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Super-Kamiokande

* Nobel Prize winning Water-Cherenkov
neutrino detector in Japan

 To be succeeded by Hyper-Kamiokande in
late 2027

* Many physics goals including proton decay
searches, solar/atmospheric neutrino
studies and keeping watch for supernovae

* Main disadvantage of Water-Cherenkov
detectors is that they are not sensitive to
neutrons to aid anti-neutrino identification




Neutron Tagging

Neutron capture cross sections on H and O

* |n pure water, neutrons are primarily captured

on hydrogen 10* ] —— 1H(n,A)
ydrog ; —— 160(n,A)
L — 10
* Average neutron capture time is ~200 ps and e ;
produces a 2.2 MeV gamma, which is close to S 107
the detection threshold S o
e SK4 (late 2008~) implemented a neutron tagging o 1073
@
i ) ]
trigger system 5 10,
 Neutron tagging was difficult due to the 10--"@
large time difference to the delayed signal and 3 . . | | . -
. 107> 1073 107! 10t 103 10° 107
the lack of detectable light Neutron Energy [eV]



Gadolinium Loading

Gadolinium has a very large neutron capture cross section

Neutron capture time is ~20 ps and the resulting gammas are ~8 MeV which produce sufficient light for
detection
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Super-K has been loaded with gadolinium sulphate
To use this neutron information correctly in analyses, we must first accurately predict neutron multiplicity



Neutron Multiplicity

Data and simulation do not agree

Potentially a result of various problems in simulations:
e Number of neutrons at the neutrino vertex;

* Final state interactions:

Charge Exchange ®

Pion Production

* Modelling of neutron propagation

Elastic
Scattering

Absdrption

By T. Golan

Mean neutron multiplicity

Mean neutron multiplicity

{Q

5 T T T I T T T [ T T T I T T T T T T T T T T T T 'I T
4.5T2K FHC Runs 1-9 data

[} 1 1 1 I 1 1 1 I 1
0 02 04 06 08 1 1.2 1.4
Reco. 1 transverse momentum (GeV/c)

5: T T T I T T T [ T T T I T T T I T T T I T T T I T T T 'I T
4.5 T2ZK RHC Runs 5-9 data

45_ -+ Data

= NEUT

3.3 -~ NuWro

3= — GENIE
25F

2
s i

0.5

I T I BN T B
0.2 0.4 0.6

Reco. 1 transverse momentum (GeV/c)

1 I I’ 1 'l I 1 1 1 I 1 L
0.8 1 1.2 1.4

=

From Akutsu-san’s thesis



Neutrons in Geant4

The way a neutron is simulated depends on its energy:

<20 MeV 20 MeV-~6 GeV (or higher) 3 GeV~100 TeV

28 MeV

A
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High precision models using Intranuclear cascade models e.g.: Fragmentation models e.g.:
cross section data libraries Bertini (pictured), Binary, INCL++ Fritiof (pictured), QGSP

Notes: upper limit of intranuclear cascade can be changed



Nuclear Data Libraries

In the high precision models, Geant4 uses G4ANDL which
is a custom nuclear data library:

 Asof GANDL-4.6: based on JEFF-3.3

 Until GANDL-4.5: based on ENDF/B-VII

Several other libraries are available in Geant4 format for
neutrons

Each library can lead to a different result..

Cross Section Library

ENDF/B-VII (2011)
ENDF-VIII (2018)
JEFF-3.3 (2018)
JENDL-4.0u (2016)
BROND-3.1 (2016)
CENDL-3.1 (2009)

Various libraries available in Geant4



Nuclear Data Libraries

Example: total inelastic cross section on 160

In the high precision models, Geant4 uses GANDL which 061 JENDL-4.0
is a custom nuclear data library: —— ENDF/B-VII
* As of G4NDL-4.6: based on JEFF-3.3 i i
 Until GANDL-4.5: based on ENDF/B-VII

o
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o
S
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Several other libraries are available in Geant4 format for

Cross Section [barns]
o

neutrons 0.2
0.1
Each library can lead to a different result...
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Example: Effect of Libraries

