a very high concentration parameter compared to the theo-
retical prediction, c200 = 4.03. The observed tangential shear signals at outer radii
become suddenly small (g+ ≪ 0.01), and the fit does not converge. c200 is bounded
to the upper limit of the fit, 30, with a lower bound is 9.2. This is partly because the
tangential shear signals are noisy. The error of the signals depends on the number
density of the background galaxy N , since the error is dominated by shape noise
which scales with N−1/2. Deeper images may help to suppress the shape noise.
However, as we will discuss in Section 6.4 it is difficult to suppress the shape noise
effectively.

Another possible reason is that we might be looking at only the outer region of
the cluster. Since r200=1.8 Mpc (3.9′), the characteristic scale of the NFW profile
is rs ∼ 0.4 Mpc which corresponds to ∼ 1′, if we assume a concentration parameter
c200 ∼ 4. As shown in Fig. 5.17, we do not use tangential shear information at radii
smaller than ∼ 1′. Thus we might only be looking at a steep part of the NFW profile
proportional to r−3. It is impossible to obtain significant tangential shear signals
at such small radii, since the number of the galaxy that can be used for deriving
the tangential shear is so small that signal-to-noise ratio in a bin is smaller than 1.
Strong lensing may help to provide information in such small radii, but we do not
find any apparent signal in our image. Observations by space telescopes such as the
HST might find strong lensing through its high resolution images.

Broadhurst et al. [17] reported high concentration, cvir ∼ 14, of A1689 (z =
0.183), compared to the expected value (cvir ∼ 4), so clusters with such high con-
centration values exist. The large concentration parameter might be due to selection
bias of the SZ effect. If the hot gas in a cluster is highly concentrated, the SZ sig-
nal becomes stronger. In order to address this issue, more systematic studies of
WL mass of SZ-selected clusters should be done. As future wide-field weak lens-
ing surveys, such as the HSC and DES, are carried out such statistics should be
available.
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6.3 Systematic Uncertainties from Physics

6.3.1 Halo Triaxiality

In Section 5.6, we constrained the cluster mass by deprojecting two-dimensional
lensing information under the assumption that mass distribution is spherically sym-
metric. However, the ΛCDM predicts that dark halos are in general triaxial, which
can be naturally expected because of the filamentary nature of structure formation
[37]. Thus the result assuming spherical symmetry can be biased.

Oguri et al. [74] estimated the halo triaxiality effect in lensing measurements.
They considered a triaxial halo with the virial mass Mvir = 1015h−1M⊙ at z =
0.3, and a three-dimensional NFW-like profile with typical triaxiality, following the
model mass profile given in Jing and Suto [37]. The three-dimensional profile is then
projected onto two-dimensional profiles. Note that the two-dimensional profiles are
different, depending on the direction of projection. They created a convergence map
for each two-dimensional profile, and saw how the estimate of the cluster mass and
concentration parameter is changed by fitting the convergence map derived from the
spherical NFW profile. They found that the convergence map projected along the
major (minor) axis yields an overestimation (underestimation) by 20-30% in both
the mass and concentration parameter.

Similarly, our mass estimation can be biased by ±20-30% due to triaxiality,
which corresponds to±50-70% (±30-50%) of the statistical error when concentration
parameter is free (fixed).

6.3.2 Off-Centering Effect

When fitting the NFW profile to the tangential shear profile, we assumed that
the BCG position (R.A.=00:22:13.01, Dec.=-00:36:33.51 (J2000) according to our
astrometry) is the center of the cluster. The cluster center, or potential minimum,
can be determined by using variety of methods such as X-ray, SZ, and satellite
velocities, which means that the BCG is not necessarily the same as the potential
minimum. If the BCG has offset from the potential minimum and the tangential
shear profile is calculated assuming the BCG is the center, the mass estimate is
reduced.

According to studies that compared the BCG position with the cluster center
defined by X-ray intensity or average satellite velocity, typical displacement is about
2-3% of the virial radius [97][46][13]. We looked at how much our mass estimate is
changed when the cluster center has such an offset. First, in order to obtain virial
radius, we re-performed NFW fitting by replacing Eq. (5.29) with

Mvir =
4π

3
r3virρc(z)∆vir, (6.1)
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where

∆vir = 18π2(1 + 0.4093w2.71572)Ωm,0(1 + z)3E(z)−2, (6.2)

w =
(Ω−1

m,0 − 1)1/3

1 + z
, (6.3)

where we use Nakamura and Suto [65], E(z) is defined in Eq. (2.18), and z is the
redshift of a cluster. Note that in the case of ACTJ0022, ∆vir ∼ 147. After the
fit, we obtain rvir = 1.7 Mpc (rvir = 1.8 Mpc) when the concentration parameter is
free (fixed). We then set offsets to (∆x,∆y) = 0.03rvir(cos θ, sin θ) from the position
of BCG, where θ is the position angle with respect to the direction of R.A. We
consider 8 offsets with θ = 0, 45, 90, 135, 180, 215, 270, 315 in degrees, and how the
mass estimate is changed. We find that systematically the mass estimate with each
offset is reduced. When the concentration parameter is free (fixed), 7 (6) out of 8
offsets yield lower mass estimates and the mass estimate averaged over 8 offset cases
is reduced by ∼ −10% (∼ −7%) compared to mass estimate when we regard the
BCG position as the center. This result implies that the BCG position is close to
the true center of the cluster.

The center of ACTJ0022 was also investigated by other works. Reese et al.
[82] carried out follow-up observations of ACTJ0022 with Sunyaev-Zel’dovich Ar-
ray (SZA)1. Their deep, targeted observations provided higher signal-to-noise ratio
SZE signals. The center of ACTJ0022 based on the SZ profile is R.A.=00:22:13.00,
Dec.=-00:36:33.35 (J2000), which is fairly consistent with the position of the BCG.
On the other hand, the ACT team reported the center of the ACTJ0022 is R.A.=00:22:13.44,
Dec.=-00:36:25.20 (J2000)2. There is a discrepancy between our BCG position and
the center of the SZ map reported by Reese et al. [82] as large as 0.45′. The positional
uncertainly of the center provided by the ACT team is ∼0.25′. This discrepancy
should be investigated in the future. If the position provided by the ACT team is
correct, ACTJ0022 is a disturbed cluster.

6.3.3 Projection Effect

The mass we estimated through WL does not consist of the mass of a cluster only.
As we observe three-dimensional mass projected onto the lens plane, large scale
structure is also included into our estimate, which contaminates the cluster mass.

