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Abstract

The neutrino oscillation is known as an important probe of physics beyond the Stan-
dard Model, which was first experimentally confirmed by the Super-Kamiokande (SK)
experiment in 1998. It suggests that neutrinos have masses and provides an opportunity
to investigate the properties of neutrinos and to search for the violation of CP symmetry
in the lepton sector.

In this thesis, we performed a joint neutrino oscillation analysis using the SK atmo-
spheric neutrinos and the T2K accelerator neutrinos for the first time in the history of
these experiments. We established a method to analyze the atmospheric neutrinos and
accelerator neutrinos in a single framework by taking into account the correlations of sys-
tematic uncertainties. Using this framework, we analyzed the SK-IV atmospheric neutrino
data corresponding to 3244.4 days of data taking and the T2K Run 1-10 data correspond-
ing to 1.97×1021 protons-on-target in the neutrino mode and 1.63×1021 protons-on-target
in the antineutrino mode.

The Bayesian analysis results showed improvements in the constraints of the CP phase
and neutrino mass ordering determination compared to the individual experiments. The
CP-conserving values of δcp (δcp = 0, π) are excluded at 2σ under the flat prior in δcp
and at 1.5σ under the flat prior in sin δcp. The CP-conserving value of the Jarlskog
invariant (Jcp = 0) is excluded at 2σ under both priors. The Jarlskog invariant is a
parameterization-independent measure of CP violation, and it is the first time in the
world that we consistently exclude the CP-conserving value of Jcp from the 2σ credible
intervals. The Bayes factor for the normal ordering over inverted ordering is computed
to be 8.98 ± 0.06 under the flat δcp prior, which corresponds to the significance level of
1.64σ. It suggests a moderate preference for normal ordering, but it is not enough to
claim a discovery.

This thesis also includes a variety of detailed discussions to understand the systematic
uncertainties in the analysis, the contribution of each sample, and future sensitivity, which
will be valuable input for future analysis.



Preface

The analyses presented in this thesis are the results of efforts by many people in the
Super-Kamiokande (SK) and T2K Collaborations although the thesis itself is written by
a single author. The contributions of the author are clarified in the following.

Chapters 1 to 3 contain reviews of the historical context of this analysis, theories,
experimental setups, and the detectors, which is necessary for understanding the analysis
carried out in this thesis but not part of the work done by the author.

Chapter 4 presents the Monte-Carlo (MC) simulations and the systematic uncertainty
models that are used in the joint oscillation analysis between the SK atmospheric neutrinos
and T2K accelerator neutrinos. Most of the MC and systematic uncertainty models were
taken from the analyses of individual experiments with some adaptions that are necessary
to take into account the correlations between the two experiments. The author contributed
to updating the systematic uncertainty estimations of the detector responses. The method
to take into account the correlations between the atmospheric and beam detector response
systematic uncertainties was originally developed by Dr. Adrien Blanchet and was adopted
by the author to reevaluate the correlations. The additional uncertainties due to the worse
PID performance in the low-momentum region were introduced by the author to cover
the data/MC excess in the atmospheric down-going events.

Chapter 5 presents the analysis method and sensitivity, which were originally devel-
oped and studied by the SK+T2K joint fit working group. The author introduced the
multicanonical method for improving the performance of Markov-Chain Monte Carlo with
the help of Dr. Lukas Berns. The sensitivity studies were updated by the author using
the improved systematic uncertainty models.

Chapter 6 presents the robustness test of the model. The framework of the robustness
study was developed by the T2K Collaboration, and the list of alternative models to be
studied was determined by the SK+T2K joint fit working group through discussions with
the neutrino interaction experts. The T2K near-detector side of the study was performed
by Dr. Ciro Riccio and the SK side of the study was performed by the author.

Chapters 7 and 8 present the Bayesian analysis results and various additional discus-
sions. A framework for calculating the posterior predictive p-values was developed by
Dr. Lukas Berns and the values were reevaluated by the author. All the other studies
presented in these chapters were performed by the author.

Chapter 9 presents the future sensitivities and prospects. The future sensitivity studies
assuming the expected statistic increase were performed by the author, but the Hyper-
Kamiokande (HK) sensitivities were made by the HK Collaboration.
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Chapter 1

Introduction

The elementary particles of nature have been the target of interest in a long history of
humans studying the world around us. In the 20th century, the Standard Model (SM) of
particle physics was rapidly developed and was very successful in describing most of the
phenomena observed in particle physics experiments within a single framework. However,
there are some phenomena that cannot be explained by the SM. For example, the SM
does not include a theory to describe gravity, which is one of the fundamental forces. In
addition, the SM cannot explain dark matter and dark energy, and a mechanism of the
baryon asymmetry of the Universe either.

Neutrinos are the second most abundant particles in the Universe next to photons and
are assumed to be massless and chargeless in the SM. However, in 1998, a phenomenon
called neutrino oscillation, in which neutrinos change their flavors while propagating, was
first experimentally confirmed by the Super-Kamiokande experiment [1]. The existence
of neutrino oscillation suggests that neutrinos have masses, and is inconsistent with the
assumptions in the SM. It therefore started a new era of searching for new physics beyond
the Standard Model in the neutrino sector.

Although the existence of neutrino oscillation itself has already been proved by many
experiments, it still provides us with various opportunities to search for new physics.
One of the open questions we try to investigate in this thesis is whether CP symmetry
is violated in the lepton sector, where C and P denote the charge conjugate and parity
conjugate, respectively. Although CP symmetry is known to be violated in the quark
sector [2, 3], it has never been experimentally proved in the lepton sector. Since CP
symmetry is one of the most fundamental symmetries, it is of great interest whether it is
violated in the lepton sector as well. If CP violation in the lepton sector is proved, it also
has the possibility of providing a key to understanding the origin of baryon asymmetry
in the Universe through scenarios such as leptogenesis [4].

In addition to the search for CP violation, there are several open questions in neutrino
oscillation physics. Although it was proved that neutrinos have non-zero masses, the
ordering of the three neutrino mass eigenstates (m1 < m2 < m3 or m3 < m1 < m2) is
still unknown, and this is called the neutrino mass ordering problem. The magnitude of
the neutrino flavor mixing angles, which define the conversion from the neutrino mass
eigenstates to the neutrino flavor eigenstates, is also of interest.

The Super-Kamiokande (SK) and the Tokai-to-Kamioka (T2K) experiments are neu-
trino oscillation experiments conducted in Japan and have been playing leading roles in
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the field of neutrino oscillation physics. These two experiments share the same water
Cherenkov detector, Super-Kamiokande, located in the Gifu prefecture. However, they
are independent collaborations and have been studying neutrinos from different sources
independently. SK started its operation in 1996 and has been observing neutrinos pro-
duced from natural sources such as the atmosphere around the Earth and the Sun. As
mentioned earlier, it is known as the experiment that confirmed neutrino oscillations for
the first time in the world. On the other hand, T2K started data taking in 2010 and
has been measuring the oscillations of muon neutrinos and antineutrinos produced at the
Japan Proton Accelerator Research Complex (J-PARC) in the Ibaraki prefecture. T2K
discovered the oscillation from muon neutrinos to electron neutrinos in 2013 [5], and has
the world’s best sensitivity to CP violation in the lepton sector [6].

In this thesis, we present a joint analysis between SK and T2K for the first time in the
history of these experiments. We establish a method to analyze the atmospheric neutrinos
and accelerator neutrinos in a single framework by correctly taking into account the cor-
relations of systematic uncertainties. Since these two neutrino oscillation measurements
are complementary to each other, the joint analysis of the two experiments is expected
to further improve the sensitivities to the open questions in neutrino oscillation physics
including CP violation, mass ordering, and the magnitude of neutrino mixing. Through
the joint analysis, we try to address these questions in this thesis.

This thesis is organized as follows. Chapter 2 describes the motivation of the joint
analysis, as well as the history and theoretical backgrounds of neutrino oscillation physics.
The electroweak model in the Standard Model is first reviewed, and then a minimal
extension is introduced to include the massive neutrinos and neutrino oscillations in the
model.

The experimental setup including the neutrino sources, detectors, and samples used
in the analysis are described in Chapter 3. The Monte-Carlo simulation and systematic
uncertainties used in the analysis are described in Chapter 4.

In Chapter 5, the analysis framework of joint analysis is introduced including the
statistical analysis methods and the fitting methods. The expected sensitivity of the joint
analysis is also studied using the simulated Monte-Carlo data set.

Chapter 6 describes the robustness test of our systematic uncertainty model. Here we
test whether there could be a bias in the oscillation parameter measurements when our
systematic uncertainty model is incorrect.

In Chapter 7, the results of the actual data analysis are presented. We perform a
Bayesian analysis based on the Markov-Chain Monte Carlo (MCMC) method and con-
struct credible intervals for the parameters of interest. The Bayes factors for the mass
ordering hypothesis and goodness of the fit are also tested. In Chapter 8, we discuss the
data fit results in more detail through studies of the contribution of each sample, the
systematic uncertainty constraints, and the CP-conserving hypothesis test. The future
sensitivities and prospects will also be discussed in Chapter 9. Finally, the conclusions of
the analyses performed in this thesis are described in Chapter 10.



Chapter 2

Physics of neutrinos

2.1 History of neutrino oscillations

2.1.1 Discovery of neutrinos

In 1914, Chadwick measured the energy spectrum of electrons emitted from the β de-
cay [7]. If one assumes that there are only electrons emitted from the beta decay and
that the recoil energy of the nucleus can be neglected, the electron should have energy
with a single peak near the mass difference of neutron and proton. However, Chadwick
discovered that the emitted electron has a continuous energy spectrum. A solution to
this problem was proposed by Pauli in 1930 in his famous letter; a new spin-1

2
particle

is produced together with the electron, which is nowadays known as a neutrino [8]. The
actual β decay can be described as the three-body decay process

n→ p+ e− + νe, (2.1)

where neutrinos carry away some energy and escape from the detectors.
After it was first predicted by Pauli, it took more than 20 years to directly observe

neutrinos. Reines and Cowan conducted experiments for detecting the neutrinos produced
at nuclear reactors using a water tank with dissolved CdCl2 [9, 10]. The experiments took
place in 1953 at the Hanford reactor and were later repeated in 1956 at the Savannah
River reactor. In these experiments, they confirmed the existence of neutrinos through
the detection of positrons and neutrons produced in the scattering process of electron
antineutrinos and protons

νe + p→ e+ + n, (2.2)

which is known as the inverse beta decay. The inverse beta decay process is being used
as an important process to detect neutrinos in many of the current neutrino experiments.

In 1962, groups from Columbia University and Brookhaven National Laboratory ob-
served muon neutrinos produced in the pion decay [11]

π± → µ± + (ν/ν). (2.3)

They confirmed that only muons are produced from the interaction of neutrinos produced
in the pion decay, which implies that the neutrinos observed here (νµ) are different from

11



2.1. History of neutrino oscillations 12

the ones observed in the previous experiments via the inverse beta decay (νe). From these
results, they confirmed that there are at least two types of neutrinos.

After the discovery of the τ lepton in 1975 [12], the existence of tau neutrino ντ was
postulated. In 2001, the DONUT experiment detected four ντ events with an estimated
background of 0.34±0.05, using an emulsion target [13]. The tau neutrinos were produced
in the decay of DS mesons into τ and ντ and the subsequent decay of τ into ντ using 800
GeV protons from the Fermilab Tevatron. With these results, all three flavors of neutrinos
(νe, νµ, ντ ) have been experimentally observed1.

2.1.2 Discovery of neutrino oscillation

Around 1968, Davis started searching for electron neutrinos produced in the thermonu-
clear reactions in the Sun (known as solar neutrinos). They used a detector based on the
reaction

37Cl + νe → e− + 37Ar, (2.4)

which was suggested by Pontecorvo and known as the chlorine-argon reaction [15, 16]. The
experiment led by Brookhaven National Laboratory used a 100,000-gallon chlorine-argon
neutrino detector in the Homestake Gold Mine, in Lead, South Dakota. The product of
the neutrino flux and cross-sections was measured to be

σ(37Cl + νe → e− + 37Ar) ≤ 0.3× 10−35 sec−1 per atom, (2.5)

which is smaller by approximately a factor of 7 than the predicted value of (2.0± 1.2)×
10−35 sec−1 per atom obtained from the Standard Solar Model2 [18]. This discrepancy
between the measurement and prediction was called the solar neutrino problem and trig-
gered discussions among physicists.

To explain the deficit in the observed number of neutrino events in the solar neutrino
experiment, Gribov and Pontecorvo (1968) suggested neutrino oscillation in which neu-
trinos change their types while traveling long distance [19]. Later, Wolfenstein (1978)
suggested that we should take into account the effect of the coherent scattering process
when considering the neutrino oscillation, which is now known as the matter effect [20].
This effect was further developed by Mikheyev and Smirnov (1985) [21] and called the
Mikheyev-Smirnov-Wolfenstein (MSW) effect.

The existence of neutrino oscillation was first experimentally proved by the Super-
Kamiokande experiment in 1998, through the measurement of neutrinos produced in the
atmosphere (known as atmospheric neutrinos) [1]. Although atmospheric neutrinos are
produced uniformly around the Earth, it was found that the number of νµ that come
from the opposite side of the Earth is fewer than the ones that come from the atmosphere
above the detector. This is due to the oscillation of νµ into ντ and the observed event
rates were consistent with the prediction assuming the two flavor νµ ↔ ντ oscillation.

1The number of neutrinos was determined to be 2.9840 ± 0.0082 by the LEP experiment through
the measurement of the total decay width of the Z resonance [14], which agrees well with the observed
generations of neutrinos.

2The latest measurement and prediction are 2.56±0.16±0.16 SNU and 8.46+0.87
−0.88 SNU, respectively [17].

Here SNU denotes the solar neutrino unit and is defined as 1 SNU = 10−37 captures/cm2/s.
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In 2002, Sudbury Neutrino Observatory measured solar neutrinos via the charged
current (CC) and neutral current (NC) reaction on deuterium (d) and elastic scattering
(ES) on electrons [22, 23]

νe + d→ p+ p+ e− (CC), (2.6)
νx + d→ p+ n+ νx (NC), (2.7)
νx + e− → e− + νx (ES). (2.8)

The CC reaction is only caused by νe while the NC and ES reactions can be caused by νµ
and ντ as well, which allowed them to study the deficit in νe event rates while ensuring
the total event rates of all the flavors of neutrinos are consistent with the prediction.
The observed neutrino flux showed clear proof of the appearance of νµ and ντ in the
solar neutrinos and an agreement of total neutrino flux with the prediction based on the
Standard Solar Model. In 2002, the KamLAND experiment also confirmed the deficit
of ν̄e events due to the neutrino oscillation using the neutrinos produced at the reactors
(known as reactor neutrinos) at the 99.95% confidence level [24].

Furthermore, the Tokai-to-Kamioka (T2K) experiment reported the evidence of νµ →
νe oscillation with a significance of 7.3σ by detecting 28 νe appearance signal events in
the νµ-dominant beam in 2014 [5]. In 2013, SK detected atmospheric ντ with a confidence
level of 3.8σ in the atmospheric neutrinos [25]. The OPERA experiment also detected
5 ντ appearance events in 2015 and confirmed νµ → ντ oscillation at a 5.1σ confidence
level [26]. With these results, all the oscillation (and non-oscillation) channels of νµ → να
for α = e, µ, τ were confirmed to exist.

2.2 Physics of neutrinos

2.2.1 Neutrinos in the Standard Model

The Standard Model (SM) of particle physics has been developed to describe the prop-
erties of elementary particles and the strong, weak, and electromagnetic interactions.
These three interactions can be described based on the gauge symmetry under SU(3)C ×
SU(2)L ×U(1)Y where C stands for color, L for left-handedness, and Y for hypercharge.

The strong interaction is described by the SU(3)C gauge theory, which is called the
Quantum chromodynamics (QCD). The theory for dealing with the electromagnetic and
weak interaction in a single framework has been developed by Glashow, Salam, and Wein-
berg in the 1960s [27, 28, 29]. This is called the electroweak model (GSW model or WS
model) and it is associated with the SU(2)L × U(1)Y gauge symmetry.

The elementary particles described by the SM are classified into three groups: fermions,
gauge bosons, and the Higgs boson. The fermions have a half spin in the unit of Planck’s
constant ℏ and compose the matter around us. Among the fermions, particles that par-
ticipate in QCD are called quarks, and the others that are involved in the electroweak
interaction but not in the strong interaction are called leptons. The gauge bosons are
introduced as spin-1 force-carrying particles in each gauge symmetry. Finally, the Higgs
boson, a spin-0 scalar particle, provides a mechanism for the gauge bosons and fermions to
obtain their mass via spontaneous symmetry breaking. In the following, the electroweak
model in the lepton sector is briefly reviewed.
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In the electroweak model, left-handed neutrinos and their counterpart left-handed
charged leptons form doublets, while right-handed charged leptons form singlets under
the SU(2)L × U(1)Y gauge symmetry:

(
νeL
eL

)
,

(
νµL
µL

)
,

(
ντL
τL

)
, eR, µR, τR. (2.9)

The right-handed neutrinos have never been experimentally observed, and only the left-
handed neutrinos are included in the SM3.

Let us denote the left-handed lepton doubet as Lℓ =
(
νℓL ℓL

)T for ℓ = e, µ, τ and the
electroweak Lagrangian density can be written as

Lℓ = LℓDµγ
µLℓ + ℓRiγ

µ∂µℓR. (2.10)

The covariant derivative is defined as

Dµ := ∂µ − i

(
3∑

a=1

gW a
µ

σa

2
− 1

2
g′Bµ

)
, (2.11)

where W a
µ and Bµ are the gauge bosons of SU(2)L and U(1)Y , respectively. σa(a = 1, 2, 3)

are Pauli matrices which are the three generators of the SU(2) group, and g, g′ are the
coupling constants. To better describe the observed interactions, these gauge bosons can
be rewritten as

W±
µ =

W 1
µ ∓ iW 2

µ

2
√
2

, (2.12)
(
Zµ

Aµ

)
=

(
cos θW − sin θW
sin θW cos θW

)(
W 3

µ

Bµ

)
, (2.13)

where θW is the Weinberg angle (weak mixing angle) which defines the mixture between
SU(2)L and U(1)Y and is measured to be [17]:

sin2 θW ≃ 0.23. (2.14)

Using these notations, the Lagrangian density can also be rewritten as

Lℓ = νℓLi��∂νℓL + ℓi��∂ℓ+W+
µ J

µ
+ +W−

µ J
µ
− + ZµJ

µ
Z + AµJ

µ
EM, (2.15)

where the currents are given as

Jµ
+ =

g√
2
νℓLγ

µℓL, (2.16)

Jµ
− = (Jµ

+)
† =

g√
2
ℓLγ

µνℓL, (2.17)

Jµ
Z =

g

cos θW

[
1

2
νℓLγ

µνℓL − 1

2
ℓLγ

µℓL + sin2 θW ℓγ
µℓ

]
, (2.18)

Jµ
EM = −ℓγµℓ. (2.19)

3The existence of right-handed neutrinos is suggested from the observation of neutrino oscillations as
discussed in Section 2.2.2.
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In conclusion, the weak interaction is mediated by either chargedW± bosons or charge-
less Z bosons, and the electromagnetic interaction is mediated by the photon field A. The
weak interaction mediated by W± is called the “charged current” (CC) interaction as it
does not conserve the charge of incoming and outgoing leptons in the process. When the
particles exchange Z, the interaction is called the “neutral current” (NC) interaction.

2.2.2 Neutrino mass

The masses of the charged leptons are generated via a Yukawa coupling of the right-handed
charged lepton ℓR and left-handed lepton doublet LL with the Higgs doublet ϕ

LYukawa,ℓ = −
e,µ,τ∑

α,β

Y ℓ
αβLαLϕℓβR + h.c., (2.20)

where Y ℓ
αβ is the Yukawa-coupling constant and h.c. is an abbreviation for the Hermitian

conjugate. Since the SM does not contain right-handed neutrinos, the Yukawa coupling
cannot be built for neutrinos, and they are assumed to be massless. Nevertheless, it was
found that neutrinos actually have non-zero masses through the observation of neutrino
oscillation [1].

One of the simplest extensions of the SM to include non-zero neutrino masses is to
introduce right-handed neutrinos and add a neutrino mass term. The right-handed neu-
trinos are introduced as the gauge singlets (νeR, νµR, and ντR) and do not participate in
any of the SM interactions4.

Let us consider the Lagrangian density of Yukawa couplings between Higgs and the
neutrinos:

LYukawa,ν = −
e,µ,τ∑

α,β

Y ν
αβLαLϕ̃νβR + h.c.. (2.21)

After spontaneous symmetry breaking, the Higgs doublet in the unitary gauge is

ϕ =
1√
2

(
0

v +H

)
, ϕ̃ ≡ iσ2ϕ∗ =

1√
2

(
v +H

0

)
(2.22)

and the Yukawa Lagrangian can be written in the matrix format:

LYukawa,ν = −v +H√
2
νLY

ννR + h.c., (2.23)

where

νL =



νeL
νµL
ντL


 and νR =



νeR
νµR
ντR


 (2.24)

4They are called sterile neutrinos as they do not even participate in the weak interaction. Theoretically,
any number of right-handed neutrinos can be introduced in the model [17], but here the number is fixed
to be three for simplicity.
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are the chiral spinors of neutrino’s weak eigenstates. The matrix Y ν of neutrino Yukawa
couplings can be diagonalized with two unitary matrices V ν

L and V ν
R as

V ν†
L Y νV ν

R = Y ′ν where Y ′ν
ij = yνi δij (i, j = 1, 2, 3), (2.25)

and the chiral spinors of neutrino mass eigenstates can be denoted as

ν
(m)
L = V ν†

L νL =



ν
(m)
1L

ν
(m)
2L

ν
(m)
3L


 , ν

(m)
R = V ν†

R νR =



ν
(m)
1R

ν
(m)
2R

ν
(m)
3R


 . (2.26)

Finally, denoting νk = νkL + νkR, we obtain

LYukawa,ν = −v +H√
2

3∑

k=1

yνkν
(m)
kL ν

(m)
kR + h.c. (2.27)

= −
3∑

k=1

yνkv√
2
ν
(m)
k ν

(m)
k −

3∑

k=1

yνk√
2
ν
(m)
k ν

(m)
k H, (2.28)

which gives the neutrino masses of

mk =
yνkv√
2

(k = 1, 2, 3). (2.29)

Therefore, the neutrino masses are proportional to the Higgs vacuum expectation value v
and the eigenvalues of the Yukawa coupling matrix yνk .

Although the neutrino masses have not been directly measured, the current best upper
limit of the neutrino mass is set to be mν < 0.8 eV/c2 (90% CL) by the Karlsruhe Tritium
Neutrino (KATRIN) experiment [30]. The fact that neutrinos have significantly small
mass implies that yνk is very small compared to the other fermions, but there is no clear
explanation of why.

It is also possible to introduce Majorana neutrinos which satisfy the Majorana condi-
tion

ψ = ψc := Cψ
T
, (2.30)

where C is the charge conjugate. With the Majorana neutrinos, we can form the Majorana
mass term

LM
mass = −1

2
m (νcLνL + νLν

c
L) , (2.31)

and the smallness of the neutrino masses can be explained naturally by the see-saw mech-
anism [31, 32, 33]. However, the neutrino oscillation experiments do not have sensitivities
to the neutrino types (Dirac or Majorana) as the Majorana phases do not participate in
the oscillation probabilities [34]. Therefore, we will treat neutrinos as Dirac particles and
ignore the Majorana phases in the following sections.
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2.2.3 Neutrino mixing

Using the formalization in Eq. (2.26) (and its equivalent for the charged leptons), the
charged current of leptons can be written as

Jµ
+ =

g√
2
νLγ

µℓL =
g√
2
ν
(m)
L V ν†

L γµV ℓ
Lℓ

(m)
L . (2.32)

Denoting U = V ℓ†
L V

ν
L and redefining the neutrino flavor eigenstates as ν(f)L := Uν

(m)
L =

V ℓ†
L νL, the current becomes

Jµ
+ =

g√
2
ν
(m)
L U †γµℓ(m)

L =
g√
2
ν
(f)
L γµℓ

(m)
L , (2.33)

which is the same format as the standard notation of the leptonic charged current in the
SM. The unitary matrix U = V ℓ†

L V
ν
L is known as the Pontecorvo-Maki-Nakagawa-Sakata

(PMNS) matrix [35]:


νe
νµ
ντ


 = U



ν1
ν2
ν3


 =



Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3





ν1
ν2
ν3


 , (2.34)

which defines the conversion between the flavor eigenstates and mass eigenstates5.
Let us think about the number of free parameters in the PMNS matrix. In general, an

n×n unitary matrix has 2n2−n2 = n2 independent real parameters where n2 parameters
are constrained by the unitary condition UU † = I. These parameters can be divided
into n(n − 1)/2 mixing angles and n(n + 1)/2 phase parameters6. In addition, 2n − 1
phases can be absorbed by rephasing the lepton fields and they do not appear as physical
observables. It therefore leaves n(n+ 1)/2− (2n− 1) = (n− 1)(n− 2)/2 physical phases
that cannot be absorbed. Since the PMNS matrix has a dimension of 3× 3, it has three
mixing angles and one physical phase.

Denoting these angle and phase parameters as θ12, θ13, θ23, and δcp, it is convenient to
rewrite the PMNS matrix as

U =



1 0 0
0 c23 s23
0 −s23 c23






c13 0 s13e
−iδcp

0 1 0
−s13eiδcp 0 c13






c12 s12 0
−s12 c12 0
0 0 1


 (2.35)

=




c12c13 s12c13 s13e
−iδcp

−s12c23 − c12s13s23e
iδcp c12c23 − s12s13s23e

iδcp c13s23
s12s23 − c12s13c23e

iδcp −c12s23 − s12s13c23e
iδcp c13c23


 , (2.36)

where cij ≡ cos θij and sij ≡ sin θij. The three mixing angles can be defined in the first
quadrant θij ∈ [0, π/2] without losing generality. δcp is known as the CP-violating phase
and it takes a value in the range δcp ∈ [−π, π].

5The subscripts for the left-handedness L, flavor state (f), and mass state (m) are removed for
simplicity.

6The number of angles in the n × n unitary matrix is equal to the number of parameters in a real
n× n orthogonal matrix.
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In the SM, only the charged current interaction LCC has the possibility of violating
CP conservation. It can be confirmed by applying the CP conversion to LCC as

LCC = − g√
2

[
νLU

†γµℓLW
+
µ + ℓLUγ

µνLW
−
µ

]
(2.37)

CP−→ L′
CC = − g√

2

[
νLU

TγµℓLW
+
µ + ℓLU

∗γµνLW
−
µ

]
, (2.38)

where we use the following formula for the conversion

ψ1γ
µ(1− γ5)ψ2

CP−→ −ψ2γµ(1− γ5)ψ1, (2.39)

W±
µ

CP−→ −W∓µ. (2.40)

Comparison of Eq. (2.37) and Eq. (2.38) yields a fact that it can break CP conservation
when U has a physical complex phase and satisfies U∗ ̸= U . In other words, only the δcp
phase can bring CP violation in the lepton sector.

2.2.4 Neutrino oscillation in vacuum

Neutrino oscillation is a quantum phenomenon in which neutrinos change their flavors.
In this subsection, we will derive the neutrino oscillation probabilities using the PMNS
matrix.