* Simulation geometry: a cylindrical volume of
water with a small cylindrical neutron detector
attached to the centre of one face

* A neutron beam (E! flux between 0~20 MeV) is
generated incoming from the opposite face

* Different nuclear data libraries (i.e., the cross
sections in the 0~20 MeV range) are used and
the neutrons passing the detector are recorded

* This is resemblant of the experiment we plan
to study neutron-water cross section




Example: Effect of Libraries

Different libraries lead to different results! T5) 1.6¢ T T T ]
< - 5 cm water cylinder ]
Q - _
z 1.4: N o ]
We are planning an experiment to study: O] _ _
* which library best agrees with data el —m/——— —
* how well >20 MeV models agree with data E . i
and make a neutron-water total cross section s I |
o =— —G4NDL45 -
measurement up to 100 MeV — - i
@ 0.8 ~—ENDFVIL1T  —
< n —ENDF-VIILO
3 0.6 JENDL-4.0u _
By comparing data to simulations, we hope to Z r ~ CENDL31
study the inelastic cross sections also | S N B R -
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Accelerator driven neutron source

Target 2

Target 1




Target Station 1

Originates from 1985 — the very first neutron
spallation source in the world

Produces 20 neutron beams and 5 muon
beams

Sheet carbon target to produce muons,
plated tungsten target to produce neutrons

Target Station 2

Completed in 2011 — low-power and low-

repetition rate source optimised for long
wavelength neutrons

Produces over 10 neutron beams

Single block tungsten target to produce
neutrons with maximised efficiency




ISIS Neutron and
Muon Source

Types of Instrument at ISIS
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Reflectometer
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Indirect Spectrometer
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ISIS Neutron and
Muon Source

Types of Instrument at ISIS

[ Diffractometer

[ Reflectometer

[ Small Angle Scattering

[] Indirect Spectrometer

I Direct Spectrometer
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ISIS Neutron and
Muon Source

Types of Instrument at ISIS
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ISIS Neutron and
Muon Source

4) The protons are
extracted onto two
tungsten-based target

stations, producing
many neutrons via
spallation

Types of Instrument at ISIS
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Target Station 2

Receives one in five proton pulses from the
synchrotron

Extracted Proton Beam

* Proton beam energy deposit is about 40 kW

e Each proton produces about 15-20 neutrons,
resulting in around 10 neutrons per second

NIMROD

LET

 The target is surrounded by beryllium with
holes that lead into the various beamlines

 Moderators (water, liguid methane, liquid
hydrogen) slow the neutrons down to useable
energies

~ LARMOR

7 OFFSPEC
7 INTER

" POLREF

Target Station 2



Target Station 2

* Receives one in five proton pulses from the
synchrotron

Extracted Proton Beam

* Proton beam energy deposit is about 40 kW

e Each proton produces about 15-20 neutrons,
resulting in around 10 neutrons per second

 The target is surrounded by beryllium with
holes that lead into the various beamlines

 Moderators (water, liguid methane, liquid
hydrogen) slow the neutrons down to useable
energies...but one beamline is slightly different
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Chiplr

Chiplr is a fast neutron beamline in Target
Station 2 that produces an intense atmospheric
like fast neutron flux up to 800 MeV

Atmospheric Fast
Neutron Beam

ChipIR hole

w.
o
*’

Secondary Scatterer

Tungsten target

" Fast Neutron Beam

A
1
', Be reflector
I
]

Proton Beam (800MeV)
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Single Event Effect

Single Event Effect (SEE) - a highly energetic particle strikes sensitive regions of an electronic device,
disrupting its correct operation

Can have various results such as a: burnout, gate
rupture, latch-up or bit-error

Bit-Error
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Cosmic Ray Induced Errors

These energetic particles are from cosmic ray induced

lonisation Drift Diffusion
cascades

1.E-02

4,
@0(*/“
1.E-03 - OQS‘

1.E-04 -

1.E-05 -

on®
1606 - “M_\ Neutrons with energies >1 MeV can produce

1£07 “rotom charged ions in silicon via scattering

Differential Flux (n/cm?2/s/MeV)

1.E-08

If the ions then travel through a sensitive node in
L9 | | the silicon, their energy deposit creates ionisation

1 10 100 1000 10000

Energy (MeV) trails of electron-hole pairs, inducing a SEE

Neutrons are the dominant contributor at ground level



Real Incident: Qantas Aircraft

On October 2008, a Qantas aircraft from Singapore to
Perth suffered the effects of potential SEE.