We can include this effect by generalizing the χ2 used for mass estimate (Eq. (5.36))
to use a covariance consisting of the variance of lensing shear and the covariance

1http://astro.uchicago.edu/sza/
2Priv. comm. with Matthew Hilton.
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due to the large scale structure which is equivalent to cosmic shear;

χ2(M∆, c∆) =

Nbin
∑

ij

[gNFW,ri − g+,data,ri ]
[

gNFW,rj − g+,data,rj

]

Cij

, (6.4)

Cij = σ2
+,data,ri

δij + C lss
ij , (6.5)

where δij is Kronecker delta. By using Eq. (47) in Oguri and Takada [73], the
covariance due to the large scale structure is written as

C lss
ij =

∫

ldl

2π
J2(lθi)J2(lθj)C

κκ(l), (6.6)

where J2(lθi) is the Bessel function, and C
κκ(l) is the lensing shear power spectrum;

Cκκ(l) =

∫

dw

[

ρ̄m(z)

(1 + z)Σcr(z)

]2

w−2PNL
m

(

k =
l

w
; z

)

, (6.7)

where w is the comoving distance and PNL
m is the nonlinear matter spectrum. We

use the fitting formula in [89] for computing PNL
m as well as Oguri and Takada [73].

Minimizing the new χ2, we find that the projection effect changes the central
value of mass by ∼ +4%, and increases the statistical error by ∼ 3 − 4%. As the
statistical error due to shape noise is large, the influence induced by the projection
effect is relatively small.

6.4 Comparison with Observation by Sunyaev-Zel’dovich

Array

Reese et al. [82] who carried out deep observations of ACTJ0022 as described in
Section 6.3.2 gave two kinds of mass estimate. The first one was a SZ-derived
mass estimated as follows. They converted the observed SZ signals into spherically
integrated Compton-y parameter3, based on the universal pressure profile derived
from 33 local (z < 0.2) cluster X-ray observations provided by Arnaud et al. [7].
Using the virial theorem with surface pressure correction, they related the integrated
Compton-y parameter with mass (for details, see Mroczkowski [63]). They reported
MSZ

500ρc = 0.58 ± 0.04 × 1015M⊙ and spherically integrated Compton-y parameter
within r500ρc , Y500ρc = 0.80± 0.11× 10−4 Mpc24.

The other estimate was an optically informed mass based on SDSS Stripe 82
data [2]. They first computed cluster richness N200 and the number of red sequence

3For the definition of Compton-y parameter, see Appendix C.
4MSZ

500ρc

and Y500ρc
presented here are different from what one may find at arXiv as of Dec. 20,

2012. E. Reese provided us these values in private communication.
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galaxies in a cluster measured within r200, following a prescription provided by
Menanteau et al. [57]. The cluster richness was then translated into mass estimate
MN−MWL

500ρc by using a scaling relation between the cluster richness and weak lensing

mass that was provided by Rozo et al. [86]. The reported mass was MN−MWL

500ρc =
0.777± 0.112× 1015M⊙.

To compare their result, we again performed a fit on the tangential shear signals
to derive M500ρc while leaving c500ρc free. The result is M500ρc = 0.78+0.31

−0.29 × 1015M⊙.
Although our WL mass agrees with MSZ

500ρc within error bar, there is small discrep-

ancy. On the other hand, our result agrees well with MN−MWL

500ρc , which is derived
from scaling relation between cluster richness and WL mass.

The error of our mass estimate is much larger than that derived from SZ signals
and optical information presented by Reese et al. [82]. This is due to the small num-
ber density of background galaxies used for deriving the WL signals, 3.18 arcmin−2.
To reduce the error, it is necessary to increase the number density N , since the error
is dominated by shape noise which scales with N−1/2. As discussed in Section 4.3.3,
the shape measurement algorithm we used for this work, the EGL method, will bias
shear estimate for galaxies with low signal-to-noise ratio. Thus we set the strict
selection of the background galaxies, ν > 20, where ν is the signal-to-noise ratio
defined by fitting results of the EGL method (Section 5.6.2). When we set a lower
selection limit, ν > 10, the number density is increased to 4.99 arcmin−2. Thus
even if we carry out a 4 times longer observation of our data or find a better shape
measurement algorithm which can be applicable to galaxies whose ν > 10, the error
of mass estimate will be reduced by only factor of ∼ 1.3. In this sense, the WL
measurement of ACTJ0022 is statistically limited.

Systematic uncertainties from physics on the WL measurements can be estimated
quantitatively as described in Section 6.3, and is found to be below the statistical
uncertainty. On the other hand, systematic uncertainties of the SZ-derived mass
is somewhat unpredictable since the physics in a cluster is complicated, and can
be larger than statistical error. For example, at first Reese et al. [82] reported
different SZ-derived mass, MSZ

500ρc = 0.73± 0.10× 1015M⊙, using the virial theorem
without surface pressure correction. The difference of the assumption of dynamical
equilibrium can yield such a bias, which is actually larger than statistical error.
Among a series of cluster mass estimators such as SZ, X-ray, and velocity dispersion,
only WL does not rely on dynamical equilibrium, suggesting it may be safer mass
estimator.

6.5 Scaling Relation

Marrone et al. [53] reported scaling relation between WL mass and spherically-
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integrated Compton-y parameter, using observables of 18 galaxy clusters at z ∼ 0.25,
as shown in Fig. 6.1 as a cyan dashed line. Also data points used for deriving the
scaling relation are plotted as cyan dots.

Marrone et al. [53] compared their scaling relation between integrated Compton-y
parameter and WL mass with other scaling relations. They first compared the scal-
ing relation between integrated Compton-y parameter and X-ray derived mass given
by Andersson et al. [6], which is shown as a black dashed line in Fig. 6.1. Andersson
et al. [6] selected a sample consisting of 15 clusters from the SZ observation of 178-
deg2 sky surveyed by the SPT, and conducted X-ray follow-up observations using
Chandra and XMM-Newton. The sample has wide range of redshift from z ∼ 0.3
to z ∼ 1 with the mean redshift of 0.67. They estimated the spherically-integrated
Compton-y parameter using a density profile derived from their own X-ray obser-
vations and assuming universal temperature profile derived by Vikhlinin et al. [98].
Secondly, they compared the scaling relation between integrated Compton-y param-
eter and mass, both of which are derived from X-ray observables [7], as shown in
a black dotted line in Fig. 6.1, using same X-ray samples to derive the universal
pressure profile used by Reese et al. [82] and Marrone et al. [53].