Let us assume that a neutrino with flavor α is created in a charged-current weak
interaction process. The flavor eigenstate can be expressed as the superposition of mass
eigenstates using the PMNS matrix:

|να⟩ =
3∑

i=1

U∗
αi |νi⟩ (α = e, µ, τ). (2.41)

The mass eigenstates of neutrinos evolve in time as plane waves

|νi(t)⟩ = e−iEit |νi⟩ . (2.42)

Therefore, after traveling a distance L (L ≃ ct for relativistic neutrinos), Eq. (2.41) evolves
as

|να(t)⟩ =
∑

i

U∗
αi |νi(t)⟩ =

∑

i

U∗
αie

−iEit |νi⟩ . (2.43)

The transition probability of να → νβ is given by

P (να → νβ) = |⟨νβ|να(t)⟩|2 =
∣∣∣∣∣
∑

i

U∗
αiUβje

−iEit

∣∣∣∣∣

2

. (2.44)

For ultrarelativistic neutrinos, its energy can be approximated by Ei =
√

p2 +m2
i ≃

|p|+m2
i /2|p|. Denoting E ≡ |p| and ∆m2

ij := m2
i −m2

j , the oscillation probability is

P (
(−)
ν α → (−)

ν β) = δαβ − 4
∑

i<j

Re[UαiU
∗
βiU

∗
αjUβj] sin

2

(
∆m2

ijL

4E

)

(−)

+ 2
∑

i<j

Im[UαiU
∗
βiU

∗
αjUβj] sin

(
∆m2

ijL

2E

)
, (2.45)
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where the sign of the second term flips for the antineutrino case. It is sometimes called
the appearance oscillation probability as a neutrino with a different flavor appears during
the propagation. When α = β, it describes the non-oscillation (called the survival or
disappearance) probability

P (να → να) = P (να → να) = 1− 4
∑

i<j

∣∣UαiU
∗
αj

∣∣2 sin2

(
∆m2

ijL

4E

)
, (2.46)

which is identical for neutrinos and antineutrinos. This is because UαiU
∗
βiU

∗
αjUβj is real

for α = β and the second term in Eq. (2.45) becomes 0.
The leading terms of the dominant oscillation channels in the T2K accelerator neutrino

measurements and the SK atmospheric neutrino measurements can be written as

P (νµ → νe) ≃ sin2 θ23 sin
2 2θ13 sin

2

(
1.27∆m2

32L

E

)
, (2.47)

P (νµ → ντ ) ≃ sin2 2θ23 cos
4 θ13 sin

2

(
1.27∆m2

32L

E

)
, (2.48)

P (νµ → νµ) ≃ 1− 4 cos2 θ13 sin
2 θ23(1− cos2 θ13 sin

2 θ23) sin
2

(
1.27∆m2

32L

E

)
, (2.49)

P (νe → νe) ≃ 1− sin2 2θ13 sin
2

(
1.27∆m2

32L

E

)
, (2.50)

where the units of the squared mass difference ∆m2, distance L, and energy E are [eV2],
[km], and [GeV], respectively [36]. The constant 1.27 is obtained as

∆m2L

4E
=

eV2 · km
4 ·GeV

∆m2/eV2 · L/km
E/GeV

= 1.27× ∆m2/eV2 · L/km
E/GeV

, (2.51)

where cℏ = 197 fm ·MeV.
The oscillation probabilities for different flavors of neutrinos as a function of the neu-

trino energy Eν are shown in Fig. 2.1. It illustrates that the transition probability oscillates
as a function of the neutrino energy.

2.2.5 CP violation in neutrino oscillation

Since the disappearance probability is identical for neutrinos and antineutrinos as shown
in Eq. (2.46), the effect of CP violation does not appear in the disappearance channel.
As a consequence, CP violation is only observable through the appearance probabilities
P (να → νβ) and P (να → νβ).

In order to study CP violation in neutrino oscillation in a vacuum, it is convenient to
introduce the quantity ∆Pαβ as

∆Pαβ := P (να → νβ)− P (να → νβ)

= −16Jαβ sin

(
∆m2

32L

4Eν

)
sin

(
∆m2

31L

4Eν

)
sin

(
∆m2

21L

4Eν

)
, (2.52)
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as implemented by the third T2K oscillation analysis (MaCh3).232
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Figure 4: Beam neutrino oscillation probabilities at the T2K best-fit oscillation probabilities
from Neutrino 2020 [7] (Tab. 2) for the dominant ⌫µ (left) and intrinsic ⌫e (right) background
component of the T2K neutrino flux. Because the ⌫e background is about 1/100 of the ⌫µ flux at
the ⌫µ flux peak, the ⌫µ ! ⌫e appearance gives a stronger signal than the ⌫e ! ⌫e background
despite the small appearance probability. The thin lines show the binned calculation result.
The neutrino flux weighted by the neutrino energy (to model the leading order term of the cross
section) is shown in gray for context. The actual cross section falls o↵ more sharply at low
energies.

Table 2: Reference values of the neutrino oscillation parameters for various oscillation parameter
sets.

Parameters A (A’20) AIO (AIO’20) AIO2 T2K ⌫2020 [7]

�m2
21 7.53 ⇥ 10�5 eV2

�m2
32 (NO) / |�m2

31| (IO) 2.509 ⇥ 10�3 eV2 2.4337 ⇥ 10�3 eV2 2.494 ⇥ 10�3 eV2

sin2 ✓23 0.528 0.561

sin2 ✓12 (sin2 2✓12) 0.307 (0.851)
sin2 ✓13 (sin2 2✓13) 0.0218 (0.0853)

�CP �1.601 �1.97

Mass ordering Normal Inverted Inverted Normal

As shown in Figure 5, atmospheric neutrino oscillations have a considerably more compli-233

cated structure than their beam counterpart. At low energies, roughly below 1 GeV, the L/E234

dependence typical of PMNS oscillations induces rapid variations in the oscillation probability235

for small changes in either the neutrino path length or energy. Unlike beam neutrinos the true236

direction of atmospheric neutrinos is unknown and is inferred, rather poorly at low energies,237

from measurements of the directions of secondary particles from their interactions within the238

detector target. Furthermore, it is not possible to know at which point in the atmosphere any239

given neutrino was produced. Primary cosmic rays interactions that contribute most of the flux240

observed at Super-Kamiokande can occur anywhere in ⇠ 40 km of atmosphere above the Earth’s241

surface. These facts induce considerable uncertainty in the oscillation probability that should242

be applied to any particular simulated neutrino when trying to model the observed data. In243

12

Figure 2.1. νµ and νe oscillation probabilities assuming the values of neutrino mixing
angles, squared mass differences, and δcp obtained in Ref. [37]. The oscillation baseline
length of 295 km is assumed. The neutrino flux weighted by the neutrino energy is
overlaid to illustrate the relevant energy ranges for the T2K beam neutrinos. Since the
neutrino-nucleus interaction cross-section is roughly proportional to the neutrino energy,
the product of the neutrino flux and neutrino energy gives a rough approximation of the
shape of the observed event spectra at the detector.

where Jαβ := Im
[
Uα1U

∗
α2U

∗
β1Uβ2

]
is known as the Jarlskog invariant [38]. The condition

for CP violation in neutrino oscillation in a vacuum is written as ∆Pαβ ̸= 0.
The Jarlskog invariant itself is a parameterization-independent measure of CP viola-

tion, but under the PMNS parameterization, it can be written as

Jαβ = ±1

8
cos θ13 sin(2θ13) sin(2θ12) sin(2θ23) sin δcp

= ± sin θ13 cos
2 θ13 sin θ12 cos θ12 sin θ23 cos θ23 sin δcp, (2.53)

where ± denotes the cyclic (anti-cyclic) permutation of (α, β) = (e, µ), (µ, τ), (τ, e). From
Eq. (2.52) and Eq. (2.53), the necessary conditions to obtain CP violation in neutrino
oscillations are

θij ̸= 0 ∩ mi ̸= mj ∩ δcp ̸= 0, π, (2.54)

or equivalently,

mi ̸= mj ∩ Jαβ ̸= 0. (2.55)

2.2.6 Neutrino oscillation in matter

When neutrinos propagate through matter, the oscillation probabilities are affected by
the interaction between neutrinos and particles in matter such as electrons, protons, and
neutrons.

Neutrino propagation in matter can be described by the Schrödinger equation

i
d

dt
|ν(t)⟩ = H |ν(t)⟩ , H = H0 + V, (2.56)
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where the Hamiltonian H is split into the kinetic energy part H0 and matter potential
term V . H0 describes the free propagation of neutrinos in a vacuum and gives the vacuum
oscillation probability described in Eq. (2.56) when V = 0. The matter potential V is
induced by coherent forward scatterings of neutrinos and the electrons and nucleons in
the propagation medium [20]. The potential can be further broken down into the charged
current contribution VCC and the neutral current contribution VNC. VCC only affects the
electron neutrinos because usually matter contains only electrons and no muons nor taus,
and VNC affects all three flavors equivalently. The matter potential is diagonal in the
flavor basis and it can be written as

V = Vαδαβ = (VCC,α + VNC,α)δα,β (2.57)

VCC,α =

{√
2GFne(x) (α = e)

0 (α = µ, τ)
(2.58)

VNC,α = −GF√
2
nn(x) (α = e, µ, τ), (2.59)

where GF = 1.166 × 10−5 GeV−2 is the Fermi constant, and ne(x) and nn(x) are the
electron and neutron densities in the propagation medium.

Due to the corrections from the matter effect, the νµ → νe oscillation probability
formula in Eq. (2.47) is modified to be

PM(νµ → νe) ≃ sin2 θ23 sin
2 2θM sin2

(
1.27∆m2

ML

E

)
, (2.60)

where ∆m2
M and sin2 2θM are the effective oscillation parameters defined as

∆m2
M = ∆m2

32

√
(cos 2θ13 − α/∆m2

32)
2 + sin2 2θ13, (2.61)

sin2 2θM =
sin2 2θ13

(cos 2θ13 − α/∆m2
32)

2 + sin2 2θ13
, (2.62)

α = ±2
√
2GFneEν , (2.63)

where the ± sign of α is defined to be positive for neutrinos and negative for antineutrinos7.
Equation (2.61) implies that a resonance occurs when cos 2θ13 ≈ α/∆m2

32 depending
on the sign of α (neutrino or antineutrino) and the sign of ∆m2

32 = m2
3−m2

2 (m2 < m3 or
m3 < m2). In other words, the resonance effect only appears for neutrinos when m2 < m3

and only appears for antineutrinos when m3 < m2.
The νµ → νe (ν̄µ → ν̄e) oscillation probability approximated to first order in the

7Let us calculate α in more detail. The electron density ne can be written as ne = NA × Z
A × ρ cm−3

where NA = 6.02× 1023 mol−1 is the Avogadro constant, Z and A are the atomic number and the mass
number, respectively. Using the relation cm · eV = 1

1.97 × 105 and assuming A ≃ 2Z, α can be calculated
as α = 7.56× 10−5ρ(g/vm3)Eν(GeV). For the T2K oscillation analysis, we assume the constant density
of ρ = 2.6 g/cm3 [39].
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matter effect can be written as [40]

P (
(−)
ν µ → (−)

ν e) = 4c213s
2
13s

2
23 sin

2Φ31

+ 8c213s12s13s23(c12c23 cos δcp − s12s13s23) cosΦ32 sinΦ31 sinΦ21

(+)

− 8c213c12c23s12s13s23 sin δcp sinΦ32 sinΦ31 sinΦ21

+ 4s212c
2
13(c

2
12c

2
23 + s212s

2
23s

2
13 − 2c12c23s12s13 cos δcp) sin

2Φ21

− 8c213s
2
13s

2
23

αL

4Eν

(1− 2s213) cosΦ32 sinΦ31

+ 8c213s
2
13s

2
23

α

∆m2
31

(1− 2s213) sin
2Φ31, (2.64)

where the abbreviations are defined as follows

cij ≡ cos θij, sij ≡ sin θij, Φij ≡
∆m2

ijL

4E
. (2.65)

We should note that the constant α (defined in Eq. (2.63)) in the last two terms in
Eq. (2.64) changes the sign for neutrinos and antineutrinos, as well as the term propor-
tional to sin δcp. In the neutrino oscillation in a vacuum, CP violation was simply defined
as the difference of the neutrino and antineutrino oscillation probabilities as described in
Eq. (2.52). However, when we take into account the matter effect, the oscillation prob-
abilities for neutrinos and antineutrinos are different even if δcp = 0, which makes the
search for CP violation more complex.

Therefore, instead of simply comparing the neutrino and antineutrino oscillation prob-
abilities as shown in Section 2.2.5, we rely on the PMNS parameterization and constrain
all the relevant oscillation parameters simultaneously. This is done by measuring both
the appearance and disappearance oscillation probabilities taking into account the con-
tribution of the matter effect.

2.3 Review of the neutrino oscillation analysis

2.3.1 Latest oscillation analysis results

It has been shown that the neutrino oscillation probabilities can be parametrized using
the mixing angles θij, squared mass differences ∆m2

ij, and the leptonic CP phase δcp. It
means that we can constrain these oscillation parameters through the neutrino oscillation
experiments.

Figure 2.2 shows the evolution of the constraints on the six oscillation parameters
(sin2 θ12, sin2 θ23, sin2 θ13, ∆m2

21, ∆m2
32, and δcp) that have been experimentally measured.

They are sorted in the order of the first measurements. These six parameters based on
the PMNS parametrization are in general regarded as the target of measurements in the
neutrino oscillation analysis.

Nowadays oscillation experiments can be divided into four categories depending on the
neutrino sources they use: solar neutrinos, atmospheric neutrinos, accelerator neutrinos,
and reactor antineutrinos. The current major neutrino oscillation experiments are listed
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Figure 1: The six oscillation parameters listed in the order they were first measured, and the evolution of
our understanding of them. Data comes from [8,31–40].

2.3 Role of Each Oscillation Parameter
Due to the rich phenomenology of neutrino oscillation physics, the human and planet sized oscillation
lengths, and wide range in available neutrino energies, the interplay of the six oscillation parameters
is quite complicated. The history of their measurements is shown in Fig. 1. The six oscillation
parameters a�ect oscillations in particular ways discussed here.

�m2
31 Neutrino oscillation experiments are only sensitive to the di�erence of mass squareds since

neutrino oscillations occur from the relative accumulated phase. Given three neutrinos, there are
thus two degrees-of-freedom often quantified as �m2

31 and �m2
21; �m2

32 then follows in a straight-
forward fashion as �m2

32 = �m2
31 ≠ �m2

21. �m2
31 is known as the atmospheric mass squared di�er-

ence and is known to be ≥ ±2.5 ◊ 10≠3 eV2. An oscillation maximum or minimum happens when
�m2L/(4E) ƒ nfi/2 where n is some integer; there are additional corrections due to the other �m2’s
as well as the matter e�ect. These �m2’s are sometimes referred to as frequencies since they dictate
when the probability for a neutrino to interact with a certain charged lepton is a maximum or a
minimum. Most experiments are probing the first oscillation maximum or minimum. This value for
�m2

31 corresponds to oscillations at a baseline of 500 m for 1 MeV neutrinos (e.g. reactor neutrinos)
or 500 km for 1 GeV neutrinos (e.g. accelerator or atmospheric neutrinos). There is an impressive
level of agreement on |�m2

31| among a total of seven experiments, reactor, accelerator, and atmo-

NF01 Topical Group Report Snowmass 2021

Figure 2.2. The evolution of constraints on the six neutrino oscillation parameters. The
mixing parameters are denoted as s2ij = sin2 θij. The unit for the squared mass difference
parameters is eV2. The figure is taken from Ref. [41].

in Table 2.1. These neutrino sources provide different energies of neutrino fluxes and
different oscillation baseline distances, which results in different sensitivities to the oscil-
lation parameters in each experiment. In the following, the latest status of the neutrino
oscillation parameter measurements is briefly reviewed.

Table 2.1. Neutrino sources of selected neutrino oscillation experiments. The baseline
length and mean neutrino energy are also listed for the accelerator-based long-baseline
oscillation experiments.

Experiment Neutrino source Reference Baseline and mean ν energy

T2K Accelerator [37] L = 295 km, ⟨Eν⟩ = 0.6 GeV
NOνA Accelerator [42] L = 810 km, ⟨Eν⟩ = 2.0 GeV
IceCube Atmospheric [43]
SK Atmospheric, Solar [36, 44]
Borexino Solar [45]
KamLAND Reactor, Solar [46]
RENO Reactor [47, 48]
Daya Bay Reactor [49]
Double Chooz Reactor [50]
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θ12 and ∆m2
21 The mixing angle θ12 and mass squared difference ∆m2

21 are known as
the solar parameters as they are relevant to the solar neutrino oscillation, but the reactor
antineutrino measurements can also constrain them. The sign of ∆m2

21 was determined
to be positive (i.e. m1 < m2) from the solar neutrino oscillation measurements by making
use of the matter effect8.

The best constraint comes from the KamLAND experiment [46] for ∆m2
21, while the

solar experiments have the best constraints on sin2 θ12. The latest constraints on these
parameters from KamLAND and the solar neutrino experiments are [17]

sin2 θ12 = 0.307+0.013
−0.012, (2.66)

∆m2
21 = 7.53± 0.18× 10−5 eV2. (2.67)

θ23 and ∆m2
32 The mixing angle θ23 and squared mass difference ∆m2

32 are known as the
atmospheric parameters as they are relevant to the atmospheric neutrino oscillation. The
accelerator-based neutrino oscillation experiments also have good sensitivities to these
parameters.

The atmospheric mixing angle θ23 is known to be close to maximal mixing (θ23 ∼ 45◦).
However, whether this parameter is above 45◦ or below 45◦ is still unknown, which is
called the octant problem and is one of the open questions in neutrino oscillation physics.
The octant of θ23 defines the amplitude of the neutrino flavor mixing in a mass eigenstate.
When θ23 is in the upper octant (θ23 > 45◦), the mass eigenstate ν3 (which has the least
νe contribution) has more νµ components, and it has more ντ components otherwise.

The atmospheric squared mass difference is measured to be [17]

∆m2
32 = m2

3 −m2
2 =

{
(2.453± 0.033)× 10−3 eV2

(−2.536± 0.034)× 10−3 eV2
(2.68)

from the accelerator and atmospheric neutrino experiments. The sign of ∆m2
32 is not

known because the leading terms in the oscillation probabilities (Eqs. (2.45) and (2.46))
are proportional to sin2 ∆m2

ijL

4E
, which does not give the sign of squared mass difference.

Therefore, there remains uncertainty about whether the neutrino masses are ordered as
m1 < m2 < m3 or m3 < m1 < m2. The former hypothesis is called the “normal ordering”
(NO) and the latter is called the “inverted ordering” (IO). Fig. 2.3 shows the illustration
of two possible mass orderings.

The comparison of the 90% confidence level regions in sin2 θ23-∆m2
32 assuming normal

ordering from some experiments is shown in Fig. 2.4. The results of the long baseline
neutrino oscillation experiments such as T2K and NOνA have the best sensitivities to
these atmospheric parameters. These results are overall very consistent but have slight
differences in the preferred region of ∆m2

32. For θ23, none of the experiments have a strong
preference for either of the octants.

θ13 The mixing angle θ13 is the reactor mixing angle. The constraints mostly come from
the reactor experiments such as Double Chooz [50], RENO [48, 47], and Daya Bay [49, 54].

8See for example Ref. [51].
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Δm221 ≃ 7.5 × 10−5 eV2

Δm232 ≃ 2.5 × 10−3 eV2

Normal ordering

Δm221 ≃ 7.5 × 10−5 eV2

Δm232 ≃ − 2.5 × 10−3 eV2

Inverted ordering
m21

m22

m23

m23

m21

m22
m2

ν

Figure 2.3. Scheme of the neutrino mass ordering hypotheses. The squared mass difference
values are taken from Ref. [17].
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Fig. 36 Comparison of the 68% and 90% confidence intervals from fits
to data from the Bayesian analysis (“Analysis A”) and the frequentist
analysis (“Analysis B”), discussed in Sect. 8.3. “Analysis B, A-like”
configures the frequentist analysis in the same way as the Bayesian

analysis, using the same binning at the FD and the same MCMC-based
ND analysis. The contours are extracted from fits that fix the neutrino
mass ordering to the normal ordering and apply the reactor constraint
on sin2 θ13

Other differences, like the non-Gaussian nature of parameters
included in the ND constraint or event-by-event vs. binned
oscillation probability calculation, had little effect. When the
frequentist analysis is configured to impose the constraints
from the ND MCMC analysis and bin the FD samples simi-
larly to the Bayesian analysis, these minor differences abate,
shown in Fig. 36. The uncertainty models of both analyses
were validated against each other for consistency and were
found to agree.

8.4 Comparisons with other experiments

In the global context of neutrino oscillation experiments,
these results provide leading constraints on both the atmo-
spheric oscillation parameters, ∆m2

32 and sin2 θ23, and the
CP-violating phase, δCP. Whereas the other experiments pro-
file over parameters to calculate the ∆χ2, T2K instead cal-
culates the marginal likelihood for the ∆χ2. Figure 37 shows
the 90% confidence regions in sin2 θ23−∆m2

32 for the normal
ordering from the frequentist analysis, compared to NOvA,
SK and IceCube. There is general agreement between the
experiments, with T2K providing the strongest constraints
on both parameters. Figure 38 compares the 90% confidence
regions in sin2 θ23 − δCP for both orderings to NOvA and
SK. The confidence intervals on sin2 θ23 significantly over-
lap, as do the intervals for δCP. In the normal ordering, T2K
excludes large regions of the NOvA constraint at 90% con-
fidence interval, and NOvA excludes parts of T2K’s 90%
confidence interval. In the inverted ordering, the experiments
consistently favour the π < δCP < 2π region, with a weak

Fig. 37 Comparison of the 90% confidence regions in sin2 θ23−∆m2
32

for normal ordering with NOvA [138], Super-K [139], IceCube [140],
and MINOS+ [141]. The NOvA and IceCube constraints are obtained
with the FC method, but with different treatment of the mass order-
ing: NOvA takes the minimum over both mass orderings, whereas the
IceCube contours assume normal ordering. The T2K, Super-K, and
MINOS+ contours are computed with the constant ∆χ2 method, assum-
ing normal ordering

preference for the upper octant. Importantly, there is no sig-
nificant tension between the experiments, and more data is
needed to elucidate the matter. Furthermore, the joint oscil-
lation analyses with the NOvA and SK collaborations will
help address this.

123

Figure 2.4. Comaprison of the 90% confidence level regions in sin2 θ23-∆m2
32 among differ-

ent neutrino oscillation experiments. The normal ordering is assumed. The data is taken
from T2K [37], NOνA [42], SK [52], IceCube [43], and MINOS+ [53]. The figure is taken
from Ref. [37].

The current world average (the weighted average of these reactor experiments) is [17]

sin2 θ13 = 2.20± 0.07× 10−2. (2.69)

δcp The CP violation phase δcp is mostly constrained by the accelerator-based long-
baseline oscillation experiments. Figure 2.5 shows the comparison of 68% and 90% confi-
dence level regions in δcp-sin2 θ23 for the two leading long-baseline experiments T2K and
NOνA. T2K has a better constraint on δcp and has a best-fit point around δcp ≈ 3π/2.
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However, the current measurements show a large discrepancy in the preferred region of
δcp for normal ordering between T2K and NOνA, which is therefore of particular interest
in future analyses.

contained within the corresponding NOvA allowed region.
This outcome reflects in part the circumstance that T2K
observes a relatively more pronounced asymmetry in νe
versus ν̄e oscillations.

Although each experiment reports a mild preference
for NO, it has been suggested that a joint fit of the two
experiments might converge on an IO solution [94]. Some
authors have also explored the possibility that the
differences in the νμ → νe and ν̄μ → ν̄e rates seen by the
experiments are explained by additional nonstandard mat-
ter effects [95,96].
In conclusion, we have presented improved measure-

ments of oscillation parameters Δm2
32, sin

2 θ23, and δCP,
including an expanded data set and enhanced analysis
techniques with respect to previous publications. These
measurements continue to favor the normal mass ordering
and upper octant of sin2 θ23, as well as values of the
oscillation parameters that do not lead to a large asymmetry
in νμ → νe and ν̄μ → ν̄e oscillation rates.
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FIG. 6. The 68% and 90% confidence level contours in sin2 θ23
vs δCP in the (a) normal mass ordering and (b) inverted mass
ordering [82]. The cross denotes the NOvA best-fit point and
colored areas depict the 90% and 68% FC corrected allowed
regions for NOvA. Overlaid black solid-line and dashed-line
contours depict allowed regions reported by T2K [89].3
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Figure 2.5. Comaprison of the 68% and 90% confidence level regions in δcp-sin2 θ23 between
T2K [6] and NOνA [42] for each mass ordering. The figure is taken from Ref. [42].

2.3.2 Open questions in neutrino oscillation physics

The neutrino oscillation provides a key to search for CP violation in the lepton sector.
One of the unanswered questions in the present physics field is the origin of the baryon
number asymmetry of the Universe9, where it is mostly composed of matter, and only
a small fraction of antimatter exists. Although a specific mechanism to explain this
asymmetry is still unknown, three general conditions to be satisfied are known as the
Sakharov conditions [55]:

1. C and CP violation

2. Baryon number violation

3. Existence of non-equilibrium process.
9It is also known as the matter-antimatter asymmetry of the Universe.
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One of the possible scenarios to generate such an asymmetry is called the leptoge-
nesis [4]. In this scenario, the lepton number asymmetry is created by the Majorana
neutrinos and it is converted into the baryon number asymmetry through sphaleron pro-
cesses [56]. A study has shown that the baryon number asymmetry can be explained even
exclusively by CP violation in the Dirac phase in a certain scenario [57]. Therefore, if
CP violation in the lepton sector is proved through the precise measurements of neutrino
oscillations, it has the possibility of contributing to the explanation of the origin of the
baryon number asymmetry of the Universe.

In addition to the CP phase measurements, the fundamental properties of neutrinos,
such as the squared mass differences and mixing angles are the target of measurements
in the neutrino oscillation analysis. The mass ordering of neutrinos and the octant of θ23
are particularly of interest among them. In summary, there are three open questions in
neutrino oscillation physics:

• CP symmetry in the lepton sector

• Neutrino mass ordering (normal ordering or inverted ordering)

• Octant of θ23.

2.4 Motivation of the joint analysis of atmospheric and
accelerator neutrinos

As shown in Section 2.3, different experiments have different sensitivities to the oscillation
parameters. Therefore, it is valuable to combine the analyses of two or more experiments
to get better constraints on the parameters of interest. In this thesis, a joint analysis of
the SK atmospheric neutrinos and the T2K accelerator neutrinos is performed to try to
answer the open questions in neutrino oscillation physics.

2.4.1 Overview of the experiments

T2K beam neutrino analysis The T2K (Tokai-to-Kamioka) experiment is a long
baseline neutrino oscillation experiment ongoing in Japan. It aims to search for CP viola-
tion and measure the neutrino mixing angles and square mass differences such as sin2 θ23,
sin2 θ13, and ∆m2

32. T2K uses the neutrinos produced at the Japan Proton Accelerator
Research Complex (J-PARC) in Ibaraki and detects them at the Super-Kamiokande de-
tector which is located 295 km away from the neutrino production point. The schematic
view of the T2K experiment baseline is shown in Fig. 2.6. J-PARC provides very pure
νµ and ν̄µ neutrino sources, which allows us to precisely measure the νµ → νe (ν̄µ → ν̄e)
appearance probabilities as well as the νµ → νµ (ν̄µ → ν̄µ) disappearance probabilities.
The near detectors located near the neutrino production target are also used to measure
the neutrino spectra before the oscillation, which helps to constrain the uncertainties in
the neutrino flux and neutrino-nucleus interaction cross-sections.

As for the oscillation parameter sensitivities, T2K has good sensitivity to δcp through
the measurement of νµ → νe and ν̄µ → ν̄e appearance probabilities. In addition, the
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shape and normalization of the νµ → νµ (ν̄µ → ν̄µ) disappearance probabilities give the
sensitivities to sin2 θ23 and ∆m2

32. In the latest analysis [37], T2K reported that CP
conserving values of δcp = 0, π are excluded at more than 90% confidence level.

Super‐Kamiokande J‐PARCNear Detectors

Neutrino Beam

295 km

Mt. Noguchi‐Goro
2,924 m

Mt. Ikeno‐Yama
1,360 m

1,700 m below sea level

Figure 2.6. Schematic overview of the T2K experiment.

SK atmospheric neutrino analysis The Super-Kamiokande (SK) detector is a large
water Cherenkov detector located in Gifu, Japan. The detector is used to perform various
physics programs including not only the accelerator-based long-baseline neutrino oscilla-
tion measurements, but also the atmospheric and solar neutrino measurements [52, 36, 44],
diffuse supernova neutrino background (DSNB) searches [58], nucleon decay searches [59],
and dark matter searches [60].

The SK atmospheric neutrino analysis also has sensitivities to δcp and the atmospheric
oscillation parameters (∆m2

32, sin
2 θ23). Figure 2.7 shows the oscillation probabilities of

atmospheric muon neutrinos for normal ordering. The zenith angle (Θz) is defined as the
direction of neutrino origin to the normal vector on Earth’s surface at the location of SK.
Therefore, cosΘz > 0 corresponds to the down-going events and cosΘz < 0 corresponds
to the upward-going events. The propagation distance of atmospheric neutrinos depends
on the zenith angle and spans from ∼ 15 km for the down-going events to ∼ 13, 000 km
for the upward-going events. The oscillation probabilities (which are dependent on L/Eν)
are therefore dependent on both the neutrino energies and zenith angles as shown in
Fig. 2.7. The baseline distance for T2K is optimized to observe the first oscillation max-
imum, whereas SK has a more complex oscillation probability distribution as it includes
the following oscillation maxima. In the actual observation, however, only the overall
normalizations can be measured due to the detector resolutions. The sensitivity to δcp
comes from the normalization of event rates around the sub-GeV energy regions.