Whilst the aircraft was at 11,000 meters, one of the
aircraft systems started giving spurious spikes on all flight
parameters to other systems.

Two minutes later, the aircraft pitched down losing an
altitude of 210 meters over 23 seconds and briefly did
not respond to any commands from the pilot.

Three minutes later, a second pitch down occurred, and
the aircraft further lost 120 meters in 15 seconds.

ATSB TRANSPORT SAFETY REPORT
Aviation Occurrence Investigation
A0-2008-070 - Final (2011)
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Real Incident: Qantas Aircraft

Plane made emergency landing, fortunately no fatalities!

ATSB TRANSPORT SAFETY REPORT
Aviation Occurrence Investigation
A0-2008-070 - Final (2011)



Real Incident: Qantas Aircraft

a

.....the investigation identified SEE
[Single-Event-Effects] as an ongoing
risk for airborne equipment.”

o

W !
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“There were significant logistical
difficulties in obtaining access to .
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appropriate test facilities..... ;
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ATSB TRANSPORT SAFETY REPORT
Aviation Occurrence Investigation
A0-2008-070 - Final (2011)




Chiplr

In 2017 ISIS commissioned Chiplr
Fast atmospheric neutron spectrum
High flux for accelerated testing
Large beam (for systems) and small beam (for devices)

74 ™
‘\‘ \

"E erimehfél*ﬂlockhouse
all (3xﬁ) = Large (70x70m?) area beam

1.E+08

1.E+07

The calibrated flux on the instrument is
5.4x10°% n cm2st (>10MeV)
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JEDEC STANDARD — JESD89A Measurement and Reporting of Alpha Particle and
Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices, Sept 2021
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Major areas of current commercial research

Driverless cars Autonomous systems

Internet: Device and system level for communication infrastructures

High power devices for renewable energy applications and automotive

ol o

Aerospace applications
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Fast Neutron Activation

1) Activate samples
through irradiation

Activation foils: elements of
known purity e.g., Bi, Au, Ni,
Co, Sc, Lu etc.

35



Fast Neutron Activation

1) Activate samples 2) Measure sample
through irradiation activities ina HPGe
@ o

@/M

Activation foils: elements of
known purity e.g., Bi, Au, Ni,
Co, Sc, Lu etc.

g (=
AL e

1000

» Pb- 2
c N Pb-202m Bismuth agsb'éﬂlﬂ v
3 = 657 keV! e
5] -
3 5000}
4000—
3000[—
C Bi-206
2000~ Y azcai§§;k v Birm]
I~ e e
- e 927 keV.

Pb-202m
787 keV Uk(\

0
36 600 650 700 750 800 850 900 950 1000
Energy (keV)




Fast Neutron Activation

1) Activate samples 2) Measure sample 3) Unfold from the
through irradiation activities ina HPGe activation rate into
° o the neutron flux

Activation foils: elements of
known purity e.g., Bi, Au, Ni,
Co, Sc, Lu etc.

Pb-202m

‘2 C Pb-202m Bismuth Pb-204m 960 keV

% sonnl 7
4000 Bayesian-unfolding Toolkit for
3000 Multi-foil Activation with Neutrons
2000/~ ¥=]  https://github.com/davidechiesa/batman
Ly =)

0
37 600 650 700 750 800 850 900 950 1000
Energy (keV)



HPGe Detector

Point source
measurements

0.040
* e Measured
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HPGe Detector

Point source Geantd
measurements simulations

Point source data calibrates simulation
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Neutron Flux Measurement

If the neutron flux spectrum shape is known...