We addedM500ρc (our WL mass estimate) derived in Section 6.4, andMSZ
500ρc and

MN−MWL

500ρc derived by Reese et al. [82] that are also described in Section 6.4. These
error bars show their statistical errors. Our result is consistent with all the scaling
relations. However, it is closer to the scaling relation derived by Andersson et al. [6]
than that of Marrone et al. [53]. Since the error bar is large, we cannot make a strong
statement. The main difference between Andersson et al. [6] and Marrone et al. [53]
is that the former used high-redshift clusters while the latter used only low-redshift
clusters. To test these scaling relations, more cluster samples in high-redshift are
needed. Fortunately, among systematic errors due to physics described in 6.3, halo
triaxiality and projection effect will be suppressed if a lot of clusters are used. Thus
WL measurements are expected to give a robust scaling relation between SZ signals
and cluster mass.

6.6 Cosmological Implications

6.6.1 Exclusion Curve

Finally we test the ΛCDM paradigm, using M -z exclusion curve described in Sec-
tion 2.2. As discussed in Section 2.2, we should correct for Eddington bias. Mor-
tonson et al. [62] gave the equation to calculate the bias as

∆ lnM =
γ

2
σ2
lnM (6.8)

5They used same universal pressure profile as Reese et al. [82] used.
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Figure 6.1: Scaling relations between cluster mass and integrated Compton-y param-
eter. A cyan dashed line is the scaling relation derived by Marrone et al. [53]. Cyan
dots show clusters used for deriving the scaling relation. A blue dot is ACTJ0022
whose WL mass is measured by this work and integrated Compton-y parameter
is taken from Reese et al. [82]. A green dot is again ACTJ0022 whose integrated
Compton-y parameter is same as the blue dot but mass is inferred from integrated
Compton-y parameter. A red dot is also ACTJ0022 whose integrated Compton-y
parameter is same as the blue dot but mass is inferred from scaling relation between
cluster richness and weak lensing mass. The latter two dots are shifted by a factor of
1.04 from the blue dot. A black dashed line is the scaling relation between integrated
Compton-y parameter and mass derived from X-ray observables that is derived by
using clusters selected by the SPT [6]. A black dotted line is the scaling relation
between integrated Compton-y parameter calculated from X-ray observables and
mass also derived from X-ray observables [7].
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where γ is the local logarithmic slope of the mass function dn/d lnM ∝Mγ. To find
σ2
lnM for ACTJ0022, we estimated it as a half of the width of the±1σ statistical error

on the mass divided by the central value. γ is calculated from the fitting formula
provided by Mortonson et al. [62]6. The bias-corrected mass M ′ is calculated by
M ′ = exp(1/2γσ2

lnM)M . After the correction, the central mass value is reduced
from 0.72× 1015M⊙/h to 0.47× 1015M⊙/h (0.82× 1015M⊙/h to 0.30× 1015M⊙/h)
when the concentration parameter is free (fixed).

We plotted the mass and the exclusion curve for joint 95% CL with sky coverage
of 200 deg2 where ACTJ0022 is the brightest SZ source. To draw the curve, the
fitting formula is used. Circle and diamond points denote the mass without and
with the concentration parameter fixed, respectively, and red open and black solid
points denote with and without Eddington bias correction. When Eddington bias
is not corrected, the mass with the concentration parameter fixed exceeds the ex-
clusion curve if we include the statistical error. However, after Eddington bias is
corrected, the mass is well below the exclusion curve. Note that for the mass with
fixed concentration parameter, Eddington bias correction is large since it has larger
statistical error. Thus ACTJ0022 is consistent with the ΛCDM model and existing
data sets.

6.6.2 Comparison with previous works

In addition to the test done by Mortonson et al. [62] as shown in Fig. 2.2 in Sec-
tion 2.2, there have been three works which tested the ΛCDM with the exclusion
curve. As discussed in Section 2.2, in order to test the ΛCDM with the exclu-
sion curve, it is important that the survey region, or sky coverage, is well-defined.
Another important point is to use an unbiased mass estimate. There are several
observables to derive cluster mass such as X-ray, SZ, galaxy velocity dispersion,
and WL. Among them, only WL does not need any dynamical assumption such
as virial theorem and hydrostatic equilibrium, which enables us to estimate cluster
mass including dark matter directly.

Williamson et al. [101] reported an SZ-selected sample of the most massive galaxy
clusters in the 2500 deg2 of the SPT survey. They derived mass of 26 clusters from
SZ signals based on the scaling relation between SZ detection significance and mass
determined by simulations. None of them exceeds the exclusion curve with the sky
coverage of 2500 deg2 for 95% joint CL. Note that in their work the survey region
is well-defined.

Jee et al. [36] carried out WL measurements of 22 high-redshift galaxy clusters,
as noted in Section 6.1. The most massive cluster in their sample, CL J1226+3332,
exceeds the exclusion curve with the sky coverage of 100 deg2 for 95% CL, and

6The code is available from http://background.uchicago.edu/abundance/.
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Figure 6.2: ΛCDM exclusion curve for joint 95% CL with sky coverage 200 deg2

and the WL mass of ACTJ0022 which is measured by this work. Circle and dia-
mond points denote the mass without and with the concentration parameter fixed,
respectively, and red open and black solid points denote with and without Edding-
ton bias correction. Each point is offset in redshift by 0.01 for clarity. The mass of
ACTJ0022 is within the ΛCDM paradigm.
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masses of other three massive clusters exceed the exclusion curve with the same sky
coverage for 80% CL. However, they selected the clusters from different surveys,
which means the sky coverage is not well-defined. In fact, when they compared the
mass with the exclusion curve with 300 deg2 sky coverage, none of them exceeded
the exclusion curve for 95% CL, although two of them exceeded the curve for 80%
CL.