2.4.2 Motivation of the joint analysis

Although T2K has a good sensitivity to δcp, the contribution of δcp to the oscillation
probability is partially degenerated with the mass ordering effect, which makes the search
for CP violation more complicated. Fig. 2.8 shows the event rates of the observed νe
and ν̄e candidates in T2K overlaid with the expectation at different combinations of true
oscillation parameter values. The different markers in each ellipse correspond to different
values of δcp, the solid and dashed ellipses correspond to the normal and inverted ordering,
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quantity of underground water available to fill the detector
and maintain its temperature. These changes impact the
water transparency and subsequent performance of the
detector and therefore must be corrected through calibra-
tions. Since neutrino oscillations are a function of the
neutrino energy, a thorough understanding of the detector
energy scale is important for precision measurements.
At the same time the range of energies of interest to

atmospheric neutrino analysis spans from tens of MeV to
tens of TeV, eliminating the possibility of calibration
through radioactive isotopes. Accordingly, the energy scale
is calibrated using natural sidebands covering a variety of
energies. Neutral pions reconstructed from atmospheric

neutrino interactions provide a calibration point via the π0

momentum and stopping cosmic ray muons of various
momenta are used to measure photoelectron production as
a function of muon track length (Cherenkov angle) for
multi-GeV (sub-GeV) energies. Here the muon track length
is estimated using the distance between the entering vertex
and the position of the electron produced in its subsequent
decay. The energy spectrum of these Michel electrons
additionally serves as a low energy calibration point.
Figure 3 shows the absolute energy scale measurement
using each of these samples.
In the oscillation analysis the absolute energy scale

uncertainty is conservatively taken to be the value of the

FIG. 2. Oscillation probabilities for neutrinos (upper panels) and antineutrinos (lower panels) as a function of energy and zenith angle
assuming a normal mass hierarchy. Matter effects in the Earth produce the distortions in the neutrino figures between two and ten GeV,
which are not present in the antineutrino figures. Distortions in the νμ survival probability and enhancements in the νe appearance
probability occur primarily in angular regions corresponding to neutrino propagation across both the outer core and mantle regions
(cosine zenith < −0.9) and propagation through the mantle and crust (−0.9 < cosine zenith < −0.45). For an inverted hierarchy the
matter effects appear in the antineutrino figures instead. Here the oscillation parameters are taken to be Δm2

32 ¼ 2.5 × 10−3 eV2,
sin2 θ23 ¼ 0.5, sin2 θ13 ¼ 0.0219, and δCP ¼ 0.

K. ABE et al. PHYS. REV. D 97, 072001 (2018)

072001-6

Figure 2.7. νµ → νµ (left) and νµ → νe (right) oscillation probabilities for neutrinos
(top) and antineutrinos (bottom) as a function of true neutrino energy and direction (in
zenith angle) for normal mass ordering. The oscillation parameters are assumed to be
∆m2

32 = 2.5 × 10−3 eV2, sin2 θ23 = 0.5, sin2 θ13 = 0.0219, and δcp = 0. The figures are
taken from Ref. [52].

and different colors correspond to different values of sin2 θ23. The different values of δcp
appear as an anticorrelated change in the νe and ν̄e event rates (i.e. we will have more νe
events when δcp = −π/2 and more ν̄e events when δcp = π/2). The plot clearly illustrates
that the latest T2K data lies near the maximal violation of CP (δcp = −π/2). However,
some values of δcp are overlapped with different values of δcp in the other mass ordering.
If the data falls into this area, we cannot distinguish these overlapped δcp values. This is
called the degeneracy of δcp and mass ordering, and it limits the sensitivity to δcp in the
T2K oscillation analysis.

On the other hand, in the SK atmospheric neutrino analysis, the matter effect could
provide a key to distinguishing the neutrino mass ordering. Figure 2.7 demonstrates
that we have a distortion in the νµ → νe oscillation probability around a few GeV due
to the resonance effect discussed in Section 2.2.6. The distortion only happens in the
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Fig. 18 The number of ν-mode 1Re + 1Re1de versus ν-mode 1Re
events (top, leading sin δCP dependence) and ν-mode 1Re + 1Re1de +
ν-mode 1Re events above and below Erec = 550 MeV (bottom, lead-
ing cos δCP dependence), with the predicted number of events for var-
ious sets of oscillation parameters, as shown by the different coloured
ellipses. The values for the neutrino mass splitting are from the fre-
quentist analysis of data, where ∆m2

32 = 2.40 × 10−3 eV2 (∆m2
31 =

−2.46×10−3 eV2) is the best-fit point in the normal (inverted) ordering.
The uncertainties represent the 68% confidence interval for the mean
of a Poisson distribution given the observed data point. The underlaid
contours contain the predicted number of events for 68% of simulated
experiments, varying the systematic uncertainty parameters around the
best-fit values from the fit to ND data, and oscillation parameters set to
the best-fit values from a fit to data. The overlaid triangle point shows
the predicted number of events with both oscillation and systematic
uncertainty parameters at their data best-fit values

This analysis is the first to include data following the refur-
bishment of the FD in 2018, after the detector had been
prepared for the gadolinium phase [39] but still using the
ultrapure water without gadolinium, referred to as the SK-V
period. Following this work, T2K’s run 10 was under slightly
different detector conditions than that of the previous data
sets. This period had a larger background rate primarily at

O(MeV) energies, irrelevant to T2K’s analysis. During the
run, the water’s attenuation length, as measured by through-
going cosmic-ray muons, was found to be stable above 90 m,
consistent with data taken before the refurbishment, albeit
slightly longer. This suggests event reconstruction and detec-
tor uncertainties should similarly be consistent between the
data periods, and several cross-checks were performed to
confirm this.

Figure 15 shows such a comparison between stopping
cosmic-ray muon data and their Michel electrons taken dur-
ing the run 9 and run 10 data periods at SK. The similarity
of the distributions over both data sets highlights the stabil-
ity of the detector and reconstruction algorithm following
the refurbishment in 2018. Though only the reconstructed
Michel momentum distribution and the parent muon’s par-
ticle ID parameter are shown in the figure, distributions for
other reconstructed parameters used in the T2K event selec-
tion showed similar high consistency. Kolmogorov–Smirnov
tests of the expected events in run 10 confirmed this. This was
true for other calibration data as well as for atmospheric neu-
trino data, and small differences in these distributions were
within current uncertainties.

Good detector stability was also found for the timing and
selection of events observed in the T2K beam. The distribu-
tion of event times relative to the start of the spill at J-PARC
is shown in Fig. 16 for events with minimal outer detec-
tor activity, labelled fully-contained events. Events from run
10 showed a 34.2 ns RMS relative to their nearest expected
bunch timing (dotted lines in the figure), consistent with that
from previous runs.

Amongst the 354 selected fully-contained events in run
10, 75 were selected as 1Rµ, 18 as 1Re, and there were no
new 1Re1de events for the analysis described in the next
section. The number of events in each selections is presented
in Sect. 8, Table 9.

8 Oscillation analysis

This section presents the three-flavour oscillation analysis
from the full data set presented in Fig. 17, including the con-
straints from the ND analysis in Sect. 6. The analyses at
the FD are first introduced, followed by the constraints on
the oscillation parameters from the Bayesian and frequentist
data analyses in Sects. 8.1 and 8.2, respectively. The compar-
ison of the Bayesian and frequentist analyses are presented
in Sect. 8.3, and the new result is put in the context of current
world data in Sect. 8.4. The results presented in this section
include the uncertainty inflation procedure from simulated
data studies mentioned in Sect. 5.3, whose results are dis-
cussed in detail later in Sect. 9 and Appendix B.

The impact of δCP on the number of events in the selec-
tions is shown in Table 9, where there is a relatively small

123

Figure 2.8. Number of observed νe candidate events and ν̄e candidate events with expec-
tation at the several combinations of the true oscillation parameters. The error bars on
the data point show the statistical errors. The figure is taken from Ref. [37].

neutrino oscillations if the true mass ordering is normal, while it only happens in the
antineutrino oscillations when the inverted ordering is true. Therefore, it may be possible
that combining these two experiments could solve the degeneracy between δcp and mass
ordering, and improve the sensitivities.

In addition, sensitivities of the neutrino oscillation experiments are in general limited
by the statistical uncertainties. It is therefore beneficial to combine the data from two
experiments simply in terms of the increase in the statistics. It is also possible to apply
the T2K near detector constraints to the SK atmospheric neutrino analysis to better
constrain the neutrino cross-section systematic uncertainties.

In summary, the first joint analysis is performed using the T2K accelerator neutrinos
and the SK atmospheric neutrinos in this thesis. There are three main motivations for
performing the joint analysis between T2K accelerator neutrinos and SK atmospheric
neutrinos:

1. Solve the degeneracy between δcp and mass ordering

2. Increase the data statistics

3. Constrain the systematic uncertainties better



Chapter 3

Experimental setup

3.1 Neutrino sources
In this thesis, we perform a joint analysis of the atmospheric neutrinos and the accelerator
neutrinos. This section presents a description of each neutrino source.

3.1.1 Atmospheric neutrinos

The primary cosmic rays The atmospheric neutrinos are produced by the primary
cosmic rays hitting the nucleons in the atmosphere of the Earth. The primary cosmic
rays are dominated by the protons (≈ 85%), but have some contributions from α-particles
(≈ 11%), electrons (≈ 2%), and heavier nuclei (≈ 2%) as well. The fluxes of these cosmic
rays can be directly measured by experiments in space (e.g. on the international space
station [61]) or balloons [62]. Since the primary cosmic rays are composed of charged
particles, their trajectories can be affected by magnetic fields. Two types of effects are
known to modulate their fluxes. One of them is the solar activity, which suppresses the
flux of lower energy (⪅ 10 GeV) cosmic rays reaching the Earth [63]. Since solar activity
has a periodicity of 11 years, it gives an anticorrelated 11-year periodic effect to the cosmic
ray flux. The second effect is the geomagnetic field of the Earth, which causes both the
latitude (the cosmic ray flux is larger near the geomagnetic poles) and longitude effects
(the cosmic ray flux is larger for east-going particles). The latter is especially called
the “east-west effect” and was experimentally observed [64]. These effects are taken into
account in the calculation of the atmospheric neutrino flux.

Production of atmospheric neutrinos The primary cosmic rays reaching the atmo-
sphere interact with nucleons and produce secondary particles such as pions and kaons,
which decay into neutrinos. The dominant decay chains are

π± → µ± + νµ(ν̄µ), (3.1)
K± → µ± + νµ(ν̄µ), (3.2)
KL → π∓ + µ± + νµ(ν̄µ), (3.3)
KL → π∓ + e± + νe(ν̄e), (3.4)

31
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which are then followed by the muon decays

µ± → e± + νe(ν̄e) + ν̄µ(νµ). (3.5)

The subsequent decay chains of charged pions (kaons) and muons produce a roughly twice
larger flux of muon neutrinos compared to that of electron neutrinos

N(νµ) +N(ν̄µ)

N(νe) +N(ν̄e)
≈ 2. (3.6)

However, the contribution of electron neutrinos from the muon decays is suppressed above
a few GeV because the muon with higher energies can reach the surface of the Earth before
decaying into electrons and neutrinos. Therefore, at higher energies, the contribution from
the kaon decays becomes more important for the electron neutrino flux.

3.1.2 J-PARC accelerator neutrinos

In general, the neutrino beam generation has two main steps: acceleration of the protons
and production of the neutrinos. At J-PARC, the former step is done by a subsequent
chain of three accelerators, and the latter is done at the neutrino beamline. The J-PARC
proton accelerator consists of three accelerators: a linear accelerator (LINAC), a rapid-
cycling synchrotron (RCS), and the main ring (MR) synchrotron [65]. A H− ion (1 proton
and 2 electrons) is first injected into LINAC and is accelerated up to 400 MeV. Then it
is converted to H+ (proton) by removing the two electrons using the charge-stripping
foils. The proton beam is accelerated up to 3 GeV by the RCS and to 30 GeV by the
MR, and provided to each experimental facility including the neutrino beamline. The
J-PARC accelerator can produce proton beam spills with a time spread of ∼ 5 µsec at
the repetition rate of 2.48 s (0.4 Hz). Each spill has an 8-bunch structure with a narrow
bunch width (∼ 15 ns), which helps us to identify the events that originated from the
beam neutrinos. By requiring the timing cut, most of the background events (e.g. cosmic
rays and atmospheric neutrinos) can be rejected at the first stage of the event selection
at the far detector.

Fig. 3.1 shows the schematic view of the neutrino beamline at J-PARC. The protons
injected from the MR strike a graphite target and create secondary pions and other
hadrons. These pions are focused by the three magnetic horns and decay inside the
96 m-long decay volume, producing muons and muon neutrinos in flight via the following
processes:

π± → µ± + νµ(ν̄µ). (3.7)

For 3 GeV or higher energy neutrinos, dominant contributions are from kaon decays such
as

K± → µ± + νµ(ν̄µ), (3.8)
K± → π0 + µ± + νµ(ν̄µ). (3.9)

Since the type of produced neutrinos (neutrino or antineutrino) depends on the charge
of the parent pion, we can produce a neutrino-dominant beam or antineutrino-dominant
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beam by focusing only pions and kaons with the selected charge. The polarity of the
magnetic field made by the horns for the neutrino-dominant beam mode is called the
forward horn current (FHC; +250 kA), and for the antineutrino-dominant beam mode,
it is called the reversed horn current (RHC; −250 kA). Although the neutrino beams
are dominated by νµ (ν̄µ) for FHC (RHC), there are some contaminations of the wrong-
sign neutrinos (ν̄ for FHC and ν for RHC) and electron neutrinos. The wrong-sign
neutrino background mainly comes from the imperfection of the horn focusing, including
the contaminations from pions produced outside the target and from forward-going wrong-
sign pions that are not de-focused by the magnetic field.

3 Horns

Target StationDecay VolumeBeam DumpNear Detectors

Muon Monitor
Target J-PARC 

MR

Primary 
Beamlineprotons

pions
muons
neutrinos

Figure 3.1. Schematic view of the J-PARC neutrino beamline.

Hadrons are stopped by a beam dump located 109 m downstream from the graphite
target. High-energy muons can penetrate the beam dump and are measured by the
muon monitor to monitor the two-dimensional profile of the beam direction and the beam
intensity [66]. The neutrino beam is directed to 2.5◦ off from the SK direction. This
off-axis angle provides us with a narrower neutrino energy spectrum than that at the
on-axis, which has a peak around the oscillation maximal point as shown in Fig. 3.2.
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Figure 3.2. T2K flux predictions at the far detector at different off-axis angles in an
arbitrary unit. The νµ → νe appearance and νµ → νµ disappearance probabilities are
shown in the top two panels.

3.2 Detectors
In this analysis, we use two sets of detectors. One is the Super-Kamiokadne detector
which is used for both the T2K beam and SK atmospheric neutrino measurements. The
other is the T2K near detector ND280 which is used to measure the T2K beam neutrinos
before they oscillate and to constrain the flux and cross-section systematic uncertainties.

3.2.1 Super-Kamiokande detector

3.2.1.1 Overview

The SK detector is located 1 km underground of Mt. Ikenoyama [67]. The detector is a
cylindrical tank with a height and a diameter of 41.4 m and 39.3 m, respectively. The
detector is filled with 50 kton of ultrapure water (and gadolinium since 2020) and is
equipped with Photo-Multiplier Tubes (PMT) on the wall. The detector consists of two
parts: the inner detector (ID) and the outer detector (OD). The ID has a height of 36.3 m
and a diameter of 33.8 m and is equipped with 11,129 inward-facing 20-inch PMTs. This
is used as the main target volume in the analysis. The OD surrounds the ID and has a
thickness of 2.2 m at the barrel and 2.06 m on the top and bottom. The OD is equipped
with 1,885 outward-facing 8-inch PMTs. It is used to detect the charged particles coming
from outside the detector or charged particles escaping from the ID. The schematic view
of the SK detector is shown in Fig. 3.3.
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Inner detector

Figure 2·1: Illustration of the SK detector, half-filled with water. The
SK detector resides in an excavated pit underneath Mount Ikenoyama,
accessed via tunnel. The figure shows the tunnel which connects the
control room and top dome areas, which are accessible during opera-
tion. The tank is divided into two regions, the inner detector (ID) and
outer detector (OD). Both regions are instrumented with photomulti-
plier tubes (PMTs) See text.

PMTs in the detector. The experiment proceeded: acrylic covers were installed on

the remaining PMTs, and the PMTs were re-distributed across the detector. The de-

tector operated in this configuration during the SK II phase until replacement PMTs

could be installed. Installation of replacement PMTs occurred in 2006, restoring the

detector to full operation for the SK III phase. The detector then operated stably

for 12 years. In 2008, SK underwent an electronics upgrade which did not require

the tank to be drained. The electronics upgrade marked the beginning of the SK IV

phase. In 2018, the detector was drained a third time for major refurbishment work,

including the installation of a new water system capable of recirculating gadolinium

in the detector’s water, PMT replacement, cleaning, and leak repair. Data taking

32

Outer detector

Figure 3.3. Schematic view of the Super-Kamiokande detector.

3.2.1.2 Cherenkov radiation

When a charged particle goes through a medium, it excites the atoms inside the medium
along its trajectory. The excited atoms emit light isotropically such that the waves of the
light cancel each other. However, when the charged particle moves faster than the speed of
light in the medium, the excited atoms emit deexcitation light continuously before being
canceled out, which makes a conical shape of light toward the direction of the charged
particle. This phenomenon is called the Cherenkov radiation, and its light is called the
Cherenkov light. It is used to detect the charged particles traversing the SK detector.
Since the conical light forms ring-shaped hit patterns when projected onto the detector
walls, these signals are often referred to as a ring in SK. Denoting the velocity of the
particle as β = v/c and the refractive index of the medium as n, the opening angle of the
Cherenkov light (θC) can be written as

cos θC =
c/n× t

βc× t
=

1

nβ
. (3.10)

The refractive index of pure water is n ≃ 1.34, so the opening angle is θC ∼ 42◦ when the
charged particle’s velocity is close to the speed of light β ∼ 1.

The condition to emit Cherenkov light is v > c/n (i.e. β > 1/n). Therefore, the
momentum threshold of the Cherenkov emission depends on the mass of the charged
particles (m) as

pC =
mc√
n2 − 1

, (3.11)

which is roughly pC = 1.12 ×m for pure water. The momentum thresholds for charged
particles of interest are summarized in Table 3.1. When charged particles have momentum
below the threshold, they cannot be detected as a Cherenkov light signal at SK. Pions
and muons can also be identified by detecting delayed signals from the decay electrons
even though their momentum is below the threshold.
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Table 3.1. Cherenkov thresholds for charged particles of interest. The particle masses are
taken from Ref. [17] and the threshold values are computed from Eq. (3.11).

Particle Mass [MeV/c2] Momentum threshold [MeV/c]

e± 0.511 0.573
µ± 105.7 118.4
π± 139.6 156.5
p 938.3 1052

3.2.1.3 Photo-Multiplier Tubes

The Cherenkov light is detected by the PMTs attached to the surface of the detector
walls. The effective photocathode coverage of the ID is around 40%. The schematic view
of the ID PMT and its quantum efficiency as a function of wavelength is shown in Fig. 3.4.
The quantum efficiency is the number of photoelectrons emitted from the photocathode
of the PMT divided by the number of photons reaching the surface of the cathode and is
about 21% at the peak. These PMTs are operated with a gain of 107, and the average
dark noise rate is about 3 kHz at a threshold of 0.25 photoelectron. The signals detected
at the PMTs are transported to the front-end electronics via 70 m coaxial cables.

Opaque black polyethylene telephthalate sheets
cover the gaps between the PMTs in the ID surface
(see Fig. 11). These sheets improve the optical
separation between the ID and OD and suppress
unwanted low-energy events due to residual radio-
activity occurring behind the PMTs. The reflectiv-
ity of the photocathode surface of PMTs and the
black sheet were measured, with results shown in
Fig. 12, along with the calculated values which are
used in Monte Carlo simulations.

Cables from each group of 3 PMTs are bundled
together. All cables run up the outer surface of
the PMT support structure, i.e., on the OD PMT
plane, pass through cable ports at the top of
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Fig. 9. Single photoelectron pulse height distribution. The peak
close to zero ADC count is due to PMT dark current.

Fig. 10. Relative transit time distribution for a typical PMT
tested with 410 nm wavelength light at the single photoelectron
intensity level.
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close to zero ADC count is due to PMT dark current.

Fig. 10. Relative transit time distribution for a typical PMT
tested with 410 nm wavelength light at the single photoelectron
intensity level.

S. Fukuda et al. / Nuclear Instruments and Methods in Physics Research A 501 (2003) 418–462428

(b) Quantum efficiency

Figure 3.4. Schematic view of the inner detector PMT and its quantum efficiency as a
function of the wavelength of the incoming light. The figures are taken from Ref. [67].

3.2.1.4 Electronics

The main function of the electronics is to convert the analog pulse signals obtained by
the PMTs into the digitized information of integrated charge and the arrival timing of the
signal. As the front-end electronics, SK uses the QTC-Based Electronics with Ethernet
(QBEE) [68].

QBEE has an application-specific integrated circuit (ASIC), the high-speed charge-to-
time converter (QTC) IWATSU CLC101, which converts the input signal to the special
pulse whose rising edge represents the timing and width represents the integrated charge,
respectively. The ASIC provides three output signals with different amplification ratios
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(i.e. different dynamic ranges), and a field-programable gate array (FPGA) selects one
with the most appropriate dynamic range. Therefore, it allows us to choose the best
dynamic range event-by-event. Another benefit of using QBEE is that we can obtain a
long data acquisition window for each event. It allows us to implement an additional
trigger that saves data in the time window of [35, 535] µs following the signal trigger.

3.2.1.5 Reconstruction

The SK reconstruction aims to convert the observed charge and timing information from
the PMT hits into the variables used in the analysis. The variables include the position
of the neutrino interaction vertex, number of rings, particle identification (PID), and
kinematics (direction and energy) of each reconstructed particle. For the PID, only three
particle hypotheses, electron, muon, and pion are considered.

The reconstruction tool used in the SK analysis is called fiTQun [36]. The fiTQun
reconstruction process consists of four steps: vertex pre-fit, PMT hit clustering, single-ring
reconstruction, and multi-ring reconstruction.

Vertex pre-fit and hist clustering The vertex pre-fit is a fast algorithm that can
search for the approximate position of the event vertex only from the timing information
of the PMTs. The pre-fit vertex found in this algorithm will be used as an input in the
following steps and will be fit again with higher precision. Using the pre-fit vertex, the
PMT hits are clustered based on the timing and separated into subevents which represent
the prompt signal and delayed signals. Since the timing measurements also depend on
the vertex position due to the time of flight, we need to find a vertex for each subevent
(e.g. a Michel electron can have a different vertex from the parent particle). Therefore,
the vertex pre-fitting step is applied to each hit cluster.

Single-ring fit The single-ring fit is then applied to each subevent where the particle’s
kinematics is reconstructed under different lepton PID hypotheses (i.e. e-like or µ-like).
The PID is determined by comparing the likelihood of the e-like hypothesis and the µ-like
hypothesis and taking the larger one. The misidentification rate of e/µ PID is less than
∼ 1% when the visible energy is Evis < 1330 MeV [36]. Here the visible energy is the
reconstructed momentum of the observed ring under the electron hypothesis (Evis := pe),
which represents approximately the total energy observed by the PMTs. When there is
more than one reconstructed ring, the visible energy is the sum of them (Evis :=

∑
pe).

Multi-ring fit The multi-ring fit aims to find events with more than one charged particle
(e.g. one lepton and 1 or more pions). The basic algorithm of the multi-ring fit is the same
as the single-ring fit, but here we repeat the fit by adding a new ring to the previous fit
hypothesis. In the multi-ring fit, a π+-like hypothesis is also included. The fit is repeated
until the likelihood will not be improved by the newly added ring, or the number of
rings reaches the limit of six. The results of these reconstructions such as the number of
rings, PID, and particle kinematics will be used in the sample classification and oscillation
analysis.
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Decay electron tagging Decay electron signals produced by the pion or muon decay
chains are tagged using the delayed signals. When neutrons produced in the neutrino
interaction are captured by protons in nuclei, they emit a gamma ray with 2.2 MeV,
which can be a background for the decay electron tagging. Therefore, the decay electron
signals are selected by requiring both the timing and the number of hits in the delayed
hit cluster to satisfy the condition as shown in Fig. 3.5.

Number of hits in the delayed hit cluster

Ti
m

e 
di

ffe
re

nc
e 

[
]
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Decay electron

Figure 3.5. Two-dimensional distributions of the time difference between the prompt
signal and the delayed signal and the number of hits within the 50 ns time window for
the delayed signals produced from the decay electrons and neutron captures. The events
under the purple line are selected as the decay electron candidates.

3.2.2 T2K near detector (ND280)

The T2K near detector complex, ND280, is located roughly 280 m downstream of the
graphite target. The schematic view of ND280 is shown in Fig. 3.6. ND280 consists
of several subdetectors placed in the magnet1 which provides a 0.2 T magnetic field so
that we can measure the charge and momentum of the particles produced in the neutrino
interactions. The description of each subdetector is given in the following.

FGD The Fine Grained Detectors (FGD) are plastic scintillator (and partially water)
target detectors [71]. There are two FGDs, upstream and downstream which are called
FGD1 and FGD2, respectively. FGDs consist of several sub-modules that are made with
fine-grained scintillator bars of size 184 cm× 0.96 cm× 0.96 cm that are oriented perpen-
dicular to the beam direction. One sub-module is composed of two orthogonal layers that
consist of 192 scintillator bars in the horizontal and vertical directions. While FGD1 has
fifteen sub-modules, FGD2 has seven modules and six water sub-modules with thin-walled

1The ND280 magnet was originally used in the UA1 experiment [69] and the NOMAD experiment [70].
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Figure 3.6. Schematic view of the T2K near detector ND280. The neutrino beam is
injected from the left-hand side of the figure.

hollow polycarbonate sheets filled with water. Therefore, by measuring the neutrino inter-
actions at both FGD1 and FGD2, we can measure the cross-sections on both the carbon
and oxygen targets. This is important for constraining the cross-section systematic un-
certainties at the far detector as our far detector SK is a water target.

TPC Three Time Projection Chambers (TPC) play critical roles in the tracking of the
charged particles produced from the neutrino interactions in FGDs. They are filled with
a mixture of Ar : CF4 : iC4H10 gasses (95%:3%:2%) [72], and a uniform electric field is
applied in a horizontal direction aligned with the magnetic field direction. When charged
particles pass through the TPC, they ionize the gas molecules and create electron-ion pairs
along its trajectory. Ionized electrons drift toward the anode and they are detected by
the detectors attached to the wall of the drift region (so-called Micromegas modules [73]).
We can measure the charged particles’ momentum from the trajectories’ curvature. By
combining the reconstructed momentum and energy loss along its trajectory, we can also
perform the PID. Figure 3.7 shows the distribution of energy loss (dE/dx) as a function
of the momentum for external muons crossing the detector or charged particles produced
from the neutrino interactions in ND280. It illustrates that the TPC has a very good
separation of muons and protons, while it is difficult to distinguish pions from muons as
they have almost the same dE/dx curves. A few low-energy electrons are also observed
but the separation efficiency becomes worse for them.

ECal The Electromagnetic Calorimeters (ECal) are composed of lead and plastic scin-
tillators and surround the tracking detectors (FGDs and TPCs) [74]. They provide addi-
tional PID information for the particles penetrating the TPCs in addition to the calori-
metric energies for the electromagnetic showers caused by electrons and gammas.
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Figure 30: Distribution of the energy loss as a function of
the momentum for negatively charged particles produced
in neutrino interactions, compared to the expected curves
for muons, electrons, protons, and pions.

Figure 31: Distribution of the energy loss as a function of
the momentum for positively charged particles produced
in neutrino interactions, compared to the expected curves
for muons, electrons, protons, and pions.
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Figure 30: Distribution of the energy loss as a function of
the momentum for negatively charged particles produced
in neutrino interactions, compared to the expected curves
for muons, electrons, protons, and pions.