* only need to measure rate of 1 reaction
* reaction rate can normalise the shape, giving the final spectrum

Any activation reaction:

= IR B L B B AL IS IR B AL 108?
A 17 ] - ]
2 1 | :
P . E’ 107
o [ — ]
E 0.8_— ] o o ]
& L ¢ normalises shape £ 10°
2 0.6F ] > .
[a] 0 ] " ]
S oL g 2 108,
L . >, E
0.4 7 z
B CICJ 10 '
] IS :
L ] 103'5
0 |||\|I|I| L IIIIHII‘ I\HILIJl' III\IHl IlLIlIIJ ||||‘|‘|| ||||||||| |||||; ] T T T Trrr Tl T T T T Tl T T T T-TTTT
10° 10 107 10° 10° 10* 10° 102 107" 1 10 1 10 100 1000
E, [MeV] E_(MeV)

Cross section gives total flux ¢

But we generally don't know the neutron flux spectrum shape well...
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Neutron Flux Measurement

If the neutron flux spectrum shape is not known...

* can no longer use total flux from one reaction
e can instead use multiple reactions and normalise with differential flux in each bin
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Neutron Flux Measurement

If the neutron flux spectrum shape is not known...

* can no longer use total flux from one reaction
e can instead use multiple reactions and normalise with differential flux in each bin

N

Dashed lines
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p— |
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o
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rates R; 10°10°%10710°10°10%10°102 10" 1 10 10°

E, [MeV]

42



43

BaTMAN

yesian-unfolding Toolkit for \/Iulti-foil Activation with Neutrons

Neutron flux unfolding concept:

Activation rate R is related to the neutron flux ¢

R = Nja(E)go(E)dE

Neutron activation reaction:

-
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BaTMAN

yesian-unfolding Toolkit for \/Iulti-foil Activation with Neutrons

Neutron flux unfolding concept:

* Activation rate R is related to the neutron flux ¢

R = Nja(E)go(E)dE — R = NjEé_laijgbi

 Introduce multiple reactions and divide them into flux
groups @;

¢; = f Ei+1<p(E)dE

E;
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BaTMAN

yesian-unfolding Toolkit for \/Iulti-foil Activation with Neutrons

Neutron flux unfolding concept:

* Activation rate R is related to the neutron flux ¢

R = Nja(E)go(E)dE —> R; = N; 27_1_1 0ijPi

 Introduce multiple reactions and divide them into flux
groups @;

Eitq

¢ = f @ (E)dE

E;

BaTMAN parameterises this statistical mode
*  System of linear equations with unknown variables ¢;, | JAGS solves the model via MCMC simulation
solvable by sampling the joint posterior P(¢;|R;, o)

Paper:
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BaTMAN

yesian-unfolding Toolkit for \/Iulti-foil Activation with Neutrons

In this way, the flux groups are intentionally correlated with activation reactions:

o
>
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Reaction Number
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Results for Chiplr Flux

e The result of the unfolding is the integral
fluxes in each group, and the shape within
each bin is still unknown

-
-
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o
~
5]

do/dE (cm?s'MeV)
S

w

 The quality of the result depends on the
number of bins and the corresponding
reactions, i.e., more provides a clearer
picture of the spectra

-
o

e Continuity is not assumed...
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Results for Chiplr Flux

e The result of the unfolding is the integral < 10
fluxes in each group, and the shape within 2 10"
each bin is still unknown o 107 o
8 1on
: S 10 E N
 The quality of the result depends on the g 10 : .
number of bins and the corresponding 10°
. . . 8
reactions, i.e., more provides a clearer 10
. 7
picture of the spectra 10 f
10°
L 10° : L : | : o
* Continuity is not assumed, but we can . : L o Lt g,
. o . . 1 ' ! Vo ! : ! IR
impose it in an interpolation that preserves o | A o
the unf0|ded Integrals 1Jl|u|,|] 1 |E|||,|,|] 1 Hinul linuu,i 1 |||n|,||I I |111||I| | |||||||] [IEART | |I| 1 ||||||||I |: ||: |:||i Ll
10° 10° 107 10° 10° 10* 10° 102 10" 1 10  10°
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Neutron-Water Cross Section Experiment