Menanteau et al. [58] explored a high-redshift extremely massive cluster, ACT-
CL J0102-4915 “El Gordo”, which was originally reported by Marriage et al. [52] as a
particularly strong SZ detection at a frequency of 148 GHz with photometric redshift
of 0.75. ACT-CL J0102-4915 was expected to be one of the most massive clusters in
the survey area of 755 deg2 that consists of 455 deg2 of southern sky and 300 deg2

along the equator observed by the ACT until 2009. Note that ACT-CL J0102-4915
is not reachable from the Subaru Telescope, as it is at southern sky. The cluster
sample provided by the SPT described above [101] includes ACT-CL J0102-4915.
They reported the cluster as the most significant detection on a 2500 deg2 survey.
They reported the mass M200 = (1.89 ± 0.29(stat.) ± 0.35(syst.)) × 1015M⊙h

−1
70 ,

where h70 is defined as H0 = 70h70 km s−1 Mpc−1, and photometric redshift of 0.78.
Menanteau et al. [58] carried out optical spectroscopy, which yielded spectroscopic
redshift of 0.87. They also reported the cluster mass that is obtained by combining
mass estimates which are inferred from velocity dispersion, x-ray observables, and
SZ observables, M200 = (2.16± 0.32)× 1015M⊙h

−1
70 . The spectroscopic redshift and

cluster mass, which are higher than these originally used in Williamson et al. [101],
gave a tension to the cluster when testing the ΛCDM with the exclusion curve. The
cluster mass is almost at the exclusion curve with 2800 deg2 (the combined survey
area of the ACT and SPT region of which 455 deg2 is observed by both the ACT
and SPT). They concluded that this cluster is clearly rare but it is not massive or
early enough to put significant pressure on the standard cosmological model.

Our work is unique in the following aspects. First, the survey region is already
well-defined since ACTJ0022 is the most significant SZ source in 200 deg2 equatorial
region observed by the ACT. Second, the WL observable is used for mass estimation,
which provides a direct cluster mass estimate. Hence, this work is the first ΛCDM
exclusion test with an extreme massive cluster, which uses a well-defined survey
region and direct mass estimate by WL.
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Chapter 7

Conclusions

We carried out a WL mass measurement of the high-redshift cluster ACTJ0022,
which was discovered by the SZ survey covering 200 deg2 of the sky conducted by
the ACT and has the highest SN in the survey region. We analyzed the data us-
ing the pipeline currently being developed for HSC, the next generation wide-field
prime focus camera of the Subaru Telescope. For galaxy shape measurement, we
used the EGL method, which models PSF and galaxies by two-dimensional basis
functions to extract their shape information. Since this method adopts model fitting
we can naturally extend the method to a multiple-exposure simultaneous fit, which
enables us to check quality of exposures in terms of shape measurement. Photo-
metric redshifts were used for clean separation of background galaxies. Systematic
uncertainties were carefully investigated, and we obtained

M200 = (0.72+0.33
−0.27(stat.)

+0.12
−0.06(syst.))× 1015M⊙/h. (7.1)

This result agrees with the mass estimated from SZ signal [82], the mass es-
timated from the scaling relation between cluster richness and WL mass [82], and
scaling relation between WL mass and SZ observables derived from 18 other clusters
at low redshift (z = 0.15− 0.3) [53].

We tested the ΛCDM model with this high-redshit, massive cluster, using the
framework provided by Mortonson et al. [62]. We compared the WL mass with
the exclusion curve which requires cluster mass and redshift to rule out the ΛCDM
at 95% CL. Clearly the observed mass is within the exclusion curve, and does not
violate the ΛCDM model.

This study has proved that the WL mass measurements of high-redshift galaxy
clusters is possible and provides the first step toward establishing the scaling re-
lation between SZ signals and cluster mass at high redshift that can be used for
improving cosmological constraints by combining the ACT/ACTPol and HSC. This
combination will enable us to explore the universe up to high redshift of z ∼ 0.8
and trace the evolution of the universe from the beginning of cosmic acceleration
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to the present. Since other surveys are not reachable to such a high redshift range,
our study exemplifies the uniqueness of the combination of the ACT/ACTPol and
HSC.
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Appendix A

Hyper Suprime-Cam

Hyper Suprime Cam (HSC) is the next generation wide-field prime focus camera
of the 8.2-m Subaru Telescope located at the summit of Mauna Kea. The HSC
has a 1.5-degree-diameter field of view, which is 7 times larger than that of its
predecessor Suprime-Cam[60]. To cover the large field of view, 116 pieces of 2k x 4k
fully depleted CCDs are employed. The total number of pixels amounts to 1 Giga
pixels. The unique capability of the Subaru Telescope such as photon collecting
power, excellent image quality, and wide filed of view at prime focus, enables the
HSC to conduct wide, deep survey.

The cross section of the HSC is shown in Fig. A.1. The height of HSC is about
3 m. The light focused by 8-m primary mirror goes through wide field corrector [48],
which consists of 7 lenses and placed in lens barrel shown as a red part in Fig. A.1,
and a filter placed in between the last lens and focal plane. Filters are stored in the
filter exchanger when they are not used. We plan to use 5 broad band filters and
several narrow band filters. The broadband filters consist of g′, r′, i′, z′ from Sloan
Digital Sky Survey system [30] and one more red band y at ∼ 1µm.

Fig.A.2 shows the focal plane of the HSC. We employ 116 CCDs. Among these
CCDs, 112 CCDs are used for scientific purpose1, while 4 CCDs are used for telescope
guiding. The CCDs are manufactured by Hamamatsu Photonics K.K. [42] whose
pixel size is 2k x 4k. Each CCD has 4 outputs. The CCD is fully depleted so that
it has high sensitivity around longer wavelength; quantum efficiency of the CCD
is about twice as that of CCDs formerly used in the Suprime-Cam manufactured
by MIT/LL[42]. Thus the HSC can observe high redshift objects at high efficiency.
The CCDs are place in dewar and cooled down to -100 degrees Celsius to suppress
dark count.

The electronics of the HSC are divided into two parts; Front-end Electronics
(FEE), the analog part of the electronics, and Back-end Electronics (BEE), the

1Actually 8 CCDs out of the 112 CCDs are used for auto focus.
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Figure A.1: Cross section of the HSC. Figure A.2: Focal plane of the HSC.

Survey Area [deg2] Depth [AB, 5σ, 2′′] Key Sciences
Wide 1500-2000 grizy (i ∼ 25.8) Cosmology, Clusters, QSOs
Deep ∼30 grizy+NBs (i ∼ 27.2) Galaxies, QSO/AGN, Clusters, SNe

Ultra-Deep ∼ 2 HSC FoVs grizy (i ∼ 28) high-z galaxies (LAEs, LBGs), SNe

Table A.1: Survey layers of HSC.

analog part of the electronics. The FEE is placed in the dewar together with the
CCDs. Analog signals from CCDs are digitized into 16-bit by the FEE. Then the
BEE, which is placed outside of the dewar, receives the digital signals and sends
them to data acquisition computer in a observation room via Gigabit Ethernet. The
Electronics allow for reading out all the CCD within ∼10 seconds at fast readout
operation mode.