Figure 31: Distribution of the energy loss as a function of
the momentum for positively charged particles produced
in neutrino interactions, compared to the expected curves
for muons, electrons, protons, and pions.
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(b) Positively charged particles

Figure 3.7. Distribution of the energy loss as a function of the momentum for the through-
going muons and charged particles produced from the neutrino interactions in ND280. For
comparison, expected curves for muons, electrons, protons, and pions are shown together.
The figures are taken from Ref. [72].

P0D The π0 detector (P0D) is located at the upstream of the tracker detectors. It
aims at observing neutral current interactions that contain π0 in the final state. The
central region, which is referred to as the water target region, is made from alternating
scintillator planes, water bags, and brass sheets [75]. Brass sheets are inserted to increase
the detector mass and to stop more gammas produced from the π0 decay, which allows
us to reconstruct the calorimetric energy of π0 with a higher resolution.

SMRD The Side Muon Range Detectors (SMRD) are placed around the magnet and
used to detect the high-energy muon tracks penetrating through the tracking detectors
and magnet [76].

3.3 Data set

3.3.1 Data set used in the analysis

In this analysis, we perform a simultaneous fit to both the SK atmospheric neutrinos and
the T2K accelerator neutrinos. For the SK atmospheric neutrinos, 18 samples from the
full SK-IV data are used, which corresponds to 3244.4 days of data taking [52]. The SK
operating period can be broken down into seven phases (I-VII). The SK-IV phase is the
longest one and contains roughly ∼ 46% of the data. More details of the SK data set will
be discussed in Section 9.1 including the differences between SK-IV and other phases.

The accumulated T2K data in terms of protons on target (POT) is shown in Fig. 3.8.
In this analysis, we use five samples from the T2K Run 1-10 data corresponding to 1.97×
1021 POT in FHC and 1.63× 1021 POT in RHC [37].

The description of the samples used in the analysis is given in the following. The
neutrino flavors can only be identified through the charged current (CC) interactions,
which in general produces one charged lepton (e±, µ±) and 0 or more pions. Therefore,
the sample classification aims to classify events with similar event topologies (i.e. the
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Fig. 1 The protons on target (POT) delivered to T2K by the MR over time, with the beam intensity overlaid. The ND280 analysis uses runs 2 to
9, and the INGRID and FD analyses use runs 1 to 10, with run-by-run POT listed in Table 1

Fig. 2 The INGRID on-axis ND, used to measure the neutrino beam
profile and rate [29]. The beam direction is shown as into the paper

ferent sub-detectors as shown in Fig. 3. The ND measures
5.6 m × 6.1 m × 7.6 m (width × height × length) around its
outer edges including the magnet with the coordinate conven-
tion being z pointing along the nominal neutrino beam axis,

Fig. 3 The ND280 off-axis ND, used to measure the neutrino flux and
interactions before long-baseline oscillations [24]. The detector coordi-
nates and beam direction are superimposed, with the sub-detectors are
labelled accordingly

with x and y being the horizontal and vertical directions,
respectively. The refurbished magnet from the UA1 [30,31]
and NOMAD [32] experiments at CERN provides a magnetic
field of 0.2 T, and the magnet yoke is instrumented with layers

123

Figure 3.8. The accumulated T2K data in terms of the protons on target (POT). The
history of the beam power is shown together with the red line. The figure is taken from
Ref. [37].

lepton types, number of pions, etc) by using the PID and the number of reconstructed
particles. In addition, the number of delayed signals is used to identify pions or muons
that produce a decay electron (denoted as de or dcy) in their decay chains. The samples
targeting the CC interactions with n pions are denoted as the CCnπ samples (e.g. CC0π,
CC1π). The neutral current (NC) interactions can also be used to detect neutrinos, but
these events are thought to be a background as they do not provide the flavor information
of the neutrino. More detailed descriptions of the neutrino-nucleus interactions will be
given in Section 4.3.

3.3.2 Atmospheric neutrino samples

In the SK atmospheric neutrino analysis, events are first classified into three categories:
Fully Contained (FC), Partially Contained (PC), and Upward-going Muon (UpMu). When
an event takes place inside the inner detector (ID) and leaves no Cherenkov light in the
outer detector (OD), it is classified as FC. An event is classified as PC when charged par-
ticles escape the ID and are detected in the OD. To increase the statistics for the events
coming from the opposite side of the Earth, we have an UpMu category which targets
the neutrino interactions that happened in the rock below the detector with the produced
muon track reaching the ID. These out-of-detector events are only selected for upward-
going events to avoid the contamination of cosmic ray backgrounds. The schematic views
of these three categories are shown in Fig. 3.9.

The event is then classified into 18 samples based on the number of rings, PID, and
other event topologies, as summarized in Table 3.2. Further details of the sample classi-
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The note is organized in the following way: section 3 gives a brief description of the di↵erent218

samples, focusing on the information relevant to understanding the discussion on the flux and219

interaction models. Section 4 describes the neutrino flux part of the model. The three sections220

after that cover the neutrino interaction part, the first one describing and explaining the choices221

made, and the next two describing the model for each of the two categories into which the222

samples were grouped together: high and low energy samples. The last section describes the223

remaining problems to address, and tests of the model considered to go from sensitivity studies224

to a data fit.225

3 Description of the samples226

The joint analysis uses all the samples from the o�cial T2K run 1-10 analysis (5 samples)227

and fiTQun SK-IV analysis (18 samples). This section gives a brief description of the di↵erent228

samples (event selection is discussed in another TN [3]), their true energy spectra and their229

breakdown by interaction mode as a function of the reconstructed variable used in analysis for230

each sample.231

3.1 Overview232

3.1.1 SK atmospheric samples233

This section is a description of the o�cial SK analysis, and not part of the work done by the234

joint fit working group.235

The 18 atmospheric samples are first divided into three categories, depending on the pattern of236

energy deposition in the di↵erent parts of the detector. The patterns corresponding to each of237

the 3 categories are schematically illustrated in Fig. 2: fully-contained (FC) events correspond238

to interactions in the inner detector (ID) with no significant energy deposition in the outer239

detector (OD), partially contained (PC) events also correspond to interactions in the ID but240

this time with an energy deposit in the OD, and upward going muons (Upmu) are muons coming241

from under the ID, produced by interactions of neutrinos in either the rock below the detector,242

or the OD water. Those three categories correspond to interactions of neutrinos of di↵erent243

energies as can be seen in section 3.2, with average true neutrino energies of order 1 GeV, 10244

GeV and 100 GeV for the FC, PC and Upmu samples respectively.245

Figure 2: The 3 categories of atmospheric samples: fully contained (FC), partially contained
(PC) and upward going muons (Upmu).

FC samples have the most sensitivity to neutrino oscillations, and are further divided in246

8

Figure 3.9. Three categories used in the SK atmospheric sample classification.

fication are given in the following.

Table 3.2. Summary of the atmospheric sample classification. See the text for more details
on the classification.

Sample name Category Selection

SubGeV elike 0de

Fully Contained (FC)

Sub-GeV
Single ring

e-like
0 decay-e

SubGeV elike 1de 1 decay-e

SubGeV mulike 0de

µ-like

0 decay-e

SubGeV mulike 1de 1 decay-e

SubGeV mulike 2de ≥ 2 decay-e

SubGeV pi0like Two rings Two e-like rings and pass Minv cut

MultiGeV elike nue

Multi-GeV

Single ring
e-like

≥ 1 decay-e

MultiGeV elike nuebar 0 decay-e

MultiGeV mulike µ-like

MultiRing elike nue

Multi rings
e-like

Pass MME likelihood cut and νe-like

MultiRing elike nuebar Pass MME likelihood cut and ν̄e-like

MultiRingOther Fail MME likelihood cut

MultiRing mulike µ-like

PCStop
Partially Contained (PC)

Smaller charge deposition in outer detector

PCThru Larger charge deposition in outer detector

UpStop mu

Up-going Muon (UpMu)

Stopping

UpThruNonShower mu Through-going non-showering

UpThruShower mu Through-going showering

3.3.2.1 Fully Contained

The FC events are broken down into two groups depending on the visible energy of the
events, sub-GeV (Evis < 1330 MeV) and multi-GeV (Evis > 1330 MeV), and further
divided into two groups based on the number of rings (single-ring or multi-ring).

Sub-GeV single-ring When a sub-GeV event has a single ring, it is classified into five
samples depending on the PID of the primary ring and the number of decay electrons:
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e-like 0 de and 1 de, and µ-like 0 de, 1 de, and ≥ 2 de samples. Since electrons do not have
a delayed signal, e-like 0 de and e-like 1 de samples are targetting the CC0π and CC1π
samples, respectively, where the delayed signal comes from the decay chain of pions. On
the other hand, muons can also contribute to the delayed signals, and therefore, the µ-like
0 de and 1 de samples are dominated by the CC0π events while the µ-like 2 de sample is
dominated by the CC1π events.

Sub-GeV two-rings When the FC sub-GeV event has two primary rings, we apply a π0

selection. When π0 decays into two gamma rays, these gamma rays cause electromagnetic
showers and are detected as e-like rings. Therefore, we require that both of the two rings
should be e-like and the reconstructed invariant mass (Minv) should be in the range
[85, 215] MeV (the π0 mass of 135 MeV with some residuals). The invariant mass cut is
necessary to reduce the coincidence background where we have two gamma (e-like) rings
by chance and make sure the two gammas originated from a single π0.

Multi-GeV single-ring The FC multi-GeV events are classified into single-ring and
multi-ring groups too. The single-ring events are classified into three samples depending
on the PID and number of the decay electrons: e-like νe (≥ 1 de) and ν̄e (0 de), and µ-like
samples. The event-basis separation of νe and ν̄e is difficult at SK as the detector is not
magnetized. However, it is important to separate them because the νe and ν̄e event rates
in the multi-GeV regions provide sensitivity for mass ordering. In general, the νe (ν̄e)
interaction produces π+ (π−), and π− is more likely to be captured by oxygen nuclei than
π+, which produces no decay electron. Therefore, we use the number of decay electrons
to separate the νe and ν̄e samples.

Multi-GeV multi-ring For the FC multi-GeV multi-ring events, we use the PID of the
most energetic ring to classify the e-like and µ-like events. Then, a special cut called the
Multi-GeV Multi-ring E-like cut (MME) is applied to the e-like events to reduce further
the CCνµ and NC backgrounds2. Reducing these non-CCνe backgrounds is also important
for the mass ordering sensitivity.

The MME cut consists of the e-like/other separation and νe/ν̄e separation. At the
first stage, a dedicated likelihood (Le/other) is constructed by calculating the probability
density functions (p.d.f.) of four input parameters and taking the ratio of p.d.f. under
the signal (CCνe and CCν̄e) and background (CCνµ and NC) hypotheses. The four input
parameters used in the MME likelihood constructions are

1. Fraction of the most energetic e-like ring to the total visible energy

2. Fraction of the π±-like ring to the total visible energy

3. Number of the decay electrons

4. Distance between the event vertex and the furthest decay electron vertex
2More details on the MME cut can be found in Refs. [52, 77].
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The obtained e-like/other separation likelihood distributions for data and MC are shown
in Fig. 3.10a. The events are classified into the multi-ring “other” sample when Le/other <
−0.25, and are regarded as passed the cut otherwise.

For the events that have passed the first stage of the MME cut, an additional cut is
applied to separate the νe-like and ν̄e-like events. Here we construct another likelihood
(Lνe/ν̄e) using the number of decay electrons, the number of rings, and the transverse
momentum of the most energetic ring. The constructed likelihood is shown in Fig. 3.10b.
The events are classified as νe-like when the likelihood is positive and as ν̄e-like otherwise.

PTEP 2019, 053F01 M. Jiang et al.

Fig. 9. Likelihood distribution used to separate SK-IV multi-ring events whose most energetic ring is e-like.
Error bars represent the statistical uncertainty of the data. Events with likelihood values larger than −0.25 are
designated multi-ring e-like, while those with lower values are termed multi-ring other.

Fig. 10. Likelihood distribution used to separate multi-ring e-like events into neutrino-like and antineutrino-
like subsamples. Error bars represent the statistical uncertainty of the data. Events with negative (positive)
likelihood values are designated ν̄e-like (νe-like).

Another important performance indicator for the multi-ring event reconstruction algorithm is the
separation of the neutrino and antineutrino components of the atmospheric neutrino sample, since
at multi-GeV energies they have the most sensitivity to the mass hierarchy. A two-stage likelihood
method has been developed to purify the neutrino and antineutrino components for multi-ring events.
The first stage of the separation is designed to extract CC νe + ν̄e interactions based on a likelihood
selection as in Ref. [29] using the APFit algorithm. Four variables, including the visible energy
fraction of the most energetic ring, the visible energy fraction of the most energetic charged pion-
like ring, the number of decay electrons, and the distance to the farthest decay electron normalized
by the total visible energy, are used as the inputs to the likelihood function. However, in the present
study the inputs have been replaced by the equivalent variables from the fiTQun reconstruction.
Events that pass this selection are classified as “multi-ring e-like” while those that fail are termed
“multi-ring other” as shown in Fig. 9. Both are used in the oscillation analysis discussed below.
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Fig. 9. Likelihood distribution used to separate SK-IV multi-ring events whose most energetic ring is e-like.
Error bars represent the statistical uncertainty of the data. Events with likelihood values larger than −0.25 are
designated multi-ring e-like, while those with lower values are termed multi-ring other.

Fig. 10. Likelihood distribution used to separate multi-ring e-like events into neutrino-like and antineutrino-
like subsamples. Error bars represent the statistical uncertainty of the data. Events with negative (positive)
likelihood values are designated ν̄e-like (νe-like).

Another important performance indicator for the multi-ring event reconstruction algorithm is the
separation of the neutrino and antineutrino components of the atmospheric neutrino sample, since
at multi-GeV energies they have the most sensitivity to the mass hierarchy. A two-stage likelihood
method has been developed to purify the neutrino and antineutrino components for multi-ring events.
The first stage of the separation is designed to extract CC νe + ν̄e interactions based on a likelihood
selection as in Ref. [29] using the APFit algorithm. Four variables, including the visible energy
fraction of the most energetic ring, the visible energy fraction of the most energetic charged pion-
like ring, the number of decay electrons, and the distance to the farthest decay electron normalized
by the total visible energy, are used as the inputs to the likelihood function. However, in the present
study the inputs have been replaced by the equivalent variables from the fiTQun reconstruction.
Events that pass this selection are classified as “multi-ring e-like” while those that fail are termed
“multi-ring other” as shown in Fig. 9. Both are used in the oscillation analysis discussed below.
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(b) νe and ν̄e separation

Figure 3.10. Likelihood distributions used in the atmospheric multi-GeV multi-ring e-like
sample classification. The figures are taken from Ref. [36].

3.3.2.2 Partially Contained and Upward-going Muon

The PC events are classified into PC stop and PC through-going depending on the amount
of energy deposition in the OD. The UpMu events are first classified into stopping and
through-going, and through-going events are further divided into showering and non-
showering samples. Some quality cuts are imposed on these samples to reduce the back-
grounds, including the energy cut and track length cut. More detailed descriptions can
be found in Refs. [78, 79].

The contributions of the true neutrino types in each sample for the simulated Monte
Carlo data set are summarized in Table 3.3. The purities in the multi-GeV single-ring or
multi-ring e-like ν̄e samples are still dominated by the νe events, but they contain a larger
fraction of the ν̄e events than their counterpart νe samples.

3.3.2.3 Sample binning

We use the reconstructed lepton momentum and the zenith angle cosΘz for the binning of
each sample as shown in Fig. 3.11. The different momentum binnings are used depending
on the samples. The number of the cosΘz bins is fixed to 10 except for the FC sub-GeV
e-like 1 de, µ-like 2 de, and π0-like samples where a single bin covers the entire cosΘz
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Table 3.3. Summary of the true neutrino type contributions in each atmospheric sam-
ple for the simulated MC data set. The opacity of the background color in each cell
corresponds to the fraction size of the component.

Sample νe ν̄e νµ ν̄µ ντ + ν̄τ NC

SubGeV elike 0de 0.724 0.230 0.009 0.003 0.002 0.032

SubGeV elike 1de 0.831 0.019 0.080 0.025 0.003 0.042

SubGeV mulike 0de 0.007 0.002 0.794 0.141 0.001 0.055

SubGeV mulike 1de 0.000 0.000 0.693 0.297 0.001 0.010

SubGeV mulike 2de 0.000 0.000 0.968 0.026 0.001 0.005

SubGeV pi0like 0.073 0.025 0.015 0.002 0.001 0.885

MultiGeV elike nue 0.713 0.073 0.053 0.005 0.076 0.081

MultiGeV elike nuebar 0.557 0.367 0.002 0.000 0.027 0.046

MultiGeV mulike 0.000 0.000 0.600 0.391 0.008 0.000

MultiRing elike nue 0.499 0.105 0.057 0.003 0.156 0.182

MultiRing elike nuebar 0.490 0.290 0.022 0.002 0.075 0.122

MultiRingOther 0.004 0.001 0.723 0.252 0.011 0.010

MultiRing mulike 0.195 0.016 0.319 0.027 0.222 0.224

PCStop 0.059 0.024 0.600 0.287 0.000 0.031

PCThru 0.005 0.002 0.644 0.348 0.000 0.004

UpStop mu 0.006 0.003 0.663 0.330 0.000 0.002

UpThruNonShower mu 0.006 0.002 0.676 0.323 0.000 0.001

UpThruShower mu 0.006 0.002 0.682 0.322 0.000 0.001

regions. A single momentum bin is used for the UpMu showering and non-showering
samples.

For reference, the SK-IV data distributions overlaid with the best-fit MC predictions
in the published SK atmospheric neutrino analysis are shown in Fig. 3.12. We should
note that the data and MC are not exactly the same as what is used in this analysis. The
difference between the published SK analysis and this analysis is detailed in Appendix F.

3.3.3 T2K beam neutrino far detector samples

The beam neutrino events at SK are classified into five samples depending on the neutrino
mode (FHC and RHC), PID, and the number of decay electrons. The selection steps for
these samples are summarized in Table 3.4 and described in more detail in the following.

Timing To select the neutrino events originating from the T2K neutrino beam, we first
apply the timing cut requiring the event should take place within the neutrino beam
bunch timing. Figure 3.13 shows the timing distributions of the fully contained events
overlaid with the expected beam bunch timing. It shows that the events from the T2K
neutrino beam data are distributed around the beam bunch timings. As a first step of
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Figure 7.2: Definition of the binning used in the neutrino oscillation analysis. FC:
405 bins, PC: 60 bins, Up-µ: 50 bins. The samples which is divided into 10 zenith
angle bins between -1 < cos ✓< 1 for FC and PC, -1 < cos ✓< 0 for UPMU are denoted
by white boxes, while no zenith angle bins are divided for the samples represented by
shaded boxes.

Multi-GeV Single-Ring e-like Sample

The multi-GeV single-ring e-like sample is divided into ⌫e-like and ⌫e-like samples by

considering the di↵erence between the interactions of ⌫e and ⌫e in water:

For CC ⌫e interaction:

⌫e + N ! e� + N 0+ ⇡+

ë µ+ + ⌫µ

ë e+ + ⌫e + ⌫µ

An decay electron (actually a positron) is produced finally.

For CC⌫e:

⌫e + N ! e+ + N 0 + ⇡� (7.1)

Figure 3.11. Summary of the sample binning for all the atmospheric samples. The
color of the box corresponds to the cosΘz binning: the black means a single cosΘz bin
covering [−1, 1] and the white means 10 bins with an equal bin width for cosΘz ∈ [−1, 1]
(cosΘz ∈ [−1, 0] for the UpMu samples). The vertical axis shows the momentum binning
of each sample where the momentum is expressed in the logarithmic scale. The figure is
taken from Ref. [78].

Table 3.4. Summary of the T2K beam sample classification.

Cut FHC/RHC 1Rµ FHC/RHC 1Re FHC 1Re1de

Min. Evis Evis > 30 MeV

Min. momentum pµ > 200 MeV pe > 100 MeV

Fiducial volume
dwall > 50 cm

dto-wall > 250 cm

dwall > 80 cm

dto-wall > 170 cm

dwall > 50 cm

dto-wall > 270 cm

Decay electron ≤ 1 = 0 = 1

Max. Erec - Erec < 1.25 GeV

Additional cut π+ rejection π0 rejection

the selection, fully contained events within these timing windows are selected.

Kinematics and fiducial volume We first require the event to have a single ring and
visible energy (Evis) larger than 30 MeV. The fiducial volume cut is defined using two pa-
rameters, dwall (distance from the vertex to the nearest detector wall) and dto-wall (distance
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Fig. 16. Data and MC comparisons for the SK-IV data divided into 18 analysis samples. The expanded FV,
where dwall > 50 cm, is shown here. Samples with more than one zenith angle bin are shown as zenith
angle distributions (second through fifth column) and other samples are shown as reconstructed momentum
distributions (first column). Cyan lines denote the best-fit MC assuming the normal hierarchy. Narrow panels
below each distribution show the ratio relative to the normal hierarchy MC. In all panels the error bars represent
the statistical uncertainty.

Fig. 17. Final event rates as a function of time since the start of SK-IV operations. The error bars are statistical.
Circles denote the fully contained event rate and upward-facing (downward-facing) triangles show the partially
contained (upward-going muon) event rates. The number in the parentheses for the fully contained event shows
the fiducial volume cut value. Orange (red) circles denote the fully contained event rate within the conventional
FV (new region).
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Figure 3.12. SK-IV atmospheric neutrino data distributions from the published SK IV
analysis [36] overlaid with the data best-fit MC predictions. Samples with more than
one cosine zenith bin are shown in the cosΘz binning and the others are shown in the
reconstructed momentum binning. These plots are only for reference, and the data and
MC are not exactly the same as what is used in this analysis. The figures are taken from
Ref. [36].

along the reconstructed direction to the nearest detector wall), with the threshold values
optimized differently for each sample as summarized in Table 3.4. dto-wall is defined to be
larger to make sure the charged particles travel enough distance to produce Cherenkov
light before reaching the detector wall.

PID and event topology The particle identification is then applied to separate e-like
and µ-like samples, using the likelihood ratio (log(Le/Lµ)) and reconstructed momentum
under the e-like hypothesis (pe) computed by the fiTQun single-ring fit. The distributions
of the single-ring e/µ PID discriminators are shown in Fig. 3.14.

For the FHC e-like samples, an additional cut on the number of decay electrons is
applied to separate CC0π and CC1π samples. For RHC e-like and FHC/RHC µ-like
samples, we have no CC1π-dedicated samples. The µ-like events with 1 de are also
included in the µ-like samples because muons can also produce decay electrons. Then,
a cut on the reconstructed neutrino energy is applied to the e-like samples to reduce
the π0 background and intrinsic beam νe (ν̄e) background which dominates the higher-
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Table 7 p-values comparing the variations of the model before the
ND analysis and the model fit to the data, broken down by likelihood
contributors, and showing the p-value for all samples, and the total
p-value including all samples and all systematic uncertainties

Likelihood p-value
contributor

νµ in ν-mode 0π FGD1 0.93

FGD2 0.93

νµ in ν-mode 0π FGD1 0.20

FGD2 0.15

νµ in ν-mode 0π FGD1 0.54

FGD2 0.45

All samples 0.82

Neutrino flux 0.46

ND detector 0.06

Cross section 0.01

All samples, all syst. 0.74

or muon-like (1Rµ) primary Cherenkov ring, and a specific
number of delayed triggers relative to the primary interaction,
consistent with a Michel electron from an unseen charged
pion’s decay chain (referred to as decay electron, or “de”).
Three samples are selected in the ν-mode data: a CCQE-like
νe sample (ν-mode 1Re with 0 de), a CCQE-like νµ sam-
ple (ν-mode 1Rµ with 0 or 1 de), and a CC single pion-like
νe sample (ν-mode 1Re with 1 de). Similarly, there are two
single-ring ν-mode data samples: a CCQE-like νe sample (ν-
mode 1Re with 0 de) and a CCQE-like νµ sample (ν-mode
1Rµwith 0 or 1 de). Unlike the ND, the FD is not magnetised
and can therefore not determine the charge of the outgoing
particles.

Since the start of T2K operations in 2009, the gain of the
SK inner detector’s PMTs has increased at a rate of at most
a few percent per year. In previous T2K analyses, this effect
was corrected during the reconstruction stage using a run-by-
run global correction factor for all PMTs. However, the gain
drift differs based on the PMT production year, and the cur-
rent analysis adopts a more detailed correction that accounts
for these differences. All T2K FD data in this analysis have
been reprocessed and reconstructed using the updated cor-
rection. The change to the gain correction results in a change
in the observed charge available to the reconstruction algo-
rithm relative to previous analyses, even when processing the
same event. This may cause small shifts in an event’s recon-
structed parameters, including the number of rings, and each
ring’s particle type and momenta, which has caused some
events to migrate into or out of the oscillation analysis sam-
ples with respect to the previous analyses. For the reprocessed
run 1−9 data there are in total 1 more ν-mode 1Re, 1 fewer
ν-mode 1Re1de, 1 more ν-mode 1Re, and 3 fewer ν-mode
1Rµ events compared to previous oscillation analysis. The

Table 8 Summary of event migrations at the FD after reprocessing data
from the previous T2K analysis [1,2]. “Inward” refers to newly added
events that were not present in the previous analysis, “outward” refers
to events that were lost to the update, and “overlap” refers to the number
of events that are common to the two analyses

Selection Inward Outward Overlap Net change

1Rµ ν-mode 7 7 236 0

ν-mode 3 6 134 −3

1Re ν-mode 4 3 72 +1

ν-mode 1 0 15 +1

1Re1de ν-mode 0 1 14 −1

Fig. 16 Event timing at the FD for fully contained events collected dur-
ing runs 1–9 and run 10, overlaid with the central value of the expectation
from the beam bunch timing structure

Table 9 Predictions for the number of events at the FD using oscillation
parameters and systematic uncertainty parameters at their best-fit values
whilst varying δCP

Sample True δCP (rad.) Data

−π/2 0 π/2 π

1Rµ ν-mode 346.61 345.90 346.57 347.38 318

ν-mode 135.80 135.45 135.81 136.19 137

1Re ν-mode 96.55 81.59 66.89 81.85 94

ν-mode 16.56 18.81 20.75 18.49 16

1Re1de ν-mode 9.30 8.10 6.59 7.79 14

migration of the events is summarised in Table 8. As the gain
correction is applied to data and not to the simulation, the
event migration has been cross-checked in both atmospheric
neutrino and cosmic-ray muon data samples, which are used
to evaluate FD detector uncertainties in the T2K analysis. In
both studies, the level of migration was found to be consistent
with that observed in the T2K beam data.

