2023年5月17日 東大本郷キャンパス

核データ分野における中性子・陽子入射 原子核反応研究の進展と展望

渡辺 幸信

九州大学 大学院総合理工学研究院

講演内容

- 自己紹介(研究分野)
- 「核データ」について
- 核子入射原子核反応の概観
- 代表的な原子核反応模型
 - ▶ 光学模型
 - ▶ 直接反応模型
 - ▶ 複合核模型
 - ▶ 前平衡反応模型

講演内容

- 自己紹介(研究分野)
- ・「核データ」について
- 核子入射原子核反応の概観
- ・ 代表的な原子核反応模型
 - ▶ 光学模型
 - ▶ 直接反応模型
 - ▶ 複合核模型
 - ▶ 前平衡反応模型

研究分野の紹介

サブアトミックスケールの物理(原子核・放射線物理)を 先端科学・技術へ応用する。

- 原子核工学基礎としての原子核物理・核データに関連した実験・理論研究
- 広義の原子核工学の立場に立って、宇宙空間や地球環境に存在する宇宙 線や加速器で発生する粒子線(中性子やミューオン等)が物質や人体に与 える影響をミクロな視点で探求し、その成果をエネルギー、情報通信、医療、 宇宙開発分野等の応用技術に活かすための基礎研究("応用指向"の基礎 研究)

核分裂エネルギー

核融合炉エネルギー

加速器応用

粒子線治療

宇宙開発

エネルギー、医療、宇宙開発分野等におけるミクロな粒子線の先端的応用を目指し、 現代物理(素粒子・原子核物理)と医・工学の境界領域の研究を展開しています。

粒子線物理工学分野

核データとその役割

- エ学、理学、医学をはじめとする様々な分野で必要とされる、 原子核の反応、壊変およびその構造に関わるデータの総称 (原子核関連情報の集大成)である。
- 原子炉やDT核融合炉設計では、中性子の空間的・エネル ギー的振舞い(つまり、中性子束分布)を正しく予測し、核反 応データを使って種々の核反応率を求め、その時間的・空 間的変化を追跡することが必要である。

核データファイルの位置づけと役割

JENDL-4.0

Cross Section (barns)

Neutron Energy (eV)

講演内容

- 自己紹介(研究分野)
- 「核データ」について
- 核子入射原子核反応の概観
- 代表的な原子核反応模型
 - ▶ 光学模型
 - ▶ 直接反応模型
 - ▶ 複合核模型
 - ▶ 前平衡反応模型

中性子入射反応

● Direct process (直接過程)

Interaction between a projectile and a few nucleons (degree of freedom) in a nucleus Short reaction time ($10^{-22} \sim 10^{-20}$ sec)

● Compound process(複合核過程)

A projectile is absorbed by a target nucleus and "compound nucleus" (i.e., highly-excited nucleus in thermal equilibrium) is formed. Then particle decay occurs. Long reaction time ($10^{-18} \sim 10^{-16}$ sec)

• Preequilibrium process(前平衡過程)

Non-equilibrium process in between the above two processes

原子核反応過程の概観

核子入射反応により放出される粒子(核子、α粒子等)のエネルギー分布や 角度分布

Ref.of exp.data: F.E. Bertrand and R.W. Peele, Phys. Rev. **C 8**, 1045 (1973).

入射エネルギー依存性

Ref.) C. Birattari et al. : Nucl. Phys. A201 (1973) 605.

共同利用実験施設を使用した核データ測定(渡辺Gr)

九大理タンデム (10MVタンデム静電加速器)

原研タンデム (20MVタンデム静電加速器)

原研TIARA (AVFサイクロトロン)

Uppsala大 TSL (Gustaf Werner サイクロトロン)

阪大RCNP (400MeVリングサイクロトロン)

12~18MeV 陽子入射反応 (p,xp), (p,xα), etc.

- C, Zr, Nb, Mo, Ag, Pd etc.
- 前平衡励起子モデル解析 → 14MeV中性子反応
- ¹²Cの分解反応解析

26MeV 陽子入射反応 (p,xp), (p,xα), etc.