The HSC is expected to see the first light at the beginning of 2012, and start
its survey from 2013. The survey is divided into three layers; wide, deep, and ultra-
deep, as summarized in Table A.1. From a viewpoint of cosmology, the wide layer
enables us to carry out weak lensing survey with excellent image quality. Such a
deep, wide data set is unique in the world, which allows for putting a constraint on
the nature of dark energy with high precision through cosmic shear. In addition,
the HSC plans to collaborate with ACT and its successive project ACTPol. This
combination allows us to explore the nature of dark energy at high-redshift via
cluster abundance.
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Appendix B

Details of Elliptical
Gauss-Laguerre Method

In this section, we give detail calculations of the EGL method, especially convolution
of PSF and galaxy model:

Imodel(x) =
∑

i,j

b∗i bj

[

ψσ∗

i ⊗ ψ
σgE
j

]

(x). (B.1)

Since this convolution is performed in same coordinate to use relation,

[

ψσ∗

i ⊗ ψ
σg

j

]

(x) =
∑

k

Ck
ijψ

σo

k (x), (B.2)

we conform the coordinate of ψσ∗(x) to that of ψσgE(x) (i.e. ψσg(E−1x)):

ψσ∗

i (x) =
∑

j

E−1
ij ψ

σ∗

j (E−1x). (B.3)

The calculations of convolution matrix in Eq (B.2) are given in Section B.2 and
those of transformation matrix in Eq. (B.3) are given in Section B.3 and Section
B.4.
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B.1 Rising and Lowering Operator for Gauss-Laguerre

Function

Since GLs are basis of two-dimensional harmonic oscillator, they have the following
properties:

aσp = 1
2

[

x−iy
σ

+ σ
(

∂
∂x

− i ∂
∂y

)]

, aσpψ
σ
pq =

√
pψσ

(p−1)q,

aσ†p = 1
2

[

x+iy
σ

− σ
(

∂
∂x

+ i ∂
∂y

)]

, aσ†p ψ
σ
pq =

√
p+ 1ψσ

(p+1)q,

aσq = 1
2

[

x+iy
σ

+ σ
(

∂
∂x

+ i ∂
∂y

)]

, aσqψ
σ
pq =

√
qψσ

p(q−1),

aσ†q = 1
2

[

x−iy
σ

− σ
(

∂
∂x

− i ∂
∂y

)]

, aσ†q ψ
σ
pq =

√
q + 1ψσ

p(q+1).

(B.4)

B.2 Convolution Matrix for Gauss Laguerre Func-

tion

The observed galaxy intensity Io(x) is convolution of galaxy intrinsic intensity Ii(x)
and PSF intensity I⋆(x):

Io(x) = Ii(x)⊗ I⋆(x) =

∫

d2x′Ii(x
′)⊗ I⋆(x− x′). (B.5)

If we perform Fourier transformation as

Ĩ(k) =
1

2π

∫

d2xI(x)e−ik·x, (B.6)

I(x) =
1

2π

∫

d2kĨ(k)eik·x, (B.7)

the convolution of GLs

ψσi
piqi

⊗ ψσ⋆

p⋆q⋆ =
∑

Cpiqip⋆q⋆
poqo ψσo

poqo (B.8)

can be also written as

2πψ̃σi
piqi
ψ̃σ⋆

p⋆q⋆ =
∑

Cpiqip⋆q⋆
poqo ψ̃σo

poqo . (B.9)

In Fourier space, rising and lowering operator is defined such as

˜
aσ†p ψ =

−i
2

[

σ(kx + iky)−
1

σ

(

∂

∂kx
+ i

∂

∂ky

)]

ψ̃ ≡ ãσ†p ψ̃. (B.10)
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The rising operator ãσ†q is similarly obtained by changing σ → 1/σ of aσ†q and adding
a factor of −i to it. Since Fourier transform of ψσ

00 is written as

ψ̃σ
00 =

1√
π
e−k2σ2/2, (B.11)

we have

ψ̃σ
pq(k, φ) =

(−i)m√
π

√

q!

p!
(kσ)meimφe−k2σ2/2L(m)

q (k2σ2), (B.12)

Operating the raising factor, we can obtain

σoã
σo†
p Ĩo = (σiã

σi†
p Ĩi)Ĩ⋆ + Ĩi(σ⋆ã

σ⋆†
p Ĩ⋆) (B.13)

under the condition of σ2
o = σ2

i + σ2
⋆. Therefore the recursion relation for the

coefficient Cpiqip⋆q⋆
poqo can be written as

σ⋆
√

p⋆ + 1Cpiqi(p⋆+1)q⋆
poqo = σo

√
poC

piqip⋆q⋆
(po−1)qo

− σi
√

pi + 1C(pi+1)qip⋆q⋆
poqo . (B.14)

The equivalent recursion relation in the case of the lower operator is

σo
√

po + 1Cpiqip⋆q⋆
(po+1)qo

= σi
√
piC

(pi−1)qip⋆q⋆
poqo + σ⋆

√
p⋆C

piqi(p⋆−1)q⋆
poqo . (B.15)

The corresponding recursion relation for q is written by replacing p with q in above
two equations. Since these recursion relations of p are independent with these of q,
and vice versa, we can divide the components of the tensor C into the p− and q−
factor:

Cpiqip⋆q⋆
poqo = 2

√
πf(po, pi, p⋆)f(qo, qi, q⋆). (B.16)

Once we know Cpiqip⋆q⋆
00 , all the components of C can be derived by using Eq. (B.15)

. From Eq. (B.14)

f(0, pi, p⋆) = −σi
σ⋆

√

pi + 1

p⋆
f(0, pi + 1, p⋆ − 1) = . . .

=

√

(pi + p⋆)!

pi!p⋆!