123

Figure 3.13. SK event timing distributions of the fully contained events collected during
T2K run 1-9 and run 10. The horizontal axis shows the relative timing to the start of the
spill at J-PARC. The beam bunch timing is overlaid with the dotted lines. The figure is
taken from Ref. [37].

algorithm. Events are separated into e-like and μ-like with a
criterion based on the likelihood ratio of the best-fit e-like
to μ-like hypothesis (Λe

μ) and the reconstructed momentum
for the e hypothesis (pe).
The FV criteria are defined in terms of the distance from

the event vertex to its closest point on the detector walls
(wall) and the distance from the event vertex to the detector
wall along the track direction (towall). This parameter-
ization of the FVallows for a larger volume of the detector
to be used by reducing the wall threshold compared to
previous T2K neutrino oscillation analyses, while ensuring
that Cherenkov rings projected on the detector walls
illuminate a large number of PMTs with the towall
criterion, introduced for the first time in the analysis

described here. The wall and towall criteria are chosen
separately for each sample to maximize the sensitivity to
θ23 and δCP, as described in Sec. X D. For the μ-like
samples, a minimum wall of 50 cm is required, with a
minimum towall of 250 cm. The requirements for the
e-like samples with no decay-e are wall > 80 cm and
towall > 170 cm, while for the sample with one decay-e
wall > 50 cm and towall > 270 cm are required.
For both FHC andRHCFC events, the distributions of the

number of reconstructed particle tracks are shown in Fig. 16.
For events with a single reconstructed track, the distributions
of the e=μ discriminator and number of identified μ-decay
electrons are shown in Figs. 17 and 18, respectively. In these
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FIG. 16. Distribution of number of reconstructed particle tracks
for events passing the wall > 80 cm and towall > 170 cm FV
criteria in FHC (top) and RHC (bottom) data.
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FIG. 17. Distribution of the e=μ PID discriminator for single-
track events passing the wall > 80 cm and towall > 170 cm FV
criteria in FHC (top) and RHC (bottom) data.
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ization of the FVallows for a larger volume of the detector
to be used by reducing the wall threshold compared to
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that Cherenkov rings projected on the detector walls
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described here. The wall and towall criteria are chosen
separately for each sample to maximize the sensitivity to
θ23 and δCP, as described in Sec. X D. For the μ-like
samples, a minimum wall of 50 cm is required, with a
minimum towall of 250 cm. The requirements for the
e-like samples with no decay-e are wall > 80 cm and
towall > 170 cm, while for the sample with one decay-e
wall > 50 cm and towall > 270 cm are required.
For both FHC andRHCFC events, the distributions of the

number of reconstructed particle tracks are shown in Fig. 16.
For events with a single reconstructed track, the distributions
of the e=μ discriminator and number of identified μ-decay
electrons are shown in Figs. 17 and 18, respectively. In these
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FIG. 16. Distribution of number of reconstructed particle tracks
for events passing the wall > 80 cm and towall > 170 cm FV
criteria in FHC (top) and RHC (bottom) data.
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FIG. 17. Distribution of the e=μ PID discriminator for single-
track events passing the wall > 80 cm and towall > 170 cm FV
criteria in FHC (top) and RHC (bottom) data.
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Figure 3.14. Distributions of the single-ring e/µ PID discriminators in FHC (left) and in
RHC (right). The figures are taken from Ref. [80].

energy ranges (see Section 4.2.2). An additional π0 cut is applied to the e-like samples to
further reduce the π0 background. This uses the likelihood ratio between the e-like and
π0-like hypotheses and the reconstructed invariant mass under π0 hypothesis as shown in
Fig. 3.15. For the µ-like samples, we apply the π+ rejection cut instead of the π0 cut,
using the likelihood ratio between the µ-like and π+-like hypothesis.

To summarize, we have two µ-like CC0π samples in FHC and RHC mode (FHC
1Rµ and RHC 1Rµ), two e-like CC0π samples (FHC 1Re and RHC 1Re), and one e-
like CC1π sample only in FHC (FHC 1Re 1de). The selected events are binned into
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histograms using the reconstructed kinematics such as the reconstructed neutrino energy
(Erec), lepton momentum (p), and lepton direction with respect to the beam direction
(θ). The Erec-θ binning is used for the µ-like samples, whereas the p-θ binning is used for
the e-like samples, respectively.

charge and time contributions from two electron tracks
which point back to a common vertex. In addition to the
common vertex and the directions and momenta of the two
γ tracks, each track has an additional free parameter which
shifts its origin along its direction in order to account for
photon conversion points. The π0 hypothesis therefore has
twelve parameters.
In order to distinguish signal νe CC events from π0

background events, we use the maximum likelihood values
of the electron hypothesis Le and the π0 hypothesis Lπ0 as
well as the reconstructed invariant mass mγγ obtained from
the π0 hypothesis. Figure 22 shows the two-dimensional
distributions of the logarithm of the likelihood ratio
lnðLπ0=LeÞ vs. mγγ for signal νe CCQE and background
NC π0 events which satisfy the νe selection criteria 1–5,
produced by MC. We see a clear separation between the
two event types, and we accept an event as a νe CC

candidate if it satisfies lnðLπ0=LeÞ < 175 − 0.875×
mγγ½MeV=c2$, which is indicated by the diagonal line in
the plots. As shown in Table XIV, the remaining NC
background is reduced by roughly a factor of nine by
introducing the π0 rejection cut. After the cut, the purity and
the selection efficiency for the νe appearance signal are
80.2% and 66.1%, respectively.
In earlier published T2K νe appearance analysis results

[3,97], we used a π0 rejection method which is different
from what is described above [98]. To demonstrate the
improvement over the previous method, Fig. 23 shows the
efficiency for rejecting NC π0 events for the two methods,
plotted as a function of the energy of the less energetic γ. In
calculating the efficiencies, only the events which satisfy
the νe selection criteria 1–5 are included. As the figure
indicates, the rejection efficiency by the new method
remains high even in cases where the energy of one of
the two γs is low. By employing the new method, we have
reduced the π0 background remaining in the final νe CC
candidate event sample by 69% relative to the previous
method.

C. Systematic uncertainty

This section describes the studies and treatment of
uncertainty in modeling the SK detector that lead to
systematic uncertainty in estimating the selection efficiency
and background for the oscillation samples. We use
SKDETSIM [3,9], a GEANT3-derived simulation of the
SK detector, to model the propagation of particles produced
by neutrino interactions. The GCALOR physics package is
used to simulate hadronic interactions in water owing to its
ability to reproduce pion interaction data around 1 GeV=c.
However for pions with momentum below 500 MeV=c,
custom routines are employed based on the cascade
model used by NEUT to simulate interactions of final
state hadrons. SKDETSIM incorporates the propagation of
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FIG. 22 (color online). Two-dimensional distributions of the logarithm of the likelihood ratio lnðLπ0=LeÞ vs. the reconstructed
invariant mass mγγ , for signal νe CCQE(left) and background NC π0(right) events. The diagonal line indicates the π0 rejection criterion,
and events lying above the line are rejected as π0 background. The size of each box is proportional to the number of events the bin. The
two figures use the same scale for representing the number of events and are normalized to the same POT.
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Figure 3.15. Distribution of the likelihood ratio between the e-like and π0-like hypotheses
and the reconstructed invariant mass under π0 hypothesis for νe signal (left) and π0

background (right). The cut threshold is shown as the red line. The figure is taken from
Ref. [81].

For reference, the T2K Run 1-10 data distributions overlaid with the best-fit MC
predictions in the published T2K analysis are shown in Fig. 3.16. We should note that
the data and MC are not exactly the same as what is used in this analysis. The difference
between the published T2K analysis and this analysis is detailed in Appendix F.

3.3.4 T2K beam neutrino near detector samples

In the T2K near detector analysis, we select events with the presence of a muon-like track
produced inside the target detector FGD1 or FGD2. The muon track must enter one of
the TPCs and must be identified as muon-like by the TPC PID. When there are several
tracks entering TPCs, the muon PID is applied to the highest momentum track. The
selected events are divided into 18 samples based on the beam horn current (FHC and
RHC) and the number of observed pions (0π, 1π, and others). Events are classified into
CC0π when they have no reconstructed pion, whereas the events with a single charged
pion with opposite charge to the muon are classified into CC1π (i.e. π+ in νµ selection
and π− in ν̄µ selection). Events with any other number of charged pions or at least one
neutral pion are classified as CC other. Figure 3.17 shows the schematic view of the event
topologies in the ND280 samples.

Although the samples are statistically dominated with neutrinos in FHC mode and
antineutrinos in RHC mode, there are non-negligible fractions of neutrinos in RHC mode
(wrong-sign neutrinos). Therefore, in RHC mode, we have both the νµ and ν̄µ samples
to constrain the wrong-sign neutrino background. The events are categorized into 18
samples in total, as summarized in Table 3.5.

These events are binned into histograms using the momentum and angle (cos θ) with
respect to the beam axis of the selected muon-like track.
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Fig. 17 The events in the full data set for the five FD samples, shown
in reconstructed lepton momentum and the angle between the neutrino
beam and the lepton in the lab frame. The coloured background in
the two-dimensional plot shows the expected number of events from
the frequentist analysis, using the best-fit values for the oscillation and

systematic uncertainty parameters, applying the reactor constraint on
sin2 θ13. The insets show the events projected onto each single dimen-
sion, and the red line is the expected number of events from the best-fit.
The uncertainty represents the 1σ statistical uncertainty on the data
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sion, and the red line is the expected number of events from the best-fit.
The uncertainty represents the 1σ statistical uncertainty on the data

123

(e) FHC 1Re 1de

Figure 3.16. T2K Run 1-10 accelerator neutrino data distributions from the published
T2K analysis [37] overlaid with the data best-fit MC predictions. The µ-like samples are
shown in the Erec-θ binning, and the e-like samples are shown in the p-θ binning. These
plots are only for reference, and the data and MC are not exactly the same as what is
used in this analysis. The figures are taken from Ref. [37].
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Figure 3.17. Schematic view of the event topologies in the ND280 samples. The samples
are classified into 0π, 1π, and others depending on the number of observed pions.

Table 3.5. Summary of the near detector samples used in the near detector fit. The
efficiency and purity of each sample selection are taken from Ref. [37].

Beam Mode Neutrino Type Topology Target Efficiency (%) Purity (%)

FHC νµ

0π FGD1 48.0 71.3
FGD2 48.0 68.2

1π+ FGD1 29.0 52.5
FGD2 24.0 51.3

Other FGD1 30.0 71.4
FGD2 30.0 71.2

RHC

ν̄µ

0π FGD1 70.0 74.5
FGD2 69.0 72.7

1π− FGD1 19.3 45.4
FGD2 17.2 41.0

Other FGD1 26.5 26.3
FGD2 25.2 26.0

νµ

0π FGD1 60.3 55.9
FGD2 60.3 52.8

1π+ FGD1 30.3 44.4
FGD2 26.0 44.8

Other FGD1 27.4 68.3
FGD2 27.1 69.5



Chapter 4

Monte Carlo simulation and systematic
uncertainties

4.1 Overview of the Monte-Carlo method
The number of observed events in the neutrino oscillation experiments can be written as
the product of neutrino flux Φ, neutrino-nucleus cross-section σ, number of target nuclei
Ntarget, detection efficiency ε, and oscillation probability Posc:

Nobs(x) = Φ(x)× σ(x)×Ntarget × ε(x)× Posc(x), (4.1)

where x represents the properties of the events, such as true neutrino types and energies,
interaction processes and event topologies, and the kinematics of the particles produced
in the neutrino interaction. In the analysis, we measure the number of neutrino events at
the detector and constrain the oscillation parameters using the above relation.

Due to the complexities of the models of neutrino flux, cross-sections, detector re-
sponses, and oscillation probabilities, it is difficult to analytically solve Eq. (4.1). There-
fore, we use the Monte Carlo (MC) simulation to obtain inferences for the parameters of
interest.

We first generate a large number of MC events that can cover all the possible com-
binations of the true and reconstructed properties of the neutrino interaction events at
the detector. The true properties of the events include the neutrino types (neutrino or
antineutrino) and flavors at both the production and interaction (which can be different
due to the oscillation), the energy and direction of the neutrinos, and the kinematics of
the outgoing particles from the neutrino interaction. The reconstructed characteristics
include the observed event topologies (i.e. the number and type of particles produced in
the neutrino interaction) and the reconstructed kinematics of the produced particles. The
important point at the MC generation stage is to cover all the possible event properties
with enough statistics, rather than producing a realistic sample of the “true” distribution
where the actual data is produced from.

Then, the generated MC events are given an overall scaling and event-by-event weights.
The overall scaling is determined simply from the amount of generated MC and data we
obtained. The event-by-event weights change the composition of the events in the MC data
set so that the resulting distribution represents the effect of the oscillation and systematic
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uncertainties. To obtain the event-by-event weights, we need to construct a model that is
parametrized with the oscillation parameters and the systematics uncertainty parameters
that correspond to each source of systematic uncertainty. The model is defined as the
response of the event-by-event weights as a function of the oscillation and the systematic
uncertainty parameters (referred to as a response function). The weight of event i can
therefore be written as

wi(o, s) = f osc
i (o)× f syst

i (s) (4.2)

= f osc
i (o)×

ns∏

j=1

f syst
i,j (sj), (4.3)

where f osc
i and f syst

i represent the response functions for event i as a function of the oscil-
lation (o) and systematic uncertainty (s) parameters, respectively. We generally assume
that the systematic uncertainty response functions can be expressed as the product of the
response function of each parameter sj for j = 1, · · · , ns, where ns denotes the number
of systematic uncertainty parameters. Then, the event count in a certain reconstructed
kinematic bin b can be written as

nb(o, s) = α×
N∑

i

Ii,b × wi(o, s) (4.4)

= α×
N∑

i

[
Ii,b × f osc

i (o)×
ns∏

j

f syst
i,j (sj)

]
, (4.5)

where α denotes the overall scaling constant of MC, N denotes the number of simulated
MC events, and Ii,b is an indicator function that returns 1 when the event i falls into the
bin b and takes 0 otherwise.

If one assumes an arbitrary set of oscillation and systematic uncertainty parameter
values, Eq. (4.4) will give us binned event spectra. The set of parameter values is some-
times called the tuning. A parameter set tuned to our best prior understanding of the
physics and other systematic sources is referred to as the nominal tuning, and the MC
data set weighted to the nominal tuning is called the nominal MC data set.

The systematic uncertainty parameters that we use in the neutrino oscillation analysis
can be grouped into three categories: neutrino flux, neutrino-nucleus interaction cross-
sections, and detector responses. The systematic models used to produce the systematic
response functions and the nominal MC are described in the following.

4.2 Neutrino flux simulation

4.2.1 Atmospheric neutrino flux

Nominal MC simulation In the SK atmospheric neutrino analysis, we use the neu-
trino flux calculated by Honda et al. [82]. The Honda model uses the primary cosmic ray
model based on the balloon [62] and the international space station experiments [61] with
the corrections from the solar activity and geomagnetic field described in Section 3.1.1.
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Then, the neutrino flux is calculated by simulating the interactions between the primary
cosmic rays and nucleons in the atmosphere. The hadronic interaction models JAM [83]
and DPMJET-III [84] are used for the cosmic ray energies below and above 32 GeV,
respectively. The properties of the atmosphere, such as the molecular compositions and
densities, are taken from the U.S.-standard ’76 model [85].

The predicted atmospheric neutrino flux from the Honda model is shown in Fig. 4.1
with comparisons to the predictions from other alternative models, Bartol [86] and FLUKA [87].
The flux has a peak around a few hundred MeV and slowly decreases in the higher energy
regions. The ratio of the muon and electron neutrinos is roughly ≈ 2 up to a few GeV,
but it becomes larger at higher energies due to the suppressed electron neutrino flux.
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FIG. 7. Comparison of atmospheric neutrino fluxes calculated for Kamioka averaged over all

directions (left panel), and the flux ratios (right panel), with other calculations. The dashed lines

are the calculation by the Bartol group [20][21], dotted lines for the FLUKA group [22], and dash

dot for our previous calculation (HKKM06).

the νe/ν̄e below 1 GeV, due to the small statistics in the observation at balloon altitude.

The muons at sea level or mountain altitude are not useful to examine the atmospheric

neutrino of these energies, since the muons result from higher energy pions at higher altitude.

In Fig. 9 we show the atmospheric neutrino fluxes as a function of the zenith angle

averaging over all the azimuthal angles at 3 neutrino energies; 0.32, 1.0, and 3.2 GeV for

Kamioka. In Fig 10 we show the comparison of the present and previous works in the ratio

as the function of zenith angle. There is a difference due to the increase of the neutrino flux

itself, but the ratio is almost constant. Actually, the calculated zenith angle dependences

are virtually the same as for the calculation in Ref [6].

It seems that the zenith angle dependence of the 3D calculation smoothly connected

to that of the 1D calculation just above 3.2 GeV for the average over all azimuth angles.

However, this is not true when we study the variation of atmospheric neutrino flux as a

function of azimuthal angle. In Fig. 11 we show the variation of atmospheric neutrino flux

as the function of the azimuthal angle averaging them over the five zenith angle ranges,

1 > cos θ > 0.6, 0.6 > cos θ > 0.2, 0.2 > cos θ > −0.2, −0.2 > cos θ > −0.6, and

−0.6 > cos θ > −1, at 1 GeV for Kamioka. It is seen in that the variation of the atmospheric

neutrino flux has complex structures at 1 GeV due to the rigidity cutoff and muon bending

13

Figure 4.1. Predicted atmospheric neutrino flux by Honda et al. (denoted as “This
Work”) [82] in comparison to other predictions by the Bartol group [86], the FLUKA
group [87], and the previous work by Honda et al. (denoted as “HKKMS06”) [88]. The
left plot shows the flux of each neutrino type calculated for Kamioka by averaging over all
directions, and the right plot shows the flux ratios. The figures are taken from Ref. [82].

Systematic uncertainties The flux systematic uncertainties are introduced to cover
the possible flux differences in the data and MC predictions. The size of the uncertainties
is estimated by comparing the Honda model with the predictions from Bartol and FLUKA.

The systematic model consists of 18 parameters in total as summarized in Table 4.1.
First of all, two overall energy-dependent normalization uncertainties are introduced sepa-
rately for the neutrino energies below and above 1 GeV which account for the uncertainties
on hadron productions, molecule densities in the atmosphere, and hadron interactions.
On top of that, relative normalization uncertainties from comparisons of the three models
are applied to the higher energy samples (FC multi-GeV, PC, and stopping UpMu) as the
differences among the models become larger above 10 GeV. The uncertainties on the neu-
trino flavor ratios ν/ν̄, νµ/ν̄µ, and νe/ν̄e are also included. These flavor ratio uncertainties
are divided into three energy regions (Eν < 1 GeV, 1 < Eν < 10 GeV, and Eν > 10 GeV)
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to take into account the energy dependence. The 1σ uncertainties of the overall normal-
ization and the flavor ratio normalizations are shown in Fig. 4.2. We should note that for
the flavor ratio systematics, a normalization of 1 + σ/2 is applied to the neutrino types
in the numerator, and a normalization of 1− σ/2 is applied to the neutrino types in the
denominator.
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Figure 4.2. The size of atmospheric flux normalization uncertainties as a function of the
neutrino energy.

The uncertainty on the geomagnetic field effect that can change the low-energy neu-
trino flux is included as the up/down ratio uncertainty. When neutrinos fly horizontally,
secondary hadrons and muons travel longer through the atmosphere than when neutrinos
fly into the atmosphere along a direction normal to the earth. Therefore, an additional
horizontal/vertical ratio uncertainty is applied to cover the uncertainty on the horizontal
flux where this effect can change the predicted flux. Since the contribution of kaon decays
becomes important above a few GeV, the uncertainty on the parent hadron types (K/π
ratio) is included. Additional uncertainties are calculated from the neutrino path length
taking into account the uncertainty in the atmospheric density profile, and the periodic
flux fluctuations due to the solar activity.

4.2.2 T2K accelerator neutrino flux

Nominal MC simulation The simulation of the T2K neutrino beam properties con-
sists of two steps. The first step is the hadronic interaction between the accelerated
protons and the target, which produces the secondary hadrons such as pions and kaons.
It is simulated using FLUKA 2011.2x [89, 90]. In the FLUKA simulation, the proton
beam with measured position and divergence properties is injected into the simulated
target material, and the secondary hadrons produced in the interaction are recorded.

The second step is the transportation of the secondary hadrons and the production
of the neutrinos in their decays, which is taken care of by the GEANT3-based JNUBEAM
simulation [91]. In JNUBEAM, the particles are propagated from the production point
determined by FLUKA to the beam dump until they decay or interact.
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Table 4.1. Summary of the SK atmospheric flux uncertainties. The values are taken from
Ref. [36].

Systematics Sample σ (%)

Flux normalization Eν < 1 GeV 7-25
Eν > 1 GeV 7-20

(νµ + ν̄µ)/(νe + ν̄e)
Eν < 1 GeV 2
1 < Eν < 10 GeV 3
Eν > 10 GeV 5-30

ν̄e/νe

Eν < 1 GeV 5
1 < Eν < 10 GeV 5
Eν > 10 GeV 8-20

ν̄µ/νµ

Eν < 1 GeV 2
1 < Eν < 10 GeV 6
Eν > 10 GeV 6-40

Up/down ratio

< 400 MeV e-like 0.1
µ-like 0.3
0-decay µ-like 1.1

> 400 MeV e-like 0.8
µ-like 0.5
0-decay µ-like 1.7

Multi-GeV e-like 0.7
µ-like 0.2

Multi-ring Sub-GeV e-like 0.4
µ-like 0.2

Multi-ring Multi-GeV e-like 0.3
µ-like 0.2

PC 0.2

Horizontal/vertical ratio

< 400 MeV e-like 0.1
µ-like 0.1
0-decay µ-like 0.3

> 400 MeV e-like 1.4
µ-like 1.9
0-decay µ-like 1.4

Multi-GeV e-like 3.2
µ-like 2.3

Multi-ring Sub-GeV e-like 1.4
µ-like 1.3

Multi-ring Multi-GeV e-like 2.8
µ-like 1.5

PC 1.7

K/π ratio in flux calculation All 10

Neutrino path length All 10

Relative normalization FC Multi-GeV 5
PC + Stopping Up-µ 5

Solar activity All 7
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The simulated flux is then reweighted to match the data taken by NA61/SHINE1

experiment at CERN. The NA61/SHINE experiment uses the T2K replica target and
measures the π±, K±, and ptoron yields [92, 93].

Figure 4.3 shows the simulated neutrino flux at SK for FHC and RHC mode, tuned
to the NA61/SHINE data. The flux has a narrow peak around 0.6 GeV, where the
νµ → νe (ν̄µ → ν̄e) appearance probability becomes roughly the maximum at the location
of SK (i.e. baseline of 295 km). The wrong-sign neutrinos (ν̄ for FHC and ν for RHC)
and electron neutrinos are also taken into account in the simulation. The dominant
contributions to the electron neutrino background are from the kaon and muon decays:

K± → π0 + e± + νe(ν̄e), (4.6)
µ± → e± + νe(ν̄e) + ν̄µ(νµ). (4.7)

The νe/ν̄e flux is roughly ∼ 1% of the total flux, but the fraction becomes larger at the
higher energy regions. This is because νe/ν̄e from the kaon decays have slightly higher
energy peaks. These intrinsic electron neutrinos will be the dominant background in the
νµ → νe (ν̄µ → ν̄e) appearance measurement at the high energy.
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Fig. 5 The predicted unoscillated neutrino fluxes at the FD in ν-mode
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and the pion is missed – either due to its kinematics or by it
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thin target data. The grey shaded region shows the shape of the neutrino
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Figure 4.3. The predicted unoscillated neutrino flux at the far detector for FHC and
RHC modes. The predictions are tuned to the NA61/SHINE measurements using the
T2K replica target. The figures are taken from Ref. [37].

Systematic uncertainties For the flux systematic uncertainties, the uncertainties on
the NA61/SHINE measurements are used along with the other uncertainty sources outside
the target, such as the proton beam profiles and reinteraction of the hadrons. Figure 4.4
shows the flux uncertainties on the FHC/RHC νµ and RHC ν̄µ as a function of the neutrino
energy. Overall, the uncertainties from the hadron interactions have the largest contri-
butions, but they are relatively well-constrained around the flux peak. The uncertainties

1SPS Heavy Ion and Neutrino Experiment
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on the proton beam profile and the off-axis angle have the largest contributions near the
upper edge of the flux peak. These systematic uncertainties on the flux are combined
and implemented as the normalization of the event rates. A normalization parameter
is assigned to each sub-divided energy region separately for the FHC and RHC modes,
yielding 50 parameters in total. The beam flux systematic uncertainties are summarized
in Table 4.2 with the constraints before and after the near detector fit.
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Figure 4.4. The uncertainties on the FHC/RHC νµ and RHC ν̄µ fluxes as a function of
the neutrino energy. The black solid line shows the total flux uncertainty for the latest
T2K analysis tuned to the NA61/SHINE T2K replica target data [92]. The black dashed
line shows the total uncertainty for the previous T2K analysis tuned to the thin target
data [94] for comparison. The solid lines in other colors show the contribution of each
systematic uncertainty source. The figures are taken from Ref. [37].
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Table 4.2. Summary of the T2K beam flux systematic uncertainties. The constraints on
each parameter before and after the near detector (ND) fit are also shown.

Horn current Neutrino type Eν (GeV) Pre ND fit Post ND fit Horn current Neutrino type Eν (GeV) Pre ND fit Post ND fit

FHC

νµ

0.0− 0.4 1.00± 0.07 1.11± 0.05

RHC

νµ

0.0− 0.7 1.00± 0.09 1.11± 0.06

0.4− 0.5 1.00± 0.06 1.10± 0.04 0.7− 1.0 1.00± 0.06 1.07± 0.05

0.5− 0.6 1.00± 0.05 1.08± 0.03 1.0− 1.5 1.00± 0.06 1.07± 0.04

0.6− 0.7 1.00± 0.05 1.07± 0.03 1.5− 2.5 1.00± 0.07 1.07± 0.04

0.7− 1.0 1.00± 0.07 1.06± 0.04 2.5− 30.0 1.00± 0.07 1.02± 0.04

1.0− 1.5 1.00± 0.07 1.03± 0.04

ν̄µ

0.0− 0.4 1.00± 0.07 1.09± 0.05

1.5− 2.5 1.00± 0.06 1.03± 0.04 0.4− 0.5 1.00± 0.06 1.09± 0.04

2.5− 3.5 1.00± 0.07 1.01± 0.04 0.5− 0.6 1.00± 0.06 1.07± 0.04

3.5− 5.0 1.00± 0.09 0.98± 0.04 0.6− 0.7 1.00± 0.05 1.06± 0.03

5.0− 7.0 1.00± 0.10 0.92± 0.04 0.7− 1.0 1.00± 0.08 1.09± 0.04

7.0− 30.0 1.00± 0.12 0.91± 0.04 1.0− 1.5 1.00± 0.08 1.06± 0.04

ν̄µ

0.0− 0.7 1.00± 0.09 1.06± 0.08 1.5− 2.5 1.00± 0.06 1.01± 0.04

0.7− 1.0 1.00± 0.06 1.04± 0.05 2.5− 3.5 1.00± 0.07 1.01± 0.05

1.0− 1.5 1.00± 0.07 1.04± 0.06 3.5− 5.0 1.00± 0.09 0.95± 0.06

1.5− 2.5 1.00± 0.08 1.05± 0.07 5.0− 7.0 1.00± 0.09 0.96± 0.06

2.5− 30.0 1.00± 0.08 1.04± 0.06 7.0− 30.0 1.00± 0.12 0.93± 0.09

νe

0.0− 0.5 1.00± 0.06 1.09± 0.04
νe

0.0− 2.5 1.00± 0.09 1.03± 0.07

0.5− 0.7 1.00± 0.05 1.08± 0.04 2.5− 30.0 1.00± 0.08 1.03± 0.07

0.7− 0.8 1.00± 0.05 1.06± 0.04

ν̄e

0.0− 0.5 1.00± 0.06 1.08± 0.04

0.8− 1.5 1.00± 0.06 1.04± 0.04 0.5− 0.7 1.00± 0.05 1.07± 0.04

1.5− 2.5 1.00± 0.08 1.00± 0.04 0.7− 0.8 1.00± 0.06 1.06± 0.04

2.5− 4.0 1.00± 0.09 0.98± 0.04 0.8− 1.5 1.00± 0.06 1.04± 0.04

4.0− 30.0 1.00± 0.09 0.98± 0.05 1.5− 2.5 1.00± 0.08 1.01± 0.06

ν̄e
0.0− 2.5 1.00± 0.10 1.02± 0.09 2.5− 4.0 1.00± 0.09 1.01± 0.07

2.5− 30.0 1.00± 0.13 1.09± 0.11 4.0− 30.0 1.00± 0.15 1.09± 0.13

4.3 Neutrino-nucleus interaction
There are various types of interaction processes depending on the neutrino energy. Fig-
ure 4.5 shows the contributions of several interaction processes to the inclusive cross-
section in the typical energy ranges of accelerator neutrinos and atmospheric neutrinos.
These cross-sections are calculated by NEUT, which is a neutrino-nucleus interaction sim-
ulation program library used in the T2K and SK analyses [95, 96].

In the energy range below a few GeV, which is relevant to the T2K accelerator neutrinos
and low-energy part of the SK atmospheric neutrinos, the dominant contribution comes
from the charged current quasi-elastic (CCQE) interaction that has one charged lepton
and one nucleon in the final state. The cross-section of the charged current resonant 1π
production process increases above 0.5 GeV and becomes dominant above 1.2 GeV. There
are also small but non-negligible contributions of charged current two-particle two-hole
(CC 2p2h) interaction where two nucleons in the nucleus are involved in the process.
The atmospheric neutrinos have wider energy ranges compared to that of T2K, and the
multi-pion process and the charged current deep inelastic scattering process dominate the
interaction in the high-energy region. The details of these processes are described in the
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3 The physics in NEUT

3.1 Simulating an interaction

In general, NEUT factorizes the simulation of an inter-
action of a neutrino with flavour, !, and energy, Eν ,
into four discrete steps. First, a specific interaction
channel is chosen randomly with probability, P =
σi

T (Eν!
) /σtot

T (Eν!
), where σtot

T (Eν!
) is the total cross

section and σi
T (Eν!