Plan: to measure changes in activation rates due to varying volumes of water

< > 5-75 cm long cylinder
/" containing pure water

Chiplr beam EE— | &\

Activation foil

By measuring changes in activation rates and adapting the method used to measure the flux, we can extract
neutron-water total cross sections up to at least 100 MeV

Experiment on schedule to start on 27th June!
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Neutron-Water Cross Section Measurement

Activation rate with water:

R = N [0/ Grater, B (E)E

B f CPI(Uwater: E)U(E)dE
[ e(E)a(E)dE

RI
R

Activation rate without water:
R = Njcp(E)a(E)dE
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Neutron-Water Cross Section Measurement

Rj, ?=1 O-ijqbli (Uwater)
R; i=101jPi

First we group this into energy bins i as before such that we can use
multiple reactions j.
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Neutron-Water Cross Section Measurement

Rj, ?=1 O-ijqbli (Uwater)
R; i=1 0ijPi

The activation rates (radioisotopes produced per unit time) of the foils
for reaction j with and without water. This is what we measure.
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Neutron-Water Cross Section Measurement

Rj, Z?=1 Oij(p,i (Uwater)

n
R; =101 Pi

The corresponding activation reaction cross section in energy bin i.
We obtain these from TENDL, which are cross sections predicted by
TALYS Nuclear Model.
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Neutron-Water Cross Section Measurement

Rj, ?=1 O-ijqbli (Uwater)
R; i=101j P

The unmoderated original neutron flux in bin energy bin i. We can use
BaTMAN to measure its integral value and simulation to vary its shape.
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Neutron-Water Cross Section Measurement

Rj, Z?:l O-ijqb,i (Gwater)

n
R; (=1 0ij i

The moderated neutron flux in bin energy bin i and is a consequence
of the total cross section on water. Using ¢; as input into simulations,
we can find gy, 4¢¢ that leads to the qb’l. for the equality to hold.
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Neutron-Water Cross Sections Study

Cylindrical aluminium containers for the water
currently being constructed

Aluminium advantages: |
e Strong so walls can be very thin (~1 mm) zi"‘
* Does not become too radioactive
* Contains neither oxygen nor hydrogen |

Multiple containers of 5cm, 10 cm and 20 cm
to be used

Experiment on schedule to start on 27th June! 1
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Summary

* Fast neutrons in simulations are a known problem and we consistently observe discrepancies with
measurements

e Using instruments at the ISIS Neutron Source, we’ve devised a neutron activation analysis method to
measure neutron fluxes over the wide range from a few eV to a few hundred MeV

* Adapting this, we now intend to measure fast neutron-water cross sections up to at least 100 MeV using
the Chiplr beam

 We also have several other instruments including a DT generator, a DD generator, AmBe sources,
lanthanum bromide scintillators, silicon detectors, sSRAM detectors, many other beamlines etc.

* I’'m a 2nd year PhD student! We are still actively thinking of other methods we can try. If you have any
ideas or would like to get involved, please do contact us!
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Your PC ran into a problem and needs to restart. We're

just collecting some error info, and then we'll restart for
you.

20% complete

For more information about this issue and possible fixes, visit https://www.windows.com/stopcade

If you call a support person, give them this info:

Stop code: CRITICAL PROCESS DIED
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Event Generators

 Neutrino event generators simulate neutrino-nucleus 10 -
interactions o i
. 5 - e 1983 vp15'vD2 —
* Super-K uses NEUT, others also exist such as GENIEand ¢ 8- e e —
- — .0. e ° n
N uwro : — NEUT 5.4.0.1 b :
* Nuclear effects are a known problem: 61— o
Charge Exchange Y : :
Elastic 4 |
Scatitering L i
. 2 B
0_ 1 1 1 1 1 11 II 1 1 1 1 1 1 I| ]
1 10 2 2, 4 0°
Absorption W [GeV /cT

Charged hadron multiplicities predicted by
generators have poor agreement with data

Pion Production By T. Golan

In nature, interaction types are also not discretely split

and may be a combination of multiple, most notably in However, it is also important to have more

the shallow inelastic scattering region data to compare with
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