(

−σi
σ⋆

)p⋆
f(0, pi + p⋆, 0) (B.17)

On the other hand, the direct calculation of k−space Laguerre functions yields

2πψ̃σi
piqi
ψ̃σ⋆

00 = 2
√
π

pi
∑

po=0

qi
∑

qo=0

√

pi!qi!

po!qo!
× D(po+qo)/2(1−D)qi−qo

(qi − qo)!
ψ̃σo

poqo , (B.18)
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where the sum runs under the condition that po − qo = mi, and D ≡ σ2
i /σ

2
0. Here

we make use of the property of Laguerre polynomial

L(m)
q (αx) =

q
∑

k=0

(

q +m

q − k

)

αk(a− α)q−kL
(m)
k (x). (B.19)

The component of C whose p⋆ and q⋆ are both zero can be expressed as

Cpiqi00
poqo = 2

√
π

√

(

pi
po

)(

qi
qo

)

D(po+qo)/2 × (1−D)(pi−po+qi−qo)/2 (B.20)

⇒ f(po, pi, 0) =

√

(

pi
po

)

Dpo/2 × (1−D)(pi−po)/2 (B.21)

⇒ f(0, pi, 0) = (1−D)pi/2. (B.22)

Therefore Eq. (B.17) becomes

f(0, pi, p⋆) = (−1)p⋆

√

(pi + p⋆)!

pi!p⋆!
Dp⋆/2(1−D)pi/2. (B.23)

Hence all the components of the tensor C are summarized as

Cpiqip⋆q⋆
poqo = 2

√
πf(po, pi, p⋆)f(qo, qi, q⋆) (B.24)

f(po + 1, pi, p⋆) =
√
D

√

pi
po + 1

f(po, pi − 1, p⋆)

+
√
1−D

√

p⋆
po + 1

f(po, pi, p⋆ − 1) (B.25)

f(0, pi, p⋆) = (−1)p⋆

√

(pi + p⋆)!

pi!p⋆!
(1−D)pi/2Dp⋆/2. (B.26)

Furthermore, in the phase of implementation, we used the following recursion rela-
tion derived from Eq. (B.26) in order to avoid overflow due to factorial calculation:

f(0, pi, p⋆) = −
√
D

√

pi + p⋆
p⋆

f(0, pi, p⋆ − 1). (B.27)

B.3 Transformation Matrices

In general, we define a transformation E on the image by

EI(x) ≡ I(E−1x). (B.28)
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Given an original image I(x) =
∑

bpqψ
σ
pq(x), the transformed image can be repre-

sented as
EI(x) =

∑

b′pqψ
σ
pq(x). (B.29)

We can express E as a matrix operation on b:

b′ = Eb, (B.30)

b′p′q′ =
∑

pq

Epq
p′q′bpq. (B.31)

Using this expression,

EI =
∑

pq

b′pqψ
σ
pq =

∑

pqp′q′

Epq
p′q′bpqψ

σ
p′q′ , (B.32)

⇒ Eψpq =
∑

p′q′

Epq
p′q′ψ

σ
p′q′ . (B.33)

Each element of the transformation matrix is written as

Epq
p′q′ = σ2

∫

d2x(Eψσ
pq)ψ̄

σ
p′q′ . (B.34)

Next we introduce transformed raising and lowering operators. For a rising operator
for the original eigenfunctions,

E(aσ†p ψpq) = E(
√

p+ 1ψp+1,q)

=
√

p+ 1
∑

p′q′

Ep+1,q
p′q′ ψp′q′

≡ âσ†p
∑

p′q′

Ep,q
p′q′ψp′q′

= âσ†p (Eψpq). (B.35)

Thus, the transformed raising and lowering operators are defined as

âσp (Eψpq) = E(aσpψpq), (B.36)

âσ†p (Eψpq) = E(aσ†p ψpq), (B.37)

âσq (Eψpq) = E(aσqψpq), (B.38)

âσ†q (Eψpq) = E(aσ†q ψpq). (B.39)

In the EGL method, we use two transformation matrices which describe dilation
(Dµ) and shear(Sη,β). Note that we do not need translation for making use of the
convolution matrix derived in Section B.2.
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B.4 Formulae of Transformation Matrices

B.4.1 Dilution

The dilution operation is defined by

DµI(x, y) = I(e−µx, e−µy). (B.40)

We derive recursion relations of Dµ. First we represent diluted raising and lowering
operators by original raising and lowering operators. For example, in the case of
diluted lowering operator for p,

âσp (DµI) = Dµ(a
σ
pI)

= Dµ

(

1

2

[

x− iy

σ
+ σ

(

∂

∂x
− i

∂

∂y

)]

I(x, y)

)

=
1

2

[

e−µx− iy

σ
+ eµσ

(

∂

∂x
− i

∂

∂y

)]

I(e−µx, e−µy)

=
1

2

[

e−µ(aσp + aσ†q ) + eµ(aσp − aσ†q )

]

I(e−µx, e−µy) (B.41)

⇒ âσp = coshµaσp − sinhµaσ†q . (B.42)

By similar calculations, we get the corresponding relation for q as

âσq = − sinhµaσ†p + coshµaσq . (B.43)

Next, we derive recursion relations of Dµby applying these equations to Eq. (B.33):

√
pD

(p−1)q
p′q′ = coshµ

√

p′ + 1Dpq
(p′+1)q′ − sinhµ

√

q′Dpq
p′(q′−1), (B.44)

√
qD

p(q−1)
p′q′ = − sinhµ

√

p′Dpq
(p′−1)q′ + coshµ

√

q′ + 1Dpq
p′(q′+1). (B.45)

Substituting q′ = 0 to Eq. (B.44), we get

Dpq
p′0 =

1√
p′
sechµ

√
pD

(p−1)q
(p′−1)0. (B.46)

From Eq. (B.45)

Dpq
p′q′ =

1√
q′

(

sechµ
√
qD

p(q−1)
p′(q′−1) + tanhµ

√

p′Dpq
(p′−1)(q′−1)

)

. (B.47)
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We can calculate all the elements of Dµ from the recursion relations (Eq. (B.46) and
Eq. (B.47)) if Dpq

00 is known, which can be directly calculated by using Eq. (B.34):

Dpq
00 = σ2

∫

d2x(Dµψ
σ
pq)ψ̄

σ
00

= σ2

∫

d2x

(

(−1)q√
πσ2

√

q!

p!

(ze−µ

σ

)m

e−
x2+y2

2σ2 e−2µ

L(m)
q

(r2e−2µ

σ2

)

)

×
(

1√
πσ2

e−
x2+y2

2σ2

)

= σ2

∫

d2x

(

(−1)q√
πσ2

√

q!

p!
e−mµ

(

z

σ

√

e−2µ + 1

2

)m(
e−2µ + 1

2

)−m/2

e−
x2+y2

2σ2 × e−2µ+1
2

q
∑

k=0

(

q +m

q − k

)(

2

e2µ + 1

)k(

1− 2

e2µ + 1

)q−k

L
(m)
k

( r2

σ2
× e−2µ + 1

2

)

)(

1√
πσ2

e−
x2+y2

2σ2 × e−2µ+1
2

)

= (−1)qσ2

√

q!

p!
e−mµ

(

e−2µ + 1

2

)−(m+2)/2 q
∑

k=0

(

q +m

q − k

)(

2

e2µ + 1

)k

(

e2µ − 1

e2µ + 1

)q−k
√

(m+ k)!

k!