) is the cross section for the specific
target nuclei, T , and channel, i, where i is an integer
that identifies the interaction process and is defined in
Table 1 (charged current) and Table 2 (neutral cur-
rent). For neutrino–nucleon interaction channels, the
nuclear-target cross section is usually constructed as
σi

T = Zσi
p +(A−Z)σi

n, where A and Z are the nucleon
number and the proton number of the target nuclei and
σi

p and σi
n are the bound proton and bound neutron

cross sections. For historical reasons, free protons can
be added to nuclear targets to build simple molecu-
lar targets such as H2O and CH. Figure 4 shows the
NEUT water-target cross-section predictions separated
into classes of interaction channel.

Second, the primary neutrino interaction, or hard
scatter, is simulated. For the majority of channels, this
step involves choosing a bound nucleon from an initial-
state nuclear model, then choosing interaction kine-
matics according to the specific interaction model, and
finally choosing any remaining particle kinematics not
specified by the model. This step is performed under
the impulse approximation [8], which treats the tar-
get bound nucleon and the remnant nucleus as evolving
independently during and after the hard scatter. This
further factorizes the simulation as, to first order, the
sampling of the nuclear model does not depend on the
interaction kinematics chosen.

For the coherent pion-production channels (Enum
16 and 36), the interaction occurs coherently between
the neutrino and the target nucleus and as a result no
bound nucleon target is chosen and this is considered
the final step of the simulation. For other channels, the
final state hadrons are then passed on to the third step,
the nucleon and meson intra-nuclear re-scattering sim-
ulation, where hadrons can elastically scatter, exchange
charge with a nucleon in the nucleus, or be produced
or absorbed as they are stepped out of the nuclear
medium.

Finally, for oxygen targets only, the final state nuclear
remnant can be left in an excited state after the interac-
tion and a number of nuclear de-excitations, producing
low energy photons (O (1 − 10) MeV), are modeled fol-
lowing Ref. [9]. Careful treatment of the de-excitation
oxygen is important for precisely simulating interac-
tions in the sensitive SK detector.

For the majority of particles produced in the hard
scatter and subsequent re-scattering, NEUT stores their
properties in an event vector file that can be used as
input to further experiment simulation processes. The
only exceptions are tau and omega particles, which are
decayed during the NEUT simulation by TAUOLA [10]

Fig. 4 The NEUT-predicted muon neutrino–water cross sec-
tions overlaid on the T2K muon neutrino flux [6], with
a typical oscillation (top), and upward atmospheric muon
neutrino fluxes [7] multiplied by the charged-current inclu-
sive total cross section (bottom). The flux multiplied by
the cross section is proportional to the expected interac-
tion rate. Above 4 GeV, the expected number of interac-
tions in SK arising from the T2K beam falls significantly
faster than from atmospheric neutrinos. n.b. The cross sec-
tions presented in the top pane are divided by the neutrino
energy, whereas in the bottom pane, they are not. This is to
emphasise the saturation of the interaction channels asso-
ciated with lower four-momentum transfer at SK energies
and the sharp turn-on seen over T2K flux distribution
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Figure 4.5. The NEUT-predicted νµ–water cross sections overlaid on the T2K muon
neutrino flux [91] (left) and upward-going atmospheric νµ flux [97] (right). CC inclusive
(black solid line) and NC inclusive (black dotted line) are the total cross-sections for
the charged-current and neutral-current processes, respectively. The CC cross-sections
are further broken down into the quasi-elastic, two-particle two-hole (2p2h), resonant 1π
production, and multi-pion + deep inelastic (DIS) interactions. It should be noted that
the cross-sections on the left panel are divided by the neutrino energy but not on the
right panel. The predicted distributions of the T2K νµ flux and atmospheric νµ flux are
overlaid to get an idea of the most relevant energy ranges for each experiment. The figures
are taken from Ref. [98].

following.

4.3.1 Nominal MC simulation

4.3.1.1 Neutrino-nucleon interaction

In this subsection, various interaction processes between a neutrino and a single nucleon
are detailed. The effects coming from having multiple nucleons inside a nucleus will be
discussed in Section 4.3.1.2.

Quasi-elastic scattering The charged current quasi-elastic (CCQE) scattering is a
two-body process between a neutrino and a nucleon. This is a dominant process in the
regions where neutrino energy is below a few GeV, which is relevant to the T2K beam
and atmospheric sub-GeV samples. It produces a charged lepton and a nucleon in the
final state

νl + n→ l− + p (4.8)
νl + p→ l+ + n. (4.9)

This process is mediated by the charged W± bosons as shown in the Feynman diagram
in Fig. 4.6.
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Figure 4.6. Feynman diagram of the charged current quasi-elastic (CCQE) process.

Since this is a pure two-body process, the initial neutrino energy can be reconstructed
from the final-state lepton kinematics. Assuming that the nucleon is at rest in the initial
state and applying the conservation of energy and momentum, the reconstructed neutrino
energy is computed as

Eν =
2mnEl −m2

l + (m2
p −m2

n)

2(mn − El + pl cos θ)
, (4.10)

where El, pl, and ml are the energy, momentum, and mass of the outgoing lepton. mp

and mn are the mass of the proton and neutron, respectively. θ is the scattering angle of
the lepton with respect to the incoming neutrino direction.

The differential scattering cross-section can be expressed, in terms of Mandelstam
variables s = (pν + pn)

2, t = (pν − pℓ)
2 = q2 = −Q2, u = (pν − pp)

2 and nucleon mass M ,
as [99]

dσ

dQ2

(
νn→ ℓ−p
νn→ ℓ+p

)
=
M2G2

F cos2 θC
8πE2

ν

(
A(Q2)∓B(Q2)

s− u

M2
+ C(Q2)

(s− u)2

M4

)
. (4.11)

The factors A(Q2), B(Q2), and C(Q2) are given as

A(Q2) =
m2

ℓ +Q2

M2

[(
1 +

Q2

4M2

)
F 2
A(Q

2)−
(
1− Q2

4M2

)
F 2
1 (Q

2)

+
Q2

4M2

(
1− Q2

4M2

)
F 2
2 (Q

2) +
Q2

M2
F1(Q

2)F2(Q
2)

− m2
ℓ

4M2

((
F1(Q

2) + F2(Q
2)
)2

+ (FA + 2Fp)
2 −

(
4 +

Q2

M2

)
(FP )

2

)]
, (4.12)

B(Q2) =
Q2

M2
FA

[
F1(Q

2) + F2(Q
2)
]
, (4.13)

C(Q2) =
1

4

[
(FA)

2 + F 2
1 (Q

2) +
Q2

4M2
F 2
2 (Q

2)

]
, (4.14)

Fi(Q
2) = F p

i (Q
2)− F n

i (Q
2) (i = 1, 2) (4.15)

where the electromagnetic form factors FN
1 (Q2) and FN

2 (Q2) are known as the Dirac and
Pauli form factors of the nucleon N (N = p, n), respectively. These form factors are well
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constrained by electron-nucleon scattering data [100]. Since mℓ ≪ M holds for ℓ = e, µ,
the contribution of the third line in Eq. (4.12) can be neglected, which implies that the
cross-section does not depend on the pseudoscalar form factor Fp. The remaining axial
form factor FA(Q

2) only exists in the neutrino-nucleon cross-section and therefore gives
the largest contribution to the uncertainty of the neutrino-nucleon cross-section.

The axial form factor is usually parametrized with a dipole form

FA(Q
2) =

gA(
1 +Q2/

(
MQE

A

)2)2 , (4.16)

where the normalization constant gA = FA(0) = 1.2673 ± 0.0035 is well-known from the
neutron β decay [101]. MQE

A is called the axial mass and is constrained from neutrino-
deuterium scattering in the bubble chamber experiments to be 1.026± 0.021 GeV [101].

Single pion production As shown in Fig. 4.5, at the neutrino energy region around
a few GeV, the most dominant interaction process is resonance scattering (RES). In the
resonance scattering process, a nucleon struck by a neutrino can be a baryon resonant
state and it decays into a nucleon and a pion in the final state [102].

An example of the resonant pion production process can be expressed as

νl + p→ ℓ− +∆++ → ℓ− + p+ π+. (4.17)

The Feynman diagram of this process is shown in Fig. 4.7. The resonant pion production
can occur via neutral-current (NC) as well.
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Figure 4.7. Feynman diagram of the charged current resonant 1π process.

Similarly to the CCQE case, one can obtain the reconstructed neutrino energy by
replacing the outgoing nucleon with the excited baryon as

Eν =
2mpEl +−m2

l + (m2
∆ −m2

p)

2(mp − El + pl cos θ)
(4.18)

where m∆ is the mass of ∆++.
The form factor for the resonant interaction can be written as

FRES
A (Q2) =

CA
5 (0)(

1 +Q2/ (MRES
A )

2
) , (4.19)
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where CA
5 (0) gives the normalization factor and MRES

A is the axial mass [103].
There are also non-resonant isospin-1/2 and isospin-2/3 processes (I1/2 and I3/2) that

can produce a single pion in the final state [104, 105]. These processes are called the
non-resonant backgrounds. In NEUT, only the I1/2 process is simulated as the contribution
of I2/3 is understood to be less dominant from the data obtained in the bubble chamber
experiments such as BNL [106, 105]. In the low-energy model, we use the Rein-Sehgal
model [102] as the baseline model for the resonant single pion production.

In the coherent pion production process, a neutrino interacts with the entire nucleus
and produces a pion without exciting the nucleus [107, 108]

νl +N → l +N ′ + π. (4.20)

This interaction occurs with low energy transfer. The cross-section of the coherent pion
process is a few percent of CCQE and it is not a dominant process. The Feynman diagram
of the coherent process is shown in Fig. 4.8. We use the Berger-Sehgal model [108] for the
coherent single pion interactions with a small contribution of diffractive pion production
modeled by Rein [109].

W+

A

νℓ

A′

π+

ℓ−

Figure 4.8. Feynman diagram of the charged current coherent 1π process.

Multi-pion and deep inelastic scattering At the higher neutrino energy region
above ∼ 5 GeV, the multi-pion and deep inelastic scattering (DIS) processes dominantly
contribute. In these processes, neutrinos directly interact with quarks inside a nucleon
and produce a jet of hadrons [110]

νl +N → l +N ′ + hadrons. (4.21)

The Feynman diagram of the DIS process is shown in Fig. 4.9.
These processes have only a subdominant effect in the T2K energy ranges, but become

crucial for the higher-energy atmospheric samples. In the nominal interaction model,
the GRV98 parton distribution functions [111] is used with the corrections by Bodek-
Yang [112, 113]. The multi-pion mode is used to describe the events with a hadronic
invariant mass2 of W ≤ 2 GeV and the DIS mode is used to describe the events with
W ≥ 2 GeV. To avoid double-counting the single-pion production process described
above, the multi-pion mode is modified to simulate only the events with more than one
pion in the final state.

2The hadronic invariant mass W is defined as W =

√
|phadron|2 =

√
|pν + pnucleon − plepton|2
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Figure 4.9. Feynman diagram of the charged current deep inelastic scattering (CC DIS)
process.

4.3.1.2 Nuclear effects

The processes discussed in Section 4.3.1.1 assume a pure interaction between a neutrino
and a nucleon and that the other nucleons do not participate in the interaction. However,
since the nuclei used in our experiments (i.e. oxygen and carbon) have several nucleons,
we should consider the effect of having multiple nucleons in the nucleus. These effects are
often referred to as nuclear effects.

Initial state of nucleus When nucleons are in a nucleus, they behave differently from
the “free” state because they are bound and have finite momentum. Therefore, we need
to take into account the initial state of nucleons such as the energy, momentum, and
spatial distributions in the nucleus to deal with the neutrino-nucleus interaction. The
Global Fermi Gas model (also called the Relativistic Fermi Gas model; RFG) is the sim-
plest model for describing these effects, in which the momentum of initial state nucleons
is assumed to be uniform in three-dimensional space for energy, momentum, and radial
position up to the Fermi momentum pF [114]. It should be noted that a neutrino inter-
action only happens when the energy transfer is larger than the binding energy Eb. The
reference values of Eb used in the past T2K analysis are 25 MeV and 27 MeV for carbon
and oxygen, respectively. The final state momentum of the struck nucleon should also be
larger than the Fermi momentum pF because the momentum states below pF are filled by
other nucleons, which is known as Pauli blocking. The Fermi momentum for the oxygen
nucleus is assumed to be 225 MeV in NEUT.

In the Local Fermi Gas (LFG) model, effects of the finite size of the nucleus are
included by introducing a radial nuclear matter density function, which makes the mo-
mentum distribution not flat in radial position anymore [115, 116]. These Fermi-gas
models are known to overpredict the cross-sections for the events with forward-going lep-
tons [117]. Therefore, these models usually take into account the so-called random phase
approximation (RPA) and suppress the cross-sections for low momentum transfer [118].

The Spectral Function (SF) model proposed by Benhar et al. is a more sophisticated
model based on a two-dimensional distribution of the nucleon momentum and binding en-
ergy [119, 120]. The spectral function f(Eb,k) represents the probability density function
of a nucleon in a nucleus as a function of its binding energy Eb and momentum k. In SF,
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it is assumed that the incoming neutrino interacts with a single nucleon inside the nucleus
while the other nucleons behave as spectators, which is called the impulse approximation.
Under this assumption, the neutrino-nucleus cross-section can be factorized as

d6σ

dEℓdΩℓd3p
∝ σℓn × f(Eb,k), (4.22)

where σℓn is the cross-section of a neutrino and a single nucleon. The spectral function
is mostly tuned to electron-nucleus scattering data and partially relies on theoretical
calculations.

The comparison of the predicted kinematic distribution of the nucleons in a nucleus is
shown in Fig. 4.10. In RFG, the initial nucleon momentum distribution has a quadratic
shape as it is integrated over the spherical nucleus, and has a cut-off around 225 MeV
due to the Pauli blocking. LFG and SF have more diffused distributions in both the
initial momentum and removal energy. The two sharp shell structures (corresponding to
Eb ≈ 12 MeV and Eb ≈ 18 MeV) are seen in the SF distributions.

SF and LFG show significantly better agreement with the electron scattering data [121]
and neutrino-nucleus cross-section measurements [122, 123], compared to RFG. The CCQE
cross-section measured by the MINERνA and T2K experiments is shown in Fig. 4.11 to-
gether with the predictions from different nuclear initial state models. It demonstrates
that SF and LFG outperform RFG in either measurement, but neither SF nor LFG is
superior to the other at the current level of precision. In this analysis, we use SF as the
nominal model to describe the initial state of the nucleus.

Multi-nucleon process When the neutrino interacts with a nucleon bounded in a
nucleus, it can go through a process in which two nucleons are involved and two holes
are produced. This process is called two-particle two-hole (2p2h) [127, 116, 128]. The
contribution of 2p2h is not dominant but non-negligible in the SK and T2K analyses
as shown in Fig. 4.5. There are two main contributions to the 2p2h processes: meson
exchange currents (MEC) and nucleon-nucleon correlation (NN). MEC consists of various
processes such as seagull, pion-in-flight, pion-pole, and ∆-pole as shown in Fig. 4.12. In
NN, a photon is coupled to a pair of correlated nucleons.

In the analysis, we use the Nieves et al. model [116] as the basis of 2p2h modeling.
However, the total 2p2h cross-section can differ from an alternative model such as Martini
et al. [127] up to a factor of two as shown in Fig. 4.13, which implies that our analysis
results could be biased if we use a “incorrect” model (i.e. different from the “true” physics
model where the data is generated). Therefore, we study the possible bias coming from
the mis-modeling of the neutrino-nucleus interaction in Chapter 6.
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Fig. 5. (left) The magnitude of the nucleon momentum distribution for three widely used nuclear models
(global relativistic Fermi gas (RFG), local Fermi gas (LFG), and Benhar spectral function (SF) [14]). (right)
The apparent transverse momentum resulting from the nucleon Fermi motion, for QE interactions.

3.3 Transverse Variables as Probes of Nuclear Effects
3.3.1 Fermi motion

When neutrinos scatter from free nucleons at rest, it is expected that the transverse momen-
tum of the final state particles identically balance: δpT = 0, δφT = 0, δαTis undefined. In a nuclear
environment the nucleons are undergoing random Fermi motion which imparts an unknowable event-
by-event boost to the interacting system. This boost introduces a characteristic shape to each of the
three distributions.

In the absence of any Final State Interactions (FSIs) the apparent momentum imbalance in the
lab frame is generated purely by the Fermi motion of the struck nucleon. δpT is therefore distributed
according to the transverse component of the Fermi motion. Fig. 5 shows how differences in the
nuclear model are reflected in lab-frame δpT distributions.
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Fig. 6. The δφT (left), and δαT (right), predictions for three nuclear models in the absence of FSIs.

Fig. 6 shows the ‘FSI-off’ predictions for δφT and δαT . δφT gains some width as a result of
the unknown boost; the distribution is strongly peaked around δφT = 0. δαT can be defined for any
transverse momentum imbalance δpT ! 0. However, we expect the Fermi motion to be isotropic
resulting a flat distribution for the apparent acceleration or deceleration of the proton.
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Fig. 5 (Top) The reconstructed missing energy and miss-
ing momentum distributions for the three initial-state
nuclear models implemented for the CCQE channel. (Bot-
tom) Three nucleon axial form factor models and their
associated uncertainties derived in Ref. [24] (dipole and 3-
component) and Ref. [22] (Z-expansion)

the simple dipole form factor and BBBA05 [19]. By
default, BBBA05 is used as this form factor was devel-
oped to reproduce experimental electron-scattering
data.

There are four axial nucleon form factor models
implemented, the dipole form factor, BBBA07 [20], the
Z-expansion model [21] and the 3-component model [24].
The 3-component model is inspired by the 2-component
model [23] and was created to provide additional shape
freedom by expanding the 2-component model, which
quickly decays with four-momentum transfer squared,

Q2. This model has the freedom to vary the gradient of
the form factor at low-Q2 leaving the free parameters
in the 2-component model to set the shape at higher
momentum transfer. The 3-component model is able
to be continuously varied between the shape of both
the 2-component and the simple dipole model. Figure 5
presents the shape of three of the axial form factor mod-
els with associated uncertainties derived fits to hydro-
gen and deuterium bubble chamber data. The dipole
and 3-component model uncertainties are reproduced
from Stowell [24], and the Z-expansion model was fit
by Meyer et al. [22].

For neutral current elastic (NCEL) scattering, the
treatment and available model components are equiva-
lent to CCQE, except that an LFG initial-state model
is not implemented for NCEL.

3.2.2 Charged current multi-nucleon scattering

A number of accelerator-based neutrino oscillation
experiments, K2K, MINOS, and MiniBooNE, started
taking high-statistics neutrino–nucleus scattering data
in the 2000s. These experiments found that the num-
ber of the observed CCQE-like (equivalent to the CC0π
topology introduced earlier) events were a few tens of
percent larger than predicted by the models, but with
a relative deficit of very forward-going muons [25–27].
One of the sources of these discrepancies was thought to
be coming from neutrino–nucleus interaction channels,
which were not implemented in the simulations used.
The most-probable candidate is now believe to be the
so-called multi-nucleon interaction, of which a similar
process is known to exist in electron–nucleus scatter-
ing. Inclusion of this interaction into neutrino–nucleus
simulations was discussed by Marteau in 1999 [28].

In NEUT, the Valencia model by Nieves et al. [13]
is implemented. This model considers an interaction
involving the production of two nucleons and two holes
in a ground-state nuclear target (often called a 2p2h
interaction in the literature). Their model includes pro-
cesses involving the exchange of mesons between two
nucleons and thus, sometimes, it is often referred to as
a Meson Exchange Current, or MEC, model. The model
is not applicable for large momentum transfer and thus
the three-momentum transfer (q3) to the nucleus is lim-
ited to q3 < 1.2 GeV/c. This model does not predict
how the four-momentum is distributed between the two
final-state nucleons, NEUT follows the implementation
in NuWro [17]. The directions of the outgoing nucleons
are selected to be uniformly distributed in the center of
mass frame of the nucleons. A separation energy (some-
times ambiguously referred to as the binding energy) is
subtracted from the energy transfer from the lepton sys-
tem. The outgoing nucleon momenta are required to be
larger than the local Fermi surface momentum at the
interaction position within the nucleus. The model for
the binding energy is described in Ref. [14] and depends
on the interaction position in the nucleus. For oxygen,
typically between ∼50 and ∼75 MeV of energy is lost
to the nuclear response.
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Figure 4.10. Comparison of the nucleon kinematic distributions for the three nuclear
models: RFG, LFG, and SF. The left plot shows the initial momentum of the nucleon
in the carbon nucleus simulated by the neutrino event generator NuWro [124]. The right
plot shows the reconstructed missing momentum (pmiss) and missing energy (Emiss) dis-
tributions for νµ interactions on the oxygen nucleus simulated by NEUT. The missing
momentum is defined as pmiss = |pν − pℓ − pp|, and the missing energy is defined as
Emiss = Eν+Mn−Eℓ−Ep−T using the reconstructed kinetic energy T =

√
p2miss +M2−M

where M is the ground-state mass of nuclear remnant. The missing momentum and the
missing energy are approximately equal to the initial momentum of the struck nucleon
and the binding energy, respectively. The figures are taken from Refs. [125, 98].
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pled uniformly or even equivalently between T2K and
MINERvA. For instance, in the T2K case seeing a proton
above the 450 MeV/c tracking threshold from a peak in-
coming neutrino energy of 600 MeV is significantly more
likely if the proton already has a significant initial-state
momentum component along the direction of an inter-
actions momentum transfer, whilst for MINERvA the
higher energy beam and consequent larger typical mo-
mentum transfer to the proton (as shown by the higher-
peaking MINERvA proton momentum distribution in
Fig. 3) means this e↵ect is less significant.

In Figs. 4 and 5 the three models of the Fermi motion
within NEUT are compared to the MINERvA and T2K
results respectively. A summary of the �2 statistics cal-
culated from these comparisons is given in Tab. II. From
these it can clearly be seen that the widely used RFG
model is absolutely disfavoured by all the results. For
the T2K case both LFG and SF describe the shape of
the result well but there is a weak preference for the for-
mer. For the MINERvA analysis it can be seen that no
model is able to provide a complete description of the
result. In particular in both the �pT and pn comparisons
demonstrate that both SF and LFG struggle to describe
the rising edge of the bulk, whilst in pn only SF is able to
describe the bulk-tail transition region, where the short-
range correlations present in the model [19] give a larger
tail to the Fermi motion, thereby filling in some of the
aforementioned dip.

�2
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SF Nbins

T2K (�pT ) 31.4 129.6 21.8 8

T2K SO (�pT ) 3.3 45.8 10.0 8

MINERvA (�pT ) 62.1 321.5 104.9 24

MINERvA (pn) 122.2 309.8 110.8 24

TABLE II. A summary of the �2 calculated for comparisons
of T2K and MINERvA STV results to NEUT 5.4.0 using
di↵erent models for Fermi motion. The T2K �2 shown here
are calculated using the shape-only (SO) and full results. The
number of bins in each result is also shown.

B. FSI and 2p2h

As already demonstrated in Figs. 1 and 2, the tail of
�pT is predicted to be strongly enhanced in 2p2h inter-
actions and hence may be able to o↵er some characteri-
sation of their contribution to the CCQE-like cross sec-
tion (within the kinematic constraints listed in Tab. I).
However, as discussed in [9], the tail of �pT (and also
�↵T ) may also be sensitive to FSI alterations, poten-
tially in a way that is degenerate with variations of 2p2h.
To asses the results sensitivity to these e↵ects, and to
evaluate whether 2p2h and FSI can be separated at all,

 (GeV)
T

pδ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)-1
 G

eV
-1

 n
uc

le
on

2
 (c

m
Tpδd

σd

0

1

2

3

4

5

6

7

8
39−10×

NEUT 5.4.0
MINERvA
LFG
RFG
SF

�2
LFG = 62.1

�2
RFG = 321.5

�2
SF = 104.9

 (GeV)np
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)-1
 G

eV
-1

 n
uc

le
on

2
 (c

m
n

dpσd

0
1
2
3
4
5
6
7
8
9

10
39−10×

NEUT 5.4.0
MINERvA
LFG
RFG
SF

�2
LFG = 122.2

�2
RFG = 309.1

�2
SF = 110.8

FIG. 4. MINERvA STV results in �pT and pn are shown
alongside the NEUT 5.4.0 prediction for di↵erent models of
the Fermi motion (see Sec. III for details). A �2 of the com-
parison for each model is also shown.

 (GeV)
T

pδ
0 0.2 0.4 0.6 0.8 1

)
-1

 (G
eV

Tpδd
σd

 
σ1

0

1

2

3

4

5

6

7
NEUT 5.4.0

T2K
LFG
RFG
SF

�2
LFG = 3.3

�2
RFG = 45.8

�2
SF = 10.0

FIG. 5. The T2K �pT shape-only result is shown alongside
the NEUT 5.4.0 prediction for di↵erent models of the Fermi
motion (see Sec. III for details). A �2 of the comparison for
each model is also shown.

(a) MINERνA (δpT )

5

pled uniformly or even equivalently between T2K and
MINERvA. For instance, in the T2K case seeing a proton
above the 450 MeV/c tracking threshold from a peak in-
coming neutrino energy of 600 MeV is significantly more
likely if the proton already has a significant initial-state
momentum component along the direction of an inter-
actions momentum transfer, whilst for MINERvA the
higher energy beam and consequent larger typical mo-
mentum transfer to the proton (as shown by the higher-
peaking MINERvA proton momentum distribution in
Fig. 3) means this e↵ect is less significant.

In Figs. 4 and 5 the three models of the Fermi motion
within NEUT are compared to the MINERvA and T2K
results respectively. A summary of the �2 statistics cal-
culated from these comparisons is given in Tab. II. From
these it can clearly be seen that the widely used RFG
model is absolutely disfavoured by all the results. For
the T2K case both LFG and SF describe the shape of
the result well but there is a weak preference for the for-
mer. For the MINERvA analysis it can be seen that no
model is able to provide a complete description of the
result. In particular in both the �pT and pn comparisons
demonstrate that both SF and LFG struggle to describe
the rising edge of the bulk, whilst in pn only SF is able to
describe the bulk-tail transition region, where the short-
range correlations present in the model [19] give a larger
tail to the Fermi motion, thereby filling in some of the
aforementioned dip.

�2
LFG �2

RFG �2
SF Nbins

T2K (�pT ) 31.4 129.6 21.8 8

T2K SO (�pT ) 3.3 45.8 10.0 8

MINERvA (�pT ) 62.1 321.5 104.9 24

MINERvA (pn) 122.2 309.8 110.8 24

TABLE II. A summary of the �2 calculated for comparisons
of T2K and MINERvA STV results to NEUT 5.4.0 using
di↵erent models for Fermi motion. The T2K �2 shown here
are calculated using the shape-only (SO) and full results. The
number of bins in each result is also shown.

B. FSI and 2p2h

As already demonstrated in Figs. 1 and 2, the tail of
�pT is predicted to be strongly enhanced in 2p2h inter-
actions and hence may be able to o↵er some characteri-
sation of their contribution to the CCQE-like cross sec-
tion (within the kinematic constraints listed in Tab. I).
However, as discussed in [9], the tail of �pT (and also
�↵T ) may also be sensitive to FSI alterations, poten-
tially in a way that is degenerate with variations of 2p2h.
To asses the results sensitivity to these e↵ects, and to
evaluate whether 2p2h and FSI can be separated at all,

 (GeV)
T

pδ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)-1
 G

eV
-1

 n
uc

le
on

2
 (c

m
Tpδd

σd

0

1

2

3

4

5

6

7

8
39−10×

NEUT 5.4.0
MINERvA
LFG
RFG
SF

�2
LFG = 62.1

�2
RFG = 321.5

�2
SF = 104.9

 (GeV)np
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)-1
 G

eV
-1

 n
uc

le
on

2
 (c

m
n

dpσd

0
1
2
3
4
5
6
7
8
9

10
39−10×

NEUT 5.4.0
MINERvA
LFG
RFG
SF

�2
LFG = 122.2

�2
RFG = 309.1

�2
SF = 110.8

FIG. 4. MINERvA STV results in �pT and pn are shown
alongside the NEUT 5.4.0 prediction for di↵erent models of
the Fermi motion (see Sec. III for details). A �2 of the com-
parison for each model is also shown.