- C, Mo, Pd etc.
- Feshbach-Kerman-Koonin モデル解析
- ¹²Cの分解反応解析

40~70MeV 陽子入射軽イオン生成

- C, Al, Ni, Zr, Au, Bi
- 高エネルギー核データ検証と中性子反応との比較

175MeV 準単色中性子入射軽イオン生成

- C, O, Si etc.
- 軽クラスターイオン生成のQMDモデル改良
- 宇宙線中性子誘起ソフトエラー研究の基礎データ

392MeV 陽子入射 (p,xp) 反応

- ⁴⁰Ca
- SCDWモデル解析
- 高エネルギー核データ作成用計算モデルの検証

実験装置の例

(1) 粒子弁別機能付ΔE-Eカウンターテレスコープ

(2) 磁気スペクトロメータ@阪大RCNP

共同利用実験施設を使用した核データ測定(渡辺Gr)

九大理タンデム (8MVタンデム静電加速器)

阪大RCNP (400MeVリングサイクロトロン)

理研RIBF (400MeV超伝導サイクロトロン)

J-PARC (3GeV シンクロトロン)

5~14MeV (d,xn)反応

- LiF, C, Al, Si, Ni, Mo, Ta等に対するTTNY測定
- 加速器中性子源用データ、重陽子分解反応

100, 200MeV (d,xn)反応

- Li, Be, C, Al, Cu, Nb, In, Ta, Au
- 重陽子核データ JENDL/DEU-2020

LLFPIC対する陽子・重陽子入射同位体 生成反応

- Zr-93, Se-79 (Y-91,92, Zr-92, Nb-93,94)
- 入射エネルギー 50, 100, 200 MeV/u
- LLFP核変換の基礎データ取得
- 計算モデル検証 → JENDL/ImPACT-2018

陽子入射核種生成反応

- Mn, Co, Ni, Zr
- -0.4, 1.3, 2.2, 3.0 GeV陽子、放射化法
- 核破砕計算モデルの検証

負ミューオン入射軽イオン生成反応

- Si標的
- 宇宙線ミューオン誘起ソフトエラーの基礎データ

前平衡反応理論モデル研究

研究の

時間発展

- 励起子モデル Exciton model(半古典的現象論的)
- 量子力学的モデル Feshbach-Kerman-Kooning model
- ・ 半古典的歪曲波モデル SCDW
- 量子分子動力学 QMD、核内カスケードモデル INCL

励起子モデルが描く原子核反応過程

A. Fukushima, Y. Utsuno, E. Hiyama, Y. Watanabe, S. Chiba, "Seminar on Nuclear Data, Cap.2: Introduction to Nuclear Physics", J. At. Ene. Soc. Jpn., Vol.43, No.6, 33-45 (2001) [in Japanese].

Reaction Processes and Outgoing Particle Spectrum

核反応理論模型と断面積計算との関連

引用: 原子力・量子・核融合事典 第1分冊 原子核物理とプラズマ物理・核融合 (丸善出版2017)

講演内容

- 自己紹介(研究分野)
- ・「核データ」について
- 核子入射原子核反応の概観
- 代表的な原子核反応模型
 - ▶ 光学模型
 - ▶ 直接反応模型
 - ▶ 複合核模型
 - ▶ 前平衡反応模型

Reaction Processes and Outgoing Particle Spectrum

Elastic scattering :

Incident particle's direction of motion and state of polarization is changed without loss of energy, by interaction with a target nucleus.

-> **"Shape elastic scattering"**, or potential scattering

Optical potential: U(r)=V(r)+iW(r)

Nucleon OMP (1)

One of the latest parameter sets :

"Local and global nucleon optical potentials for energies up to 200 MeV"

A.J. Koning and J.P. Delaroche, Nucl. Phys. A713, 231 (2003).

Energy and mass range

 $1 \text{ keV} \le E \le 200 \text{ MeV}$ $24 \le A \le 209$

Nucleon OMP (2)

図: S. Kunieda (JAEA), private communication (2008).

Reaction Processes and Outgoing Particle Spectrum

Excitation of collective states (rotational, vibrational) by direct inelastic scattering

DWBA cross section

Differential cross section

(in the case where the spins of incident particle and target nucleus are zero)

$$\frac{d\sigma_{fi}}{d\Omega} = \frac{\mu_f \mu_i}{(2\pi\hbar^2)^2} \frac{k_f}{k_i} |T_{fi}^{DWBA}|^2$$

$$\frac{\mu_i, \mu_f}{\mu_i, \mu_f} : \text{reduced mass of } i \text{ and } f$$

$$k_i, k_f : \text{incident and outgoing wave numbers}$$
DWBA T-matrix:
$$T_{fi}^{DWBA} = \left\langle \chi_f^{(-)} \Phi_f | V_i \right\rangle \Phi_i \chi_i^{(+)} \right\rangle \quad \text{Distorted wave}$$

$$\approx \int d(\chi_f^{(-)}(\mathbf{r})) I_{fi} (\mathbf{r}) \chi_i^{(+)} (\mathbf{r}) \right\rangle$$
Collective
Form
factor:
$$I_{fi}(r) = \beta_L R \frac{dU(r)}{dr} \quad \begin{bmatrix} -\frac{\hbar^2}{2m} \nabla^2 + U_c(\mathbf{r}) \end{bmatrix}_{\chi_c(\mathbf{r}) = E\chi_c(\mathbf{r}), c = i \text{ or } f}$$
Optical Potential
deformation parameter

Inelastic scattering to collective excitation

Nuclear structure calculation

Ref.) M.P. Friche and G.R. Satchler, Phy. Rev. **139**, 567 (1965).

Reaction Processes and Outgoing Particle Spectrum

Statistical model for compound nucleus process

Effect of compound elastic scattering

Fig. 3.13 Differential cross-sections for the inelastic scattering of 2.35 MeV neutrons by ⁸⁹Y, compared with Hauser–Feshbach calculations (Towle 1969).

Ref.) J.H. Towle, Nucl. Phys. A131, 561 (1969).

Transition to continuum final states: H-F theory

Extension to transition to continuum final states

Level density

Gilbert-Cameron Formula

Ref.) A. Gilbert, A. G. W. Cameron, Canadian J. Phys. 43, 1446 (1965).

 $E \ge E_m$ Fermi-gas model

$$\rho(E) = \frac{\pi}{12} \frac{\exp[2\sqrt{a(E-\delta)}]}{a^{1/4}(E-\delta)^{5/4}}$$

- *a* : level density parameter (MeV⁻¹)
- δ : pairing energy

Reaction Processes and Outgoing Particle Spectrum

前平衡反応過程の描像

■核内カスケードモデル

連続した核内2体核子核子衝突として反応を取り扱う。

モンテカルロ法を使って、各核子の飛跡を核外へ 放出されるまで追跡する。

この描像は入射波のド・ブロイ波長が核内核子間距 離より短い場合に成り立つ近似 (E_{in} > 100 MeV)

エネルギー空間上で、励起子の占有確率の時間発展を記述する。 (非平衡統計力学:マスター方程式)

Excition model(励起子モデル)

Non-equilibrium P(n,t)**Master equation** for the occupation probability : statistical dynamics $\frac{d}{dt}P(n,t) = \sum_{m} \lambda_{m \to n} P(m,t) - P(n,t) \left\{ \sum_{m} \lambda_{n \to m} + W_n \right\}$ $\lambda_{n \to m}$: transition probability from *n*-exciton state to *m*-exciton state W_{n} : particle emission probability from *n*-exciton state $\lambda_{n \to m} = \frac{2\pi}{\hbar} \overline{|M|^2} \rho_m \qquad \left(\overline{|M|^2} = \overline{K} A^{-3} E^{-1} \right)$ Adjustable para. $\int_0^{T_{eq}} P(n,t) dt \equiv \tau(n)$ Cross section for the reaction A(a,b)B: $\left(\frac{d\sigma}{d\varepsilon}\right)^{preeq} = \sigma_{abs} \sum_{\substack{n=n_0\\\Lambda n=2}} W_b(n,\varepsilon)\tau(n)$

 σ_{abs} : formation cross section of a composite nucleus (a+A system) $W_b(n, \varepsilon)$: emission probability of particle b with ε from n-exciton state A great number of calculations have so far demonstrated that the exciton model reproduces accurately **the angle-integrated spectra** of the particles emitted in pre-equilibrium reactions, particularly for nucleon emission.

Fig. 1.7 Excitation function of the reaction 169 Tm(p,n) 169 Yb. The curves are the results of a theoretical calculation based on the exciton model (Birattari *et al.* 1973).

Ref.) C. Birattari et al. : Nucl. Phys. A201 (1973) 605.

D論ワーク

前平衡モデル研究

- 励起子モデル Exciton model(半古典的・現象論的)
- 量子力学的モデル Feshbach-Kerman-Kooning model
- ・ 半古典的歪曲波モデル SCDW
- ・ 量子分子動力学 QMD、核内カスケードモデル INCL

Feshbach-Kerman-Kooning (FKK) model

FKKモデルの適用例

Ref.) A.A. Cowley et al., Phys. Rev. C 43, 678 (1991).

九大-JAEA-Oxfordのコラボ

26 MeV領域 (p,xp)まで拡張

- Feshbach-Kerman-Kooninモデル解析(量子論的扱い: 1-stepのみ考慮) In collaboration with P.E. Hodgson @Oxford大

前平衡モデル研究

- ・ 励起子モデル Exciton model(半古典的・現象論的)
- 量子力学的モデル Feshbach-Kerman-Kooning model
- ・ 半古典的歪曲波モデル SCDW
- ・ 量子分子動力学 QMD、核内カスケードモデル INCL

Theoretical model analysis using PHITS code

Computer code: Particle and Heavy Ion Transport code Systrm (PHITS) T. Sato et al., J. Nucl. Sci. Technol., vol. 55, 684–690 (2018).

Reaction model: Intra-nuclear cascade or QMD + Evaporation model

Quantum Molecular Dynamics (QMD)

H:

Hamiltonian

Niita et al.

Semiclassical simulation method to describe the time evolution of nucleon many-body system in a microscopic way.

• Each nucleon state is represented by the Gaussian wave packet :

$$\phi_i(\mathbf{r}) = \frac{1}{(2\pi L)^{3/4}} \exp\left[-\frac{(\mathbf{r} - \mathbf{R}_i)^2}{4L} + \frac{i}{\hbar}\mathbf{r} \cdot \mathbf{P}_i\right]$$

• Total wave function : direct product of these wave functions

• The time evolution of \mathbf{R}_i and \mathbf{P}_i is described by Newtonian equation :

$$\dot{\mathbf{R}}_i = \frac{\partial H}{\partial \mathbf{P}_i}, \ \dot{\mathbf{P}}_i = -\frac{\partial H}{\partial \mathbf{R}_i}$$

and the stochastic two-body collision.

DDX : ${}^{12}C(p,xn) @ 0.8 and 3 GeV$

JENDL/HE-2007: Use of QMD + GEM above 150 MeV 国産高エネルギー核データファイル(~3GeV)

量子分子動力学(QMD)の改良(2005~)

核変換研究 in ImPACT project

ImPACT・藤田プロジェクト(2014-2018年度) 核変換による高レベル放射性廃棄物の大幅な低減・資源化 https://www.jst.go.jp/impact/program/08.html

PJ-2研究課題(核反応データ取得及び新核反応制御法)

長寿命核分裂生成核種(LLFP)に対する陽子・重陽子入射核破砕の新規データ取得 @理研RIBF

逆運動学手法を用いて、LLFPビームと陽子及び重陽子標的との核破砕反応による同位体生成断面積、及び放出中性子のエネルギー分布(中性子・ 残留核の相関データ含)を測定する。

- LLFP対象核種: ⁷⁹Se, ⁹³Zr, ¹⁰⁷Pd, ¹²⁶Sn, ¹³⁵Cs - 入射エネルギー: 200, 100, 50 MeV/u

理研RIBF実験概要

実験-I (2015/3/26-4/6) with ZeroDegree ¹⁰⁷Pd (100, 200MeV/u) on H and D ¹³⁵Cs, ⁹³Zr(+⁹⁰Sr) (100MeV/u) on H and D ⁹³Nb (100MeV/u) on H and D 実験-II (2015/10/20 -11/1)with SAMURAI 生成Fragmentsと中性子との相関測定 ⁷⁹Se, ⁹³Zr (110, 200MeV/u) on H and D

$Proton + {}^{93}Zr$

計算モデル: INCL+GEM

References

- 200 MeV: S. Kawase et al., JAEA-Conf, 2018-001, pp.111-114 (2018).
- 100 MeV: S. Kawase et al., Prog. Theor. Exp. Phys. 2017, 093D03 (2017).
- 50 MeV: K. Nakano et al., EPJ Web of Conferences 239, 20006 (2020) & PhD Thesis (2020).

Deuteron + ⁹³Zr

計算モデル: INCL+GEM

References

- 200 MeV: S. Kawase et al., JAEA-Conf, 2018-001, pp.111-114 (2018).
- 100 MeV: S. Kawase et al., Prog. Theor. Exp. Phys. 2017, 093D03 (2017).
- 50 MeV: K. Nakano et al., EPJ Web of Conferences 239, 20006 (2020) & PhD Thesis (2020).

中性子生成反応

DDXs of ⁹⁰Zr(*p*,*xn*)

Ref.) YW, Nuclear data evaluations for JENDL high-energy file, Proceedings of ND2014.

前平衡モデル研究

- ・ 励起子モデル Exciton model(半古典的・現象論的)
- 量子力学的モデル Feshbach-Kerman-Kooning model
- ・ 半古典的歪曲波モデル SCDW
- ・ 量子分子動力学 QMD、核内カスケードモデル INCL

Two-step cross section by SCDW

SCDW: ⁹⁰Zr (p,p'x) at 160 MeV

SCDW関連References

- 1) Y. Watanabe, R. Kuwata, Sun Weili, M. Higashi, H. Shinohara, M. Kohno, K. Ogata, M. Kawai, Phys. Rev. C, Vol. 59, pp.2136-2151 (1999).
- 2) Sun Weili, Y. Watanabe, M. Kohno, K. Ogata, M. Kawai, Phys. Rev. C, Vol. 60, 064605(12 pages) (1999).
- 3) K. Ogata, M. Kawai, Y. Watanabe, Sun Weili, and M. Kohno, Phys. Rev. C, Vol. 60, 054605(11 pages) (1999).
- 4) Y. WATANABE, Weili SUN, K. OGATA, M. KOHNO, M. KAWAI, J. of Nucl. Sci. and Technol., Suppl. 2, pp. 750-753 ; Int. Conf. on Nuclear Data for Science and Technology, Oct. 7-12, 2001, Tsukuba, Japan (2002).

Ref.) Y. Watanabe et al., "2nd Japan-Korea Joint Symp. on Nuclear Physics, 4-5 Nov. 1995, Kyushu U

核内核子の運動量分布依存性

Wigner transform of one-body density matrix for the hole state

10

 10^{6}

10

104

30

60

90

Angle (degree)

150

120

180

80 MeV 90Zr(p,p'x) Ep'=60 MeV

> step step

3 step

1+2+3 step

Ref) Sun Weili, Y. Watanabe, M. Kohno, K. Ogata, and M. Kawai, Phys. Rev. C 60, 064605, (1999).

負ミューオン原子核捕獲反応

Result | Comparison with model calculation

Comparison of measured and simulated spectra of *p*, *d*, *t* and *α*

Ref.) S. Manabe et al., Proc. of Int. Conf.on Nuclear Data for Science and Technology (2022).

講演内容

- 自己紹介(研究分野)
- ・「核データ」について
- 核子入射原子核反応の概観
- 代表的な原子核反応模型
 - ▶ 光学模型
 - ▶ 直接反応模型
 - ▶ 複合核模型
 - ▶ 前平衡反応模型

Nuclear Theories and Calculation Codes in Nuclear Data Evaluation