∫

d2x′ψσ
00(x

′)ψ̄σ
(m+k)k(x

′)

= eµsechµ(− tanhµ)qδpq, (B.48)

where x′ =
√

e−2µ+1
2

x and we use Eq. (B.19).

B.4.2 Shear

The shear transformation matrix can be divided into a shear oriented on the x-axis
and two rotations

Sη,β = RβSηR−β. (B.49)

We calculate matrix Sη and Bβ respectively in the following sections.

Shear Oriented along the x-axis

The shear oriented on the x-axis gives

SηI(x, y) = I(e−η/2x, eη/2y), (B.50)

where η is parametrized as η = 2tanh−1(g) (g is defined in Section 4.1.2). First
we represent sheared lowering operators by original operators in the same way as
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dilution. In the case of aσp , the calculation is like

âσp (SηI) = Sη(a
σ
pI) (B.51)

=
1

2

[

e−η/2x− eη/2iy

σ
+ σ

(

eη/2
∂

∂x
− e−η/2i

∂

∂y

)]

I(e−η/2x, eη/2y)

=
1

2

[

e−η/2(aσ†p + aσp )− eη/2(aσ†p − aσp )

]

I(e−η/2x, eη/2y),

⇒ âσp = − sinh (η/2)aσ†p + cosh (η/2)aσp , (B.52)

Applying this equations to the definition of a transformation matrix (Eq. (B.33)),
we obtain

√
pS

(p−1)q
p′q′ = − sinh (η/2)

√

p′Spq
(p′−1)q′ + cosh (η/2)

√

p′ + 1Spq
(p′+1)q′ . (B.53)

The recursion relation for q is obtained by replacing p of above equation with q.
Noting that the recursion relation for p can be represented only using p− operators,
which is also the case for that for q, and both of the recursion relations have the
same form, a matrix element can be divided in p−dependent and q−dependent parts
such as

Spq
p′q′ = f(p, p′)f(q, q′). (B.54)

Hence Eq. (B.53) can be written as

f(p, p′) =
1√
p′

[

sech(η/2)
√
pf(p−1, p′−1)+tanh (η/2)

√

p′ − 1f(p, p′−2)

]

. (B.55)

The corresponding relation for q is expressed by replacing p with q. Using Eq. (B.55),
we can derive all f(p, p′) if f(p, 0) is known. Here direct calculation of Sp0

00 gives

Sp0
00 = σ2

∫

d2x(Sηψ
σ
p0)ψ̄

σ
00

= σ2

∫

d2x

(

1√
πσ2

√

1

p!

(e−η/2x+ ieη/2y

σ

)p

e−
e−ηx2+eηy2

2σ2 L
(p)
0

(x2e−η + y2eη

σ2

)

)

×
(

1√
πσ2

e−
x2+y2

2σ2

)

. (B.56)

Next putting a = e−η+1
2σ2 and b = eη+1

2σ2 , and making use of

∫

xme−ax2

dx =
1

2
(1 + (−1)m)a

1
2
−m

2 Γ

(

m− 1

2

)

, (B.57)
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where a > 0 and m is an integer, Sp0
00 becomes

Sp0
00 =

1

πσp+2
√
p!

∫

d2x

p
∑

k=0

(

p

k

)

(e−η/2x)p−k(ieη/2y)ke−(ax2+by2)

=
1

πσp+2
√
p!

p
∑

k=0

(

p

k

)

ike−η(p−k)/2eηk/2

×1

2
(1 + (−1)(p−k))a−

1
2
− p−k

2 Γ

(

p− k − 1

2

)

×1

2
(1 + (−1)k)b−

1
2
− k

2Γ

(

k − 1

2

)

. (B.58)

This calculation shows if p − k and k is even Sp0
00 is non-zero, and otherwise Sp0

00 is
zero. In other words, if p is even Sp0

00 is non-zero and if p is odd Sp0
00 is zero. The

following calculation is in the case of p is even.

Sp0
00 =

2p/2√
p!
sech

(

η

2

) p
∑

k=0,even

(

p

k

)(

p− k − 1

2

)

!

(

k − 1

2

)

!

ik(eη + 1)−
p−k
2 (e−η + 1)−

k
2

=
(p− 1)!!√

p!
sech

(

η

2

) p/2
∑

k/2=0

(

p/2

k/2

)(

1

eη + 1

)
p
2
− k

2
(

− 1

e−η + 1

)
k
2

=

√
p!

(p/2)!
sech

(

η

2

)(

− tanh (η/2)

2

)p/2

. (B.59)

From the fact that Sp0
00 = f(p, 0)f(0, 0) and the symmetry between p and q, we get

f(p, 0) =

√
p!

(p/2)!

√

sech

(

η

2

)(

− tanh (η/2)

2

)p/2

. (B.60)

Rotation

We define an anti-clockwise rotation as

RβI(x, y) = I(cos βx− sin βy, sin βx+ cos βy). (B.61)
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We represent rotated lowering operators by original operators.

âσ†p (RβI) = Rβ(a
σ†
p I)

=
1

2

[

(cos βx− sin βy) + i(sin βx+ cos βy)

σ

−σ
(

(

cos β
∂

∂x
− sin β

∂

∂y

)

+i
(

sin β
∂

∂x
+ cos β

∂

∂y

)

)]

×I(cos βx− sin βy, sin βx+ cos βy)

= eiβaσ†p I(cos βx− sin βy, sin βx+ cos βy)

⇒ âσ†p = eiβaσ†p (B.62)

Applying this equations to the definition of a transformation matrix (Eq. (B.33)),
we obtain

√

p+ 1R
(p+1)q
(p′+1)q′ =

√

p′ + 1eiβRpq
p′q′ . (B.63)

The corresponding equation for q is
√

q + 1R
p(q+1)
p′(q′+1) =

√

q′ + 1e−iβRpq
p′q′ . (B.64)

From the fact that

R00
00 = σ2

∫

d2x(Rβψ
σ
00)ψ̄

σ
00

= σ2

∫

d2xψσ
00ψ̄

σ
00 = 1, (B.65)

and

Rp0
00 = σ2

∫

d2x(Rβψ
σ
p0)ψ̄

σ
00

= σ2eipβ
∫

d2xψσ
p0ψ̄

σ
00 = 0, (B.66)

R00
p′0 = R0q

00 = R00
0q′ = 0, (B.67)

we obtain
Rpq

p′q′ = ei(p−q)βδpp′δqq′ . (B.68)

Shear

From Eq.(B.49) we obtain the matrix of shear transformation as

(Sη,β)
pq
p′q′ = (RβSηR−β)

pq
p′q′

= Spq
p′q′e

i(p−q−p′+q′)β. (B.69)
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Appendix C

Sunyaev-Zel’dovich Effect

C.1 What is the Sunyaev-Zel’dovich Effect?