 (GeV)
T

pδ
0 0.2 0.4 0.6 0.8 1

)
-1

 (G
eV

Tpδd
σd

 
σ1

0

1

2

3

4

5

6

7
NEUT 5.4.0

T2K
LFG
RFG
SF

�2
LFG = 3.3

�2
RFG = 45.8

�2
SF = 10.0

FIG. 5. The T2K �pT shape-only result is shown alongside
the NEUT 5.4.0 prediction for di↵erent models of the Fermi
motion (see Sec. III for details). A �2 of the comparison for
each model is also shown.

(b) MINERνA (pn)

5

pled uniformly or even equivalently between T2K and
MINERvA. For instance, in the T2K case seeing a proton
above the 450 MeV/c tracking threshold from a peak in-
coming neutrino energy of 600 MeV is significantly more
likely if the proton already has a significant initial-state
momentum component along the direction of an inter-
actions momentum transfer, whilst for MINERvA the
higher energy beam and consequent larger typical mo-
mentum transfer to the proton (as shown by the higher-
peaking MINERvA proton momentum distribution in
Fig. 3) means this e↵ect is less significant.

In Figs. 4 and 5 the three models of the Fermi motion
within NEUT are compared to the MINERvA and T2K
results respectively. A summary of the �2 statistics cal-
culated from these comparisons is given in Tab. II. From
these it can clearly be seen that the widely used RFG
model is absolutely disfavoured by all the results. For
the T2K case both LFG and SF describe the shape of
the result well but there is a weak preference for the for-
mer. For the MINERvA analysis it can be seen that no
model is able to provide a complete description of the
result. In particular in both the �pT and pn comparisons
demonstrate that both SF and LFG struggle to describe
the rising edge of the bulk, whilst in pn only SF is able to
describe the bulk-tail transition region, where the short-
range correlations present in the model [19] give a larger
tail to the Fermi motion, thereby filling in some of the
aforementioned dip.

�2
LFG �2

RFG �2
SF Nbins

T2K (�pT ) 31.4 129.6 21.8 8

T2K SO (�pT ) 3.3 45.8 10.0 8

MINERvA (�pT ) 62.1 321.5 104.9 24

MINERvA (pn) 122.2 309.8 110.8 24

TABLE II. A summary of the �2 calculated for comparisons
of T2K and MINERvA STV results to NEUT 5.4.0 using
di↵erent models for Fermi motion. The T2K �2 shown here
are calculated using the shape-only (SO) and full results. The
number of bins in each result is also shown.

B. FSI and 2p2h

As already demonstrated in Figs. 1 and 2, the tail of
�pT is predicted to be strongly enhanced in 2p2h inter-
actions and hence may be able to o↵er some characteri-
sation of their contribution to the CCQE-like cross sec-
tion (within the kinematic constraints listed in Tab. I).
However, as discussed in [9], the tail of �pT (and also
�↵T ) may also be sensitive to FSI alterations, poten-
tially in a way that is degenerate with variations of 2p2h.
To asses the results sensitivity to these e↵ects, and to
evaluate whether 2p2h and FSI can be separated at all,

 (GeV)
T

pδ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)-1
 G

eV
-1

 n
uc

le
on

2
 (c

m
Tpδd

σd

0

1

2

3

4

5

6

7

8
39−10×

NEUT 5.4.0
MINERvA
LFG
RFG
SF

�2
LFG = 62.1

�2
RFG = 321.5

�2
SF = 104.9

 (GeV)np
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)-1
 G

eV
-1

 n
uc

le
on

2
 (c

m
n

dpσd

0
1
2
3
4
5
6
7
8
9

10
39−10×

NEUT 5.4.0
MINERvA
LFG
RFG
SF

�2
LFG = 122.2

�2
RFG = 309.1

�2
SF = 110.8

FIG. 4. MINERvA STV results in �pT and pn are shown
alongside the NEUT 5.4.0 prediction for di↵erent models of
the Fermi motion (see Sec. III for details). A �2 of the com-
parison for each model is also shown.

 (GeV)
T

pδ
0 0.2 0.4 0.6 0.8 1

)
-1

 (G
eV

Tpδd
σd

 
σ1

0

1

2

3

4

5

6

7
NEUT 5.4.0

T2K
LFG
RFG
SF

�2
LFG = 3.3

�2
RFG = 45.8

�2
SF = 10.0

FIG. 5. The T2K �pT shape-only result is shown alongside
the NEUT 5.4.0 prediction for di↵erent models of the Fermi
motion (see Sec. III for details). A �2 of the comparison for
each model is also shown.

(c) T2K (δpT )

Figure 4.11. The results of the MINERνA and T2K CCQE cross-section measurements
compared to the NEUT 5.4.0 [96] predictions for different initial state models: RFG [99],
LFG [126], and SF [119]. The cross-sections are measured as a function of the transverse
kinematics δpT = |pµ

T + pp
T | and the reconstructed neutron momentum pn, where pµ

T and
pp
T are the momentum of the outgoing muon and highest momentum proton in the plane

transverse to the incoming neutrino direction. The agreement of the model and data is
shown in terms of χ2. The figures are taken from Ref. [123].
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Figure 4.12. Feynman diagrams of various 2p2h processes. The single lines are nucleons,
the double lines are the ∆ resonances, the dashed lines are pions, and the curly lines are
the W boson, respectively. (a)-(e) represent the MEC processes and (f)-(g) represent the
NN proccesses. The figures are based on Refs. [129, 130].
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shell, the offset between the SF and the model calculations
for neutrons is around 4 MeV for oxygen and 2 MeV for car-
bon. To account for this, the central value removal energies of
the SF for neutrino interactions are shifted by these amounts,
and an uncertainty of 4 MeV is applied on the difference
between neutrino and anti-neutrino removal energies.

The removal energy shifts are encoded in four parame-
ters depending on whether they affect initial-state protons (ν
CCQE interactions) or neutrons (ν CCQE interactions), and
whether the target is carbon or oxygen: ∆EνO

rmv, ∆EνO
rmv,

∆EνC
rmv, ∆EνC

rmv. The removal energy parameters shift a
CCQE event’s outgoing lepton momentum and depends on
the event’s lepton kinematics, neutrino energy, and neutrino
flavour.

“Low Q2”parameters: NEUT’s cross section for charged-
current interactions leaving no mesons in the final state
(CC0π ) interactions must be suppressed at low Q2 to
match recent measurements from MINERvA [81,82] and
T2K [83,84]. This is often applied as a suppression of the
CCQE cross section via the inclusion of a nuclear screening
effect using the Random Phase Approximation (RPA) [60].
However, such effects are not included in the SF CCQE
model used in this analysis. Since the SF model is built largely
on the impulse approximation – which is expected to break
down at low momentum transfers ! 400 MeV/c [54] – extra
uncertainties are added in the region where discrepancies
with measurements are observed.

The low Q2 suppression is implemented as five param-
eters which alter the normalisation of the CCQE cross sec-
tion in a particular Q2 range. The parameters span Q2 =
{0, 0.25} GeV2 and are split into sub-ranges of 0.05 GeV2.

Since the origin of this low Q2 suppression in SF predictions
is poorly understood, these parameters do not have an exter-
nal constraint. Whilst this free parametrisation is effective at
facilitating a ND-driven modification to the CCQE cross sec-
tion, the lack of a theoretical basis limits the model’s overall
predictive power. Several simulated data studies are therefore
discussed in Sect. 5.3 to evaluate the bias from this technique
in the extraction of neutrino oscillation parameters.

MQE
A and “high Q2” parameters: The nucleon axial mass,

MQE
A , is tuned to neutrino-deuterium scattering data in NUI-

SANCE [85]. CCQE cross-section data from ANL [86,87],
BNL [88], BEBC [89], and FNAL [90] is used, and deu-
terium nuclear effects [91] and flux uncertainties for ANL
and BNL are included. The central value and its uncertainty
are adjusted and inflated to cover the result and previous
global fit results [92], giving MQE

A = 1.03 ± 0.06 GeV.

Uncertainties on the higher Q2 > 0.25 GeV2 predictions
of the SF model are driven by the axial component of the
neutrino-nucleon interaction, where the dipole model may
be inadequate [93]. An additional three “high Q2” parame-
ters are added to allow an ad hoc freedom, with the goal of

Fig. 9 Cross-section predictions for νµ (solid) and νµ (dashed) 2p2h
interactions on 12C from Martini et al. [96], Nieves et al. [60], and SuSA
v2 [97,98]

lessening the extent to which MQE
A is used as an effective

parameter to correct for deviations from the dipole model.
The Q2 ranges and uncertainties of the new high Q2 param-
eters are based on comparisons of the Q2 shape of the dipole
and z-expansion models [93].

5.2.2 2p2h uncertainties

The uncertainties related to 2p2h interactions are similar to
those in T2K’s previous oscillation analysis [1,2]. Parame-
ters altering the 2p2h normalisation independently for neu-
trinos and anti-neutrinos, and for carbon and oxygen interac-
tions, are used. The 2p2h normalisations are unconstrained,
and the carbon–oxygen scaling parameter has a 20% prior
uncertainty. A separate shape uncertainty is also applied,
which allows shifts in the ∆ and non-∆ contributions in the
energy and momentum transfer to the nucleus, (q0, |q|), of
the Nieves model, also separated for carbon and oxygen inter-
actions.

This analysis also includes additional new uncertainties
that reflect the shape of the energy dependence of 2p2h using
three different plausible models of the process, also stud-
ied by T2K cross-section analyses [94,95]. The uncertain-
ties span the maximal difference in 2p2h predictions from
Martini et al. [96], Nieves et al. [60], and SuSAv2 [97,98],
shown in Fig. 9. Four parameters are added which control
the shape of the energy dependence of 2p2h below and above
Eν = 600 MeV, and are separately applied to neutrino and
anti-neutrino events.

5.2.3 Single-pion production uncertainties

The uncertainty treatment for SPP remains almost iden-
tical to previous T2K analyses [1,2,99]. There are three
central parameters in the modified RS model: the resonant
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Figure 4.13. Comparison of the cross-sections of 2p2h interactions on 12C from Martini
et al. [127], Nieves et al. [126], and SuSAv2 [131, 129]. The figure is taken from Ref. [37].
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4.3.1.3 Final state interaction

The final state particles such as pions and nucleons produced at a neutrino interaction
process can re-interact with the nuclear medium while propagating [96, 98]. This is called
a final state interaction (FSI).

In the neutrino interaction generator NEUT, the pion FSIs are simulated using the
cascade model in which pions are propagated through a nucleus with finite steps. At
each step, the probability of having various processes is computed and the process to be
simulated is determined stochastically. The processes taken into account in our analysis
are

1. Quasi-elastic scattering (low pion momentum pπ < 500 MeV)

2. Quasi-elastic scattering (high pion momentum pπ > 500 MeV)

3. Pion absorption

4. Charge exchange

5. Hadron production,

as illustrated in Fig. 4.14. For the nominal MC production, we use the Salcedo-Oset
model [132, 133] tuned to the π-A scattering data [134] for simulating the cascade model.

1 Cross sections for oscillations
The global neutrino physics program is currently focused on studying the open ques-
tions about neutrino oscillations such as precision measurements of neutrino mixing
parameters, �CP measurement, neutrino mass ordering and sterile neutrinos. Neu-
trino oscillations can be studied by observing the energy and flavor spectra of a beam
of neutrinos (e.g., from an accelerator) at the beam source (usually with a near detec-
tor), before oscillations have started, and at the far detector, after oscillations have
occurred. In addition to understanding the beam precisely, oscillation measurements
also require a thorough understanding of neutrino-nucleus interactions to accurately
reconstruct the incoming neutrino energy and compare the near and far fluxes. When
neutrinos interact with the target material in a detector, they interact with nucle-
ons that are bound within nuclei; the heavier the nuclei, the larger the impact of
the nuclear environment. The universal scheme of using near detector (ND) data to

Figure 1: (left) Illustration of how various processes get triggered when a neutrino
interacts with a nucleus. (right) Neutrino energy landscape of current and future
oscillation experiments.

constrain oscillation measurements in the far detector (FD) is not perfect due to os-
cillated flux and differences in E⌫ ; usage of different detector technologies and nuclear
targets can further complicate this scheme. Furthermore, the physics of neutrino os-
cillations depends on the initial neutrino state, and cross sections measured in the ND
do not necessarily represent this due to flux uncertainties and detector effects. Also,
to attain high statistics, modern neutrino experiments use heavier targets, where nu-
clear effects such as nucleon correlations and final state interactions (FSI) introduce
significant complications and hadron kinematics come into play (see Fig. 1, left). For
these reasons, experiments rely on nuclear models to convert the neutrino energy
and flavor spectra detected at ND to initial interaction energy and spectra. Much
of our understanding of neutrino scattering comes from data from light nuclei such

1

Figure 4.14. Illustration of various final state interaction (FSI) processes. The figure is
taken from Ref. [135].

In addition, the momentum of the leptons leaving the nucleus is affected by Coulomb
attraction and repulsion [136]. Therefore, the lepton momentum is shifted by −3.6(−4.6)
MeV for the negative-charge leptons and by +2.6(+3.3) for the positive-charge leptons.
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4.3.2 Systematic uncertainties

Although we use the common neutrino interaction model for the nominal MC production
for the SK atmospheric and T2K accelerator neutrinos, we apply a different treatment
in the systematic uncertainty model. As shown in Fig. 4.15, the atmospheric sub-GeV
samples have neutrino energies below a few GeV, which is common to the T2K beam
samples. It is therefore natural to use the same cross-section systematic uncertainty model
for these samples as the physics should be common regardless of the neutrino sources or
samples. Another benefit of using the same cross-section model between the beam and
atmospheric neutrinos is that the T2K near detector constraint can also be applied to the
SK atmospheric samples. On the other hand, the rest of the atmospheric samples have
higher energies than the T2K beam samples and expand to significantly wider energy
ranges. Considering the strong dependence of the cross-section on the neutrino energies,
we use a different model for the higher-energy atmospheric samples. Accordingly, the
T2K near detector constraint is not applied to these samples except for the CCQE cross-
sections which are well-constrained by the T2K model and have less contribution in the
high-energy samples.

Accordingly, an antineutrino enriched subsample is
extracted from the single-ring multi-GeV e-like sample
by additionally requiring there are no decay electrons
present. This cut defines the single-ring multi-GeV ν̄e-like

sample and its rejected events form the single-ring
multi-GeV νe-like sample. After this selection the fractions
of charged-current electron neutrino and antineutrino
events in the νe-like sample are 62.1% and 9.0%,
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FIG. 6. True Super-K atmospheric neutrino energy spectra from simulation without oscillations.
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Figure 4.15. Simulated atmospheric neutrino energy spectra for each sample without
oscillation. The figure is taken from Ref. [52].

We refer to the systematic uncertainty model applied to the (beam + atmospheric sub-
GeV) samples as the “low-energy model” and the one applied to the rest of the atmospheric
samples as the “high-energy model”, respectively. The summary of the cross-section sys-
tematic uncertainty model is shown in Fig. 4.16. In the following subsections, the details
of the cross-section systematic uncertainty model will be described.

4.3.2.1 Cross-section systematic uncertainties

CCQE As described in Section 4.3.1.1, the axial form factor plays the most important
role in the formulation of the neutrino-nucleus CCQE cross-section. For the parameter-
ization of the systematic uncertainty model, we use the dipole form of the axial form
factor as shown in Eq. (4.16) and assign an error of 1.03 ± 0.06 to the axial mass MQE

A .
In addition, to give enough freedom to cover the suppression of the events in the recent
cross-section measurements by NIMERνA [117, 137] and T2K [138, 139], we have five
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Cross-section model summary

Low-energy 
sub-GeV atm + beam

High-energy 
multi-GeV atm

CCQE

T2K model with ND280 constraint,  
correlated in low-E/highE (except for high-Q2)

high-Q2 params w/ND280 high-Q2 params w/o ND
add νe/νμ ratio unc. (CRPA)

2p2h T2K model w/ND280 SK model (100% error) 
+ T2K-style shape

Resonant
T2K model w/ND280 

+ new pion momentum dial 
+ NC1π0 uncertainties

SK model 
for 3 dials common with T2K, 

use more recent larger T2K priors

DIS T2K model w/ND280 SK model

ντ SK model (25% norm on top of other syst)  
for other systematics checked that we have no numerically unstable values

FSI T2K model w/ND280 T2K model w/o ND280 
should be mostly same as SK model

SI T2K model, correlated in low-E/high-E  
only applied to FC and PC for atm, PN not applied to atm

Based on discussions with SK and T2K xsec experts, motivations for treatment given in TN422

Christophe 
Bronner et al.

Figure 1: Summary of the neutrino interaction model for the joint fit. The low energy category
is composed of the T2K and fully contained sub-GeV atmospheric samples, while the high
energy category is composed of the remaining atmospheric samples. “ND280” refers to the
use of the T2K near detector data to constrain the interaction systematic uncertainties. For
CCQE interactions, a subset of the parameters of the T2K model, referred to as the “high Q2

parameters” are separated between high and low energy samples while other ones are common.
Finally, “DIS” corresponds to deep-inelastic interactions, ”FSI” to pion final state interactions,
and ”SI” to pion secondary interactions.

6

Figure 4.16. Summary of the neutrino interaction model used in this analysis.

energy-dependent normalization parameters for each momentum transfer (Q2) region (re-
ferred to as “low-Q2” parameters). Each of these parameters gives the normalization to
the events with Q2 ∈ [0, 0.25] GeV2 in 0.05 GeV2 increments, respectively. To account
for the higher momentum transfer, we have three additional “high-Q2” parameters that
cover Q2 ∈ [0.25, 0.50], [0.50, 1.0], and [1.0,∞], respectively.

The same set of parameters is applied to the CCQE interactions in the high-energy
model as well, except for the high-Q2 parameters. Since the SK atmospheric samples have
wider ranges of neutrino energies than T2K and are expected to have different constraints
on these parameters, we use uncorrelated high-Q2 parameters for the high-energy model
without applying the T2K near detector constraints.

The systematic uncertainties for the binding energy are implemented as four correlated
parameters applied to each combination of the neutrino type (ν, ν̄) and target nucleus
(carbon, oxygen). The binding energy parameters on carbon are not used in the SK fit
but used in the T2K near detector fit, and they constrain the binding energies on oxygen
through the correlation.
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2p2h The 2p2h interaction has two nucleons in the final state but they mostly have
momentum below the Cherenkov threshold. Therefore, it can mimic the signals from
CCQE and can bias the measurements if the wrong reconstruction is applied assuming
the CCQE process. It is important to model the uncertainties of this process properly.

For the low-energy model, four overall normalization parameters and four energy-
dependent parameters are used to cover the possible systematic uncertainties. The nor-
malization parameters are applied to neutrinos and antineutrinos, and carbon and oxy-
gen, respectively. The other four energy-dependent parameters are applied to neutri-
nos/antineutrinos at Eν < 0.6 GeV and Eν > 0.6 GeV, respectively. For the high-energy
model, 2p2h interactions are found to have less impact than the low-energy events. There-
fore, only a simple 100% normalization uncertainty and an additional shape uncertainty
are used to parametrize the uncertainties on 2p2h in this energy region.

Single pion production As defined in Eq. (4.19), we use the normalization factor CA
5

and axial mass MRES
A in the parameterization of the systematic model along with the

non-resonant isospin background I1/2. In addition, we also have an isospin uncertainty
for antineutrino events with low pion momentum (pπ < 200 MeV), which is uncorrelated
with the normal isospin background. For the high-energy model, we also use the axial
mass (MRES

A ), normalization factor (CA
5 ), and isospin background (I1/2). The low pion

momentum isospin background is not included as it is not relevant to the high-energy
neutrino interactions.

In the low-energy model, we assign three simple normalization uncertainties for CC
coherent interactions on carbon and oxygen, and NC coherent interaction with a size of
30%, respectively. CC coherent parameters are 100% correlated between carbon and oxy-
gen, and NC coherent parameter is totally uncorrelated with the CC coherent parameters.
For the high-energy model, we have a single parameter that gives 100% uncertainty for
CCνµ and CCντ , and 50% uncertainty for CCνe and NC interactions.

Multi pions and deep inelastic scattering (DIS) The systematic uncertainties
for the multi-pion and DIS processes are assigned to both the total cross-section and the
corrections by Bodek and Yang. For the total cross-section, we have overall normalization
uncertainties of 3.5% and 6.5% for neutrinos and antineutrinos, respectively, with an
additional uncertainty for the multi-pion mode to account for the uncertainty on the
number of produced pions. For the Bodek-Yang corrections, we assign two independent
parameters for the multi-pion mode and DIS mode, respectively.

In the high-energy model, we use a similar but more developed systematic model for
these multi-pion and DIS modes. We have three separate uncertainties for the Bodek-
Yang correction to the multi-pion mode, which account for the axial and vector part of
the structure functions and overall normalization, respectively. An additional parameter
is included to cover the uncertainty that comes from the comparison of the nominal model
to an alternative model called CKMT [140].

ντ interaction For tau neutrinos, we assign a normalization uncertainty of 25% to all
the ντ events on top of the other interaction uncertainties to account for the theoretical
uncertainty on the ντ cross-sections.
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Final state interaction and secondary interaction The FSI uncertainties are di-
rectly taken from the tuning to the π-A scattering data as a set of five correlated pa-
rameters that correspond to the five simulated processes of FSI (QE scattering for low
and high energy, pion absorption, charge exchange, and hadron production). The uncer-
tainties on the secondary interactions (SI), which are the reinteractions of the outgoing
hadrons outside the nucleus, are also included using the same parameterization with the
FSI. For the T2K samples, these SI uncertainties are implemented as the normalization
of the event rates in each momentum bin together with the other detector systematic
uncertainties described in Section 4.4.2. For the atmospheric samples, the SI systematic
uncertainties are implemented as a set of five parameters that are correlated with the SI
contributions in the T2K beam sample uncertainties.

Other interaction uncertainties In the low-energy model, an uncertainty of 100% is
applied to the NC1γ interaction. In addition, a single uncertainty of 30% is applied to
the cross-sections of “other” NC interactions including NC elastic, NC resonant kaon/eta
production, and NC DIS interactions. These NC-other systematics are uncorrelated be-
tween the T2K near detector and SK. The uncertainties of cross-sections of νe and ν̄e
are defined by combining the 2% uncorrelated uncertainty and 2% anticorrelated uncer-
tainty. Furthermore, additional uncertainties on the νe and ν̄e cross-sections are included
based on the comparison between SF and an alternative model called CRPA [141, 142].
The total cross-sections of CC interactions that are not affected by the other interaction
uncertainties are given a single parameter with 100% uncertainty, which includes CC1γ,
CC resonant kaon and eta production, and diffractive pion production. The Coulomb
correction uncertainties of 2% (1%) are applied to the (anti-)neutrino cross-sections for
Eν ∈ [0.4, 0.6] GeV.

4.3.2.2 Effect of applying the T2K near detector constraint

To test the validity of applying the T2K near detector constraint to the sub-GeV atmo-
spheric samples, we checked the agreement between the data and MC-predicted event
spectra for these samples. To avoid seeing data before actually performing the fit, we
only selected the down-going events defined as

cosΘz > 0.4 (4.23)

where Θz is the zenith angle of the incoming neutrino direction (Θz = −1 for neutrinos
coming from the opposite side of the Earth and Θz = 1 for neutrinos coming from the at-
mosphere above SK). As shown in Fig. 2.7, these down-going events are almost unaffected
by the neutrino oscillations because of the relatively shorter traveling distances compared
to the upward-going events. For the three µ-like samples, we also ignore the events with
lepton momentum pℓ < 631 MeV as they can be slightly affected by the oscillation. We
treat these samples as pseudo-control samples and use them to test the agreement between
data and MC (they are also used in the actual data fit).

Figure 4.17 shows the data and the variation of the predicted event spectra when
varying the flux and cross-section systematic uncertainty parameters. The systematic
uncertainty parameters are varied according to their prior uncertainties and correlations
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with and without the T2K near detector constraints (denoted as “Pre-ND” and “Post-
ND” in the plots, respectively). The oscillation probability is applied to the “Pre-ND” and
“Post-ND” predictions (not to the raw MC) assuming the predefined oscillation parameter
set A in Table 5.3 which is close to the result of the past T2K analysis. The overall
predictions show a good agreement in the CC0π-enriched samples (e-like 0de, µ-like 0de
and 1de), while data shows a clear excess in the CC1π-enriched samples (e-like 1de,
µ-like 2de) and the π0-like sample. The excess is larger in the low-momentum regions
for the e-like and π0-like samples while it looks relatively constant in the µ-like sample.
The discrepancy becomes worse when we apply the T2K near detector constraints which
reduces the predicted number of events in the CC1π samples. These results imply that
our originally proposed model did not have a good enough prediction for these CC1π
samples, and therefore, we added some additional systematics to account for the possible
mis-modeling.

(a) e-like 0dcy (b) e-like 1dcy (c) µ-like 0dcy

(d) µ-like 1dcy (e) µ-like 2dcy (f) π0-like

Figure 4.17. Variation of the predicted spectra for the down-going events (cosΘz>0.4)
of each sub-GeV atmospheric sample when varying the flux and cross-section parameters.
“Pre-ND” and “Post-ND” show the spectra before and after applying the constraints from
the T2K near detector fit. The oscillation probability is applied assuming the predefined
oscillation parameter set A in Table 5.3. For the µ-like samples, the energy regions below
631 MeV are not shown as they could be sensitive to the oscillation.
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4.3.2.3 Additional cross-section systematic uncertainties

In the SK selection, CC1π samples are identified by requiring one primary ring produced
by the outgoing lepton and additional decay electron signals produced by the pion (and
the primary muon). If pions have momentum above the Cherenkov threshold, they are
identified as an additional primary ring, and the event is classified into the multi-ring
samples. Therefore, by modifying the pion momentum and making it cross the Cherenkov
threshold, we can increase or decrease the number of CC1π events. To add extra freedom
to the pion momentum without changing the lepton kinematic, we added uncertainties
that can account for the Adler angle distortions [143, 144, 145]. Here we assume that
pions are produced from the resonance state of a nucleon. We first move to the rest frame
of the resonance state nucleon. Then, introduce a parameter that can modify the angle of
the pion emission in this frame. Thanks to the boost of the resonance state nucleon, we
achieve the modified pion momentum which simply depends on the pion emission angle.
We introduced two of these Adler angle uncertainties in the low and high momentum
regions, respectively, to account for the fact that we observed a momentum-dependent
excess in the e-like CC1π sample.

To mitigate the excess seen in the π0-like sample, we added a parameter of 30% nor-
malization uncertainty for the resonant NC1π0 interaction which was constrained by the
CC parameter in the previous T2K analysis and therefore did not exist as an independent
parameter. We also inflated the uncertainty on the coherent NC1π0 parameter from 30%
(in the T2K analysis) to 100%. The values of these NC1π0 resonant/coherent interaction
uncertainties are tuned to the MiniBooNE data [146].

4.4 Detector response simulation
Once the neutrino flux and neutrino-nucleus interactions are simulated, the detector re-
sponse simulation is responsible for converting the simulated output particles into the
visible output of the detectors.

In SK, the detector response is simulated using a GEANT3-based [147] simulation soft-
ware. It simulates the propagation of charged particles through the water and the emission
of the Cherenkov light. The secondary interactions of the hadrons with water are simu-
lated using the NEUT FSI model below the hadron momentum of p < 500 MeV and using
GEANT3 CALOR [148] at p > 500 MeV. The Cherenkov light emitted from the charged
particles is also propagated through the detector geometry until it reaches the PMTs or
the detector wall. For photons reaching PMTs, the response of the PMTs is simulated
by taking into account the quantum efficiencies. Finally, the response of the PMT is
converted into the digitized hit information with timing and charge information which
can be used in the following analysis.

A similar detector response simulation is implemented for the T2K near detectors using
GEANT4 instead of GEANT3. The particles generated from the neutrino interactions are
propagated through the detector geometries which include not only the active detectors
but also the non-active materials surrounding the detectors such as boxes and frames.
Complex detector response simulations are implemented for each subdetector component
and they are applied to the charged particles passing these active detectors. Finally, a
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set of digitized hits from all the subdetectors is returned as the output of the detector
response simulation.

4.4.1 SK atmospheric detector systematic uncertainties

The SK atmospheric detector systematic uncertainties are parametrized with 27 parame-
ters that correspond to each step of the event reconstruction, calibration, and selection. In
addition to the cosmic ray muon data, the atmospheric neutrino data is used to evaluate
some systematic uncertainties because no control sample can cover the same energies and
event topologies as the atmospheric samples. The evaluated size of systematic uncertain-
ties is translated into the normalization of the event rates in the corresponding samples
as summarized in Table 4.3. The size of some uncertainties is defined separately for the
events within 50 < dwall < 200 cm and events in dwall > 200 cm to take into account the
relatively larger uncertainties for the events with the vertex near the wall. The details
of the evaluation of the atmospheric detector systematic uncertainties can be found in
Appendix A.1.

In addition to the systematic uncertainties that affect the event rate normalizations,
there are uncertainties in the energy calibration. We implement this systematic uncer-
tainty as a parameter that can directly modify the reconstructed lepton kinematics. The
size of the uncertainty is the same for all the samples independent of the event topol-
ogy and energy. There is one additional energy-scale uncertainty due to the up/down
asymmetry of the detector light transmission, which is only applied to the FC and PC
samples.
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Table 4.3. Summary of the SK atmospheric detector uncertainties. The systematic un-
certainty parameters are implemented as the normalization of the events in the corre-
sponding sample, except for the energy-scale systematic uncertainty parameters which
are implemented as the scaling of the reconstructed lepton momentum. The values in the
parenthesis represent the uncertainties for events close to the wall (50 < dwall < 200 cm).
The values are taken from Ref. [36].

Systematics Sample σ (%)

FC reduction FC 1.3
FC/PC separation FC Multi-GeV µ-like/PC 0.02
PC reduction PC 1.0
PC stopping/through-going separation top PC 6.8
PC stopping/through-going separation bar PC 8.5
PC stopping/through-going separation bot PC 40
Up-µ reduction UpMu stopping 0.5

UpMu through-going 0.3
Up-µ stopping/through-going separation UpMu stopping/through-going 0.6
Up-µ energy cut UpMu stopping 1.7
Up-µ path length cut UpMu through-going 1.5
Up-µ shower/non-shower separation UpMu showering/non-showering 3.0
Up-µ stopping BG subtraction UpMu stopping 11
Up-µ through-going non-showering BG subtraction UpMu non-showering 17
Up-µ through-going showering BG subtraction UpMu showering 24

Fiducial volume FC/PC 2.0
Decay-e tagging Sub-GeV 0.7 (0.7)

Multi-GeV 0.7 (2.1)
Two-ring π0 selection Sub-GeV π0-like 1.03

Cosmic ray background Sub-GeV/Multi-GeV µ-like 0.02
Multi-ring µ-like 0.07
PC 0.49

FC cosmic muon subtraction Multi-GeV/Multi-Ring µ-like 67
Flasher background Sub-GeV e-like 0.03

Multi-GeV e-like 0.07

Energy scale 2.17
Up/down asymmetry energy scale 0.67
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Table 4.3. Summary of the SK atmospheric detector uncertainties. The systematic uncer-
tainty parameters are implemented as the normalization of the events in the corresponding
sample. The anticorrelated normalization effects are denoted as negative values. “MME”
refers to the multi-GeV multi-ring e-like sample separation described in Section 3.3.2.

Systematics Sample σ (%)
50 < dwall < 200 dwall > 200

Ring separation Sub-GeV, Single-ring e-like, p < 400 MeV -1.31 0.74
e-like, p > 400 MeV -4.88 1.99
µ-like, p < 400 MeV -3.85 -0.73
µ-like, p > 400 MeV 3.81 0.70

Multi-GeV, Single-ring e-like -13.1 -11.6
µ-like 10.3 9.29

Multi-GeV, Multi-ring e-like 4.53 5.06
µ-like -6.23 -6.10

Single-ring PID Sub-GeV e-like 3.88 1.82
µ-like -6.60 -1.88

Multi-GeV e-like 0.078 -0.036
µ-like -0.086 0.038

Multi-ring PID Sub-GeV e-like 6.76 -0.27
µ-like -8.45 0.30

Multi-GeV e-like -0.85 -0.90
µ-like 1.51 1.33

MME stage 1 e-like -0.88 -0.67
other 0.50 0.53

MME stage 2 νe-like -3.64 -2.33
ν̄e-like 4.51 2.10
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4.4.2 T2K detector systematic uncertainties

4.4.2.1 Detector systematic uncertainty binning

The detector systematic uncertainties in the T2K far detector analysis are defined by com-
bining the uncertainties corresponding to each step of the reconstructions and selections.
The estimated uncertainties are summarized as a covariance matrix which represents the
event rate normalization for binned energy (momentum) ranges. The binning is defined
differently for each combination of the reconstructed samples and true event topologies
as summarized in Table 4.4. In addition to the event topology, the true νe events in the
e-like samples are separated into the oscillated νe components (from νµ → νe oscillation)
and the intrinsic νe components in the neutrino beam.

4.4.2.2 Adding correlations to the detector systematics

Since both T2K and SK use the same detector and reconstruction, it is natural to cor-
relate the detector systematic uncertainties between these two experiments. We include
the correlations with the following two steps: propagation of the atmospheric detector
systematics to the beam and addition of the beam-specific detector systematics.

Propagation of the atmospheric detector systematic uncertainties To propa-
gate the atmospheric systematic uncertainties to the beam samples, the atmospheric MC
is first reweighted as a function of the flux and true neutrino types to obtain the T2K-like
MC data set. Then, we vary the atmospheric detector systematic uncertainty parameters
and see how the number of events in the T2K-like MC changes. Since the T2K detec-
tor systematic uncertainties are defined as the normalization of the event rates in each
kinematic bin, this procedure allows us to get a new error matrix for the T2K part with
correlations to the atmospheric detector uncertainties naturally included.

T2K beam-specific detector systematic uncertainties Since several T2K event
selection steps are not included in the atmospheric analysis, we should add the uncer-
tainties related to these selections. These “beam-specific” uncertainties, related to the π0

rejection, νµ CC and NC backgrounds in the e-like samples, and νe CC backgrounds in
the µ-like samples, are added on top of the event rate variations estimated from the atmo-
spheric detector uncertainties. More details on the T2K detector systematic uncertainty
estimation can be found in Appendix A.2.

The correlation matrices of the detector systematics with and without including the
correlation are shown Fig. 4.18. The bottom-left part is the beam detector systematic
uncertainties and the top-right part is the atmospheric detector systematic uncertain-
ties. The top-left and bottom-right regions show the evaluated correlations between the
beam and atmospheric systematics. Among the atmospheric systematics, fiducial volume,
ring separation, and single-ring PID systematics have strong correlations with the beam
detector systematics.

Figure 4.19 shows the breakdown of the T2K detector systematic uncertainties. The
uncertainties in bins corresponding to signal-dominated categories (νe channels for 1Re
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Table 4.4. Summary of the T2K detctor systematic uncertainty binning. The T2K de-
tector systematic uncertainties are extracted for each combination of the reconstructed
sample and true event topology. The true event topologies are listed in the “Component”
rows, where “Osc. νe” means νe components from the νµ → νe oscillation, and “Beam νe”
means the intrinsic νe components in the neutrino beam.

Sample Component Kinematic range Sample Component Kinematic range

FHC 1Re

(pℓ [MeV])

Osc. νe

0− 300

RHC 1Re

(pℓ [MeV])

Osc. νe

0− 300

300− 700 300− 700

700− 700−

νµ

0− 300

νµ

0− 300

300− 700 300− 700

700− 700−

Beam νe

0− 300

Beam νe

0− 300

300− 700 300− 700

700− 700−

NC

0− 300

NC

0− 300

300− 700 300− 700

700− 700−

FHC 1Rµ

(Erec [MeV])

νµ CCQE

0− 400

RHC 1Rµ

(Erec [MeV])

νµ CCQE

0− 400

400− 1100 400− 1100

1100− 30000 1100− 30000

νµ CC non-QE 0− 30000 νµ CC non-QE 0− 30000

νe CC 0− 30000 νe CC 0− 30000

NC 0− 30000 NC 0− 30000

FHC 1Re 1de

(pℓ [MeV])

Osc. νe

0− 300

300− 700

700−

νµ

0− 300

300− 700

700−

Beam νe

0− 300

300− 700

700−

NC

0− 300

300− 700

700−

samples and νµ channels for 1Rµ samples) are mostly determined by the effect of at-
mospheric detector systematic variations, while for the background categories, the main
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Figure 4.18. Correlation matrix of the detector systematic uncertainties with (left) and
without (right) the correlations between SK atmospheric and T2K beam systematics. The
bottom-left part is the beam detector systematic uncertainties and the top-right part is
the atmospheric detector systematic uncertainties. The top-left and bottom-right parts
show the correlations between beam and atmospheric detector systematics.

contribution comes from the beam-specific uncertainties.
Figure 4.20 shows the comparison of the T2K detector systematic uncertainties with

and without correlations. In the correlated case, the uncertainties on the νe components
(the oscillated νe and beam intrinsic νe) in the FHC 1Re 1de sample are significantly
reduced compared to the uncorrelated case3. The correlated detector systematics have
larger uncertainties for the NC components in the 1Re samples and the signal components
(νµ CCQE) in the 1Rµ samples. The former comes from the beam-specific uncertainties
and the latter comes from the correlated systematics with the atmospheric parameters
such as the ring separation systematics.

Energy-scale systematics We also correlate the two energy-scale parameters for the
T2K beam and SK atmospheric samples with 100% prior correlations. For both parame-
ters, the size of the uncertainty is defined as 2.17%.

3In the uncorrelated case, the errors on the e-like samples are estimated from the atmospheric νe
CC0π and νe other control samples. The former is used to evaluate the uncertainties on the νeCC0π
signals in the 1Re samples while the latter is used for the νeCC1π signals in the 1Re 1de sample. Since
the latter atmospheric control sample also contains the background components rather than signal CC1π
events, the uncertainties on the signal components in the 1Re 1de sample are estimated larger than that
in the FHC 1Re samples. In the correlated detector systematics, these νe components in FHC 1Re 1de
are also evaluated separately from the background components, and therefore, the size of uncertainties
becomes more consistent with the other samples. More details on the T2K detector systematic uncertainty
estimation can be found in Appendix A.2.
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Figure 4.19. Breakdown of the detector systematic uncertainties in T2K error matrix
binning (the square root of diagonal elements in the covariance matrix). Only the sys-
tematic uncertainties with larger bin contents than 0.02 are shown. The other systematic
uncertainties are integrated and shown as the “Other" category with a dotted line. The
gray-shaded histogram shows the total detector systematic uncertainties.
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Figure 4.20. Comparison of the size of T2K detector systematic uncertainties (square root
of diagonal elements in the covariance matrix) with and without correlations.
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4.4.2.3 Additional PID systematics

To mitigate the effect of the data/MC excess seen in the atmospheric down-going CC1π
samples shown in Section 4.3.2.2, we introduce empirical systematic uncertainties. The
excess in the atmospheric sub-GeV e-like 1de sample has a momentum dependency and is
maximum at the lowest momentum bin. The possible explanations for this excess are (1)
event migrations between e-like and µ-like samples due to worse PID performance in the
low momentum region, (2) different π production rates in νe/νµ interactions due to the
difference in the masses of produced charged leptons (me ≪ mµ) or polarization effects,
and (3) contamination from 1µ1π0 due to invisible muon and misidentified gamma rays.
Although the actual reason for the excess is not clear, we introduced extra PID systematic
uncertainties by assuming the excess is coming from (1).

If event migrations due to PID issues are considered between samples with the same
decay electron count, the changes in event rates can be largely affected by the asymmetry
of event rates between e-like and µ-like samples. The simulated event rate in each sub-
GeV sample is shown in Table 4.5. As explained in Section 3.3.2, events are classified
into samples based on the PID and the number of reconstructed decay electrons. For
e-like samples, a decay-electron signal comes from an invisible charged pion, so the 0 de
sample is dominated by CCQE and the 1 de sample is dominated by CC1π+. For µ-
like samples, however, the muon produces a decay electron as well, so both 0 and 1 de
samples are dominated by CCQE, and the 2 de sample is dominated by CC1π+. Since
the CCQE cross-section is larger than the CC1π+ cross-sections, there is a large difference
in the number of events in the e/µ samples with 1 de. The e-like 1 de sample only has
0.12 times as many events as the µ-like 1 de sample, such that migration of even a small
fraction of the events from the µ-like 1 de sample can result in a significant change of the
number of events in the e-like 1 de sample. This is particularly relevant at low momenta
where the PID performance is worse.

Table 4.5. Summary of the simulated event rates in each atmospheric FC sub-GeV sam-
ple with the neutrino oscillations are taken into account (500 years MC). The CCQE -
dominated and CC1π+ -dominated samples are shown with red and blue background
colors, respectively.

0 de 1 de 2 de Total

e-like 376276 37144 - 413420

µ-like 71444 314474 23586 409504

e-like/µ-like ratio 5.27 0.12 - 1.03

To define the properties of the extra PID systematic uncertainty parameters, we in-
spect the event rates and likelihood distributions of atmospheric sub-GeV samples sepa-
rately for each analysis momentum bin: [100.2, 251.2, 398.1, 631.0, 1000, 1585] MeV. The
fractions of the true νµ CC, νe CC, and NC events in each sample and each analysis
momentum bin are summarized in Table 4.6. The lowest momentum bin of the e-like 1de
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sample has the largest contamination from the background (∼ 19%) and the fraction of
background events decreases with increasing the lepton momentum bin. This makes it
plausible that the momentum dependence in the excess seen in the atmospheric sub-GeV
sample comes from a worse PID at low momentum.

Table 4.6. The fraction of the event rates in each sub-GeV atmospheric sample and
each analysis momentum bin broken down into true neutrino flavors. The signal and
background components in each sample are shown with red and blue background colors.
The deeper colors show worse signal efficiencies and greater background contaminations.

PID e-like µ-like

Decay-e 0 de 1 de 0 de 1 de

True neutrino flavor νe νµ NC νe νµ NC νe νµ NC νe νµ NC

[100.2, 251.2] MeV 0.966 0.008 0.026 0.814 0.139 0.047 0.025 0.880 0.095 0.000 0.985 0.015

[251.2, 398.1] MeV 0.948 0.012 0.040 0.877 0.086 0.037 0.007 0.953 0.040 0.000 0.993 0.007

[398.1, 631.0] MeV 0.949 0.009 0.042 0.904 0.052 0.044 0.002 0.985 0.013 0.000 0.996 0.003

[631.0, 1000] MeV 0.966 0.002 0.032 0.920 0.034 0.046 0.002 0.995 0.003 0.000 0.999 0.001

[1000, 1585] MeV 0.971 0.002 0.027 0.930 0.027 0.043 0.002 0.997 0.001 0.000 0.999 0.001

Total 0.958 0.008 0.034 0.881 0.076 0.044 0.011 0.916 0.073 0.000 0.986 0.014

Figure 4.21 shows the distribution of the fiTQun single-ring PID likelihood for the
sub-GeV 1 de events in the lowest and highest lepton momentum bin broken down by the
true CC νe, CC νµ and NC components. Events are selected as e-like if log(Le/Lµ) ⪆ 0,
and we can see that there is relatively large contamination from true νµ and NC events in
this lowest momentum bin of the e-like 1de sample4. A lager background contamination
is also seen in the lowest momentum bin of the µ-like 0 de sample, but in this case,
the contamination seems to come more from the NC events than from the e/µ PID
issue. As there is no problematic excess seen for this sample in the down-going data/MC
comparison, we do not add extra systematic uncertainties for this sample.

The size of the extra PID systematic uncertainty for e-like samples is defined to be 20%
of the number of events in the lowest momentum bin. This comes from the observed down-
going data/MC discrepancy in the lowest momentum bin of the atmospheric e-like CC1π
sample. The counter-effect of this parameter in the µ-like samples is defined based on the
relative populations of 1de e-like and µ-like events in the lowest momentum bin: 20.0%×
(9691/84109) = 2.3%. We introduce this extra PID systematic as two separate parameters
for the T2K beam and SK atmospheric samples, with a 50% correlation between them.

4Here, the fiTQun “single-ring” fit results are shown for the atmospheric events. In the actual analysis,
T2K uses the fiTQun single-ring fit results for event selections, whereas SK atmospheric uses the multi-
ring one. Therefore, there will be small differences between the actual SK atmospheric event selection
and a selection based on the single-ring log(Le/Lµ) shown here. This can be seen in Fig. 4.21b, which
shows the distribution for this single-ring log(Le/Lµ) for events selected as e-like and µ-like in the real
atmospheric event selection. This difference appears as a small overlap around 0, but it is negligible for
seeing the impact of PID in this study and we can simply assume that events are separated into e/µ-like
samples at log(Le/Lµ) ≃ 0.
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(c) pe ∈ [1000, 1585] MeV (true flavor)
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Figure 4.21. The logarithm of likelihood ratio between the e-like and µ-like hypotheses
from the fiTQun single-ring fit results. The results are broken down into the true neutrino
flavors (left) and the reconstructed sample (right). Only the atmospheric sub-GeV 1 de
events in the lowest momentum bin pe ∈ [100, 251.2] MeV and the highest momentum bin
pe ∈ [1000, 1585] MeV are shown.

The correlation is not set to 100% to take into account differences in event selections
and populations between the samples of the two experiments, as well as differences in the
existing PID uncertainty assignment.



Chapter 5

Analysis method and sensitivity

5.1 Likelihood and prior constraints

5.1.1 Likelihood definition

In the analysis, the observed data is first binned into one- or two-dimensional histograms
according to their reconstructed kinematic properties for each data sample. Then, the
number of observed data events in each kinematic bin is compared to the expected number
of events. The expected number of events in bin i is given as a function of the oscillation
parameters (o) and systematic uncertainty parameters (s) as

λi(o, s) = c× Φi(s)× σi(s)× di(s)× P osc
i (o), (5.1)

where c is an overall scaling constant and Φi, σi, di and P osc
i are the neutrino flux, cross-

section, detector response, and oscillation probability in bin i, respectively. The prediction
step is done not analytically but using the MC data set as described in Section 4.1.

We use the binned-likelihood method to obtain the constraints on the parameters
of interest from the data. In the frequentist analysis, the parameter best-fit values or
confidence intervals are constructed by maximizing the (log-)likelihood. On the other
hand, in the Bayesian analysis, the likelihood L is related to the posterior probability
distribution p(θ|n) and prior π(θ) as

p(θ|n) = L(θ|n)π(θ)
p(n)

, (5.2)

where the parameters and data are denoted as θ and n, respectively. This relation,
called Bayes’ theorem, implies that our result (posterior probability) depends on our
prior knowledge (prior probability) about the parameter of interest.

In our analysis, the likelihood consists of the statistical term and the constraint term

Ltotal = Lstat. × Lconst., (5.3)

or equivalently,

logLtotal = logLstat. + logLconst.. (5.4)

86
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Statistical term The statistical part of the likelihood can be defined assuming the
Poisson distribution in each bin

Lstat.(λ|n) ≡
PPoisson(n|λ)
PPoisson(n|n)

=
e−λλn

e−nnn
, (5.5)

where n is the number of observed events and λ is the expected number of events. Note
that we normalize the Poisson probability by its value at λ = n for simplicity.

Constraint term To take into account the correlation between parameters and prior
uncertainties, we have to add a constraint term to the likelihood. The constraint term for
the systematic uncertainty parameters is defined as the multivariate Gaussian

Lsyst.
const. ≡

f(s|µ,Σ)
f(µ|µ,Σ) = exp

[
−1

2
(s− µ)TΣ−1(s− µ)

]
, (5.6)

where µ and Σ are the mean and covariance matrix, respectively. Similarly to the sta-
tistical term, the constraint term is also defined by dividing the Gaussian probability
with its value at s = µ so that we can ignore the normalization term (1/

√
2π|Σ|2). We

should note that there are a few systematic uncertainty parameters that have flat priors
and these parameters do not have the constraint terms. Some oscillation parameters are
also given a prior uncertainty in the fit and their constraint terms are also added to the
likelihood

Losc.
const. ≡

prior osc.∏

i

exp

[
−1

2

(oi − µi)
2

σ2
i

]
, (5.7)

where i only loops over the oscillation parameters that are given the prior uncertainties.

Full likelihood To summarize, the full log-likelihood is defined as follows:

−2 logLtotal(o, s|n) = −2 logLstat.(λ(o, s)|n)− 2 logLconst.(o, s) (5.8)

=

sample∑

s

bin∑

b

2

[
λs,b(o, s)− ns,b + ns,b log

ns,b

λs,b(o, s)

]
(5.9)

+ (s− µ)TΣ−1(s− µ) (5.10)

+

prior osc.∑

i

(oi − µi)
2

σ2
i

. (5.11)

When plotting the results, we select one or two oscillation parameter(s) and profile or
marginalize the other parameters. The parameters that are profiled or marginalized and
are not plotted in the results are called the nuisance parameters. Details of the methods
to compute the marginal and profiled likelihood are described in Section 5.3.

Finally, let us define ∆χ2 computed from the marginal or profiled likelihood. Here
we denote the parameter of interest as θ. Then, from Wilks’ theorem [149], the test
statistic D,

D = −2 log
L(θ|x)
L(θ̂|x)

, (5.12)
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is known to follow the χ2 distribution with the degrees of freedom equal to the number
of parameters under some assumptions1. Therefore, in the following analysis, we define
χ2 and ∆χ2 as

χ2(θ) ≡ −2 logL(θ|x), (5.13)

∆χ2 ≡ χ2(θ)− χ2(θ̂), (5.14)

where θ̂ denotes the maximum likelihood estimator, i.e.

θ̂ ≡ argmax
θ

L(θ|x) = argmin
θ

[−2 logL(θ|x)] . (5.15)

5.1.2 Oscillation parameter prior constraints

We apply the Gaussian constraints from the external experiments on some oscillation
parameters where we do not have strong sensitivities. In particular, the constraint on
sin2 2θ13 is taken from the results of the reactor neutrino measurements (the weighted
average of Daya Bay, RENO, and Double Chooz) and is referred to as “reactor constraint”.
The prior values used in the analysis are summarized in Table 5.1.

Table 5.1. Summary of the oscillation parameter prior distributions used in the data fit.

Parameter Prior Reference

δcp
δcp ∼ Uniform(−π, π)
sin δcp ∼ Uniform(−1, 1)

sin2(2θ13) Gaussian(µ = 0.0853, σ = 0.0027) [151]

sin2 θ12 Gaussian(µ = 0.307, σ = 0.013) [151]

sin2 θ23 Uniform(0, 1)

∆m2
21 [10−5 eV2] Gaussian(µ = 7.53, σ = 0.18) [151]

∆m2
32 (NO)/|∆m2

31| (IO) [eV2] Uniform(0,∞)

Mass ordering P (NO) = P (IO) = 0.5 (equal)

Since the results of the Bayesian analysis depend on the choice of the prior, and
violation (or conservation) of CP is one of the most important questions we seek to
answer in this analysis, we use two different prior probability distributions for δcp in our
Bayesian analysis. The effects of the priors uniform in δcp and uniform in sin δcp are shown
in Fig. 5.1. More detailed discussions on the prior choice can be found in Appendix B.

1In general, the conditions to apply the Wilks’ theorem are not met in the neutrino oscillation analysis.
Thus, we need special treatments to obtain proper coverage for the frequentist analysis [150].
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Figure 5.1. Comparison of the effect of the different priors on CP parameters.

5.2 Oscillation probability calculation
The T2K oscillation probability is calculated using the three-flavor oscillation probabilities
given in Section 2.2 by taking into account the matter effect. The propagation medium
is assumed to be uniform, and the fixed matter density of ρ = 2.6 g/cm3 and the fixed
propagation length of L = 295 km are used.

The oscillation probability calculation for the atmospheric neutrinos is more complex
as the propagation distance depends on the direction of the neutrinos. Since the density
of the matter is not uniform inside the Earth, the contribution of the matter effect also
varies depending on the neutrino trajectories. In addition, atmospheric neutrinos can be
produced up to about 50 km in the atmosphere, so the production height can also modify
the oscillation probabilities.

To take into account these effects, the conventional SK analysis uses an approximated
version of the preliminary reference Earth model (PREM) [152], where the Earth is mod-
eled with four layers of medium with different densities2. The property of each layer is
summarized in Table 5.2. In this analysis, we adopted a sophisticated treatment of the
Earth’s density to obtain a more precise estimation of the density than the fixed layer
approximation [145]. In this method, the Earth’s density is defined to be a quadratic
function of radius (R) as

ρi(R) = αi,2R
2 + αi,1R + αi,0. (5.16)

The value of density at each layer is derived for each neutrino event by averaging the
density over its trajectory:

⟨ρ⟩i :=
1

ti+1 − ti

∫ ti+1

ti

dtρ(t), (5.17)

where ti is the intersection of trajectory t with the layer boundaries shown in Fig. 5.2b.
The coefficients αi,j are extracted by fitting the PREM with the quadratic function, which

2The full PREM model has 82 layers, but the SK analysis reduces them to four to reduce the compu-
tational time.
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is summarized in Table 5.2. In the sensitivity study, the effect of the change in the Earth
density treatment is found to be small, and it makes a shift in the ∆χ2 curve of δcp by
up to 0.2 rad in the fit to only the atmospheric samples.

Table 5.2. Summary of the properties of the Earth density model used in the conventional
SK atmospheric neutrino analysis and this analysis. The Earth is modeled as a sphere
of radius 6371 km with four layers of medium. The constant densities are used for the
conventional SK analysis, whereas the quadratic densities are used for this analysis. The
corresponding figure is shown in Fig. 5.2a. The constant density values are taken from
Ref. [52].

Region Rmin (km) Rmax (km) Constant density (g/cm3) Quadratic density (g/cm3)

Inner core 0 1220 13.0 13.09− 8.84x2

Outer core 1220 3480 11.3 12.31 + 1.09x− 1.25x2

Mantle 3480 5701 5.0 6.78− 1.56x− 1.25x2

Crust 5701 6371 3.3 −50.42 + 123.33x− 69.95x2

corresponds to neutrinos crossing both the outer core and
mantle regions of the Earth. For shallower zenith angles the
distortion in the νμ survival probability and the resonant
feature in the νe appearance probability are caused by
matter effects in the mantle region. Note that none of these
features appear in the antineutrino plots. If the inverted
hierarchy were assumed instead, the roles of neutrinos and
antineutrinos switch completely and the discontinuities and
resonance effects appear with nearly the same magnitude
but in the antinuetrino plots.

III. THE SUPER-KAMIOKANDE DETECTOR

Super-Kamiokande is a cylindrical 50-kiloton water
Cherenkov detector, located inside the Kamioka mine in
Gifu, Japan. An inner detector (ID) volume is viewed by
more than 11,000 inward-facing 20-inch photomultiplier
tubes (PMTs) and contains a 32-kiloton target volume. The
outer detector, which is defined by the two meter-thick
cylindrical shell surrounding the ID, is lined with reflective
Tyvek to increase light collection to 1,885 outward-facing
eight-inch PMTs mounted on the shell’s inner surface.
Since the start of operations in 1996, Super-Kamiokande
has gone through four data taking periods, SK-I, -II, -III,
and -IV.
Though the basic configuration the detector is similar

across the phases there are a few important differences. At
the start of the SK-IV period in 2008 the front-end
electronics were upgraded to a system with an ASIC based

on a high-speed charge-to-time converter [13]. The new
system allows for the loss-less data acquisition of all PMT
hits above threshold and has improved the tagging effi-
ciency of delayed Michel electrons from muon decay from
73% in SK-III to 88%.
Further, following a period of detector maintenance and

upgrades at the end of SK-I (1996-2001), the implosion of a
single PMT at the bottom of the detector on November 12,
2001, created a shock wave and chain reaction that went on
to destroy 6,665 ID and 1,027 OD PMTs. The detector was
rebuilt the following year with nearly half of the photo-
cathode coverage (19%) in the ID (5,137 PMTs) and the
full complement of OD PMTs for the SK-II period (2002-
2005). Since that time all ID PMTs have been encased in
fiber-reinforced plastic shells with 1.0 cm thick acrylic
covers to prevent further chain reactions. This resulted in an
increased threshold of 7.0 MeV in SK-II compared to
5.0 MeV in SK-I. In 2006 the detector underwent a second
upgrade in which the remaining ID PMTs were replaced
and additional optical barriers were added to the top and
bottom portions of the OD to improve separation with its
barrel region. Both SK-III (2006-2008) and SK-IV (2008-
present) were operated with the full 40% photocathode
coverage in the ID.
Neutrino interactions which produce charged particles

above the Cherenkov threshold in water are reconstructed
based on the observed ring patterns projected on the
detector walls. Photomultiplier timing information is used
to reconstruct the initial interaction vertex