Hot gas in a cluster can be observed through its effect on CMB. A CMB photon
gains energy by inverse Compton scattering with energetic electrons in the hot gas.
As a result, the CMB photon is slightly blue-shifted which is observed as the tiny
temperature difference from CMB temperature, TCMB = 2.725 K. This effect is called
thermal SZ effect. As shown in Fig. C.2, the thermal SZ effect causes a decrease in
the CMB intensity at frequencies <∼ 218 GHz and an increase at higher frequencies.

Using dimensionless frequency x ≡ hv/kbTCMB, the spectral distortion is ex-
pressed as temperature difference;

∆T

TCMB

= f(x)y = f(x)

∫

kBTe
mec2

neσT cdt, (C.1)

where y is called Compton-y parameter where the integral is carried out along the
line of sight. Te, me, and ne is temperature, mass, and density of electron in the

Cluster hot gas

CMB

Blueshifted CMB

Energetic electron

Observer

Figure C.1: Schematic of thermal SZ effect.
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Figure C.2: CMB spectrum of original (dashed line) and distorted by SZ effect (solid
line). This figure is taken from Carlstrom et al. [20].

Figure C.3: Spectral distortion of CMB radiation due to SZ effect. The left panel
shows intensity and the right panel shows temperature. Thick solid line shows
thermal SZ effect and dashed line shows kinetic SZ effect. For reference thermal
spectrum of CMB scaled by 0.0005 is shown by the dotted line in the left panel.
The assumed cluster properties are an electron temperature of 10 keV, a Compton-y
parameter of 10−4, and a peculiar velocity of 500 km/s. This figure is taken from
Carlstrom et al. [20].
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hot gas. σT is cross section of Thomson scattering. The spectral dependence of the
thermal SZ effect is

f(x) =

[

x
ex + 1

ex − 1
− 4

]

(1 + δSZE(x, Te)), (C.2)

where δSZE(x, Te) is the relativistic correction. Note that at ν = 218 GHz Eq. (C.2)
becomes zero. In terms of intensity difference, the spectral distortion is written as

∆ISZE = g(x)I0y, (C.3)

where I0 = 2(kBTCMB)
2/(hc)2 and

g(x) =
x4ex

(ex − 1)2

[

x
ex + 1

ex − 1
− 4

]

(1 + δSZE(x, Te)). (C.4)

Again, at ν = 218 GHz Eq. (C.4) becomes zero. When observers use interferometer,
thermal SZ effect is observed as intensity difference. On the other hand, temperature
difference can be observed through bolometer. The Compton-y parameter is often
used as SZ observable.

It is worth noting that the thermal SZ effect does not depend on redshift, as
shown in Eq. (C.2) and Eq. (C.4), which means that potentially clusters can be
observed regardless of its redshift. This unique future makes it possible to investigate
high-redshift universe.

Another effect from hot gas of a cluster is called kinetic SZ effect, which is caused
by bulk motion of a cluster with respect to the CMB rest frame. In nonrelativistic
limit the spectral signature of the kinetic SZ effect is written as

∆T

TCMB

∼ τT
v

c
, (C.5)

where τt =
∫

neσTdl is optical depth and v is the cluster velocity along the line of
sight.

A typical spectral distortion due to the thermal and kinetic SZ effect is shown
in Fig. C.3. The temperature difference is as small as ∼0.1 mK, and the kinetic SZ
effect is ∼10 times smaller than the thermal SZ effect.

To compare with other cluster observables such as WL mass, X-ray, and velocity
dispersion, spherically integrated Compton-y parameter is often used, which can be
written as

Ysph =
kBσT
mec2

∫

ne(r)Te(r)dV (C.6)

=
σT
mec2

∫

P (r)dV (C.7)
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Figure C.4: Picture of ACT. The height of the telescope is 12 m.

Note that in general deprojection of observed SZ profile is needed to calculate Ysph,
as its integrand is three-dimensional profile. For example, universal pressure profile
derived by Arnaud et al. [7] is often used by recent works [53][82]. Similarly the
density and temperature profile from X-ray observations can be used to guess SZ
signals by using Eq. C.7[7].

C.2 Atacama Cosmology Telescope

Atacama Cosmology Telescope (ACT) [94] is the project to measure small-scale
CMB anisotropies and detect clusters of galaxies through the SZ effect. The picture
of ACT is shown in Fig. C.4. The telescope is located at Cerro Toco in the Atacama
Desert at an altitude of 5190 m to carry out observations with small atmospheric
disturbance. In order to detect the SZ effect efficiently, observations are made in
three frequencies (148 GHz, 218 GHz, 227 GHz) with a field of view of 22′ × 26′.
The telescope was commissioned in 2007, and started SZ survey from 2008.

A 6 m off-axis Gregorian telescope gathers millimeter wave from sky to a cryo-
genic camera called Millimeter Bolometer Array Camera (MBAC). The MBAC has
three 1024 element (32 × 32) detector arrays. Each array is dedicated to one fre-
quency. Detector spacing is ∼ 40′′ in horizontal and ∼ 50′′ in vertical. The bolome-
ters are cooled down to ∼ 500 mK to obtain sensitivity enough to measure the
SZ effect. The achieved sensitivities of 148 GHz, 218 GHz, and 277 GHz were
∼ 31 µK s1/2, ∼ 47 µK s1/2, and ∼ 191 µK s1/2, respectively.

The achieved beam parameters are summarized in Table C.1, and as an example
the observed Compton-y parameter of ACTJ0022 is shown in Fig. C.5.
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Frequency 148 GHz 218 GHz 277 GHz
Major FWHM(′) 1.401± 0.003 1.012± 0.001 0.891± 0.04
Minor FWHM(′) 1.336± 0.001 0.991± 0.001 0.858± 0.005
Axis angle(◦) 66± 1 45± 2 66± 10

Table C.1: Summary of beam parameters of ACT. This table is taken from Swetz
et al. [94].

Figure C.5: The Compton-y parameter observed by the ACT. This figure is taken
from Reese et al. [82].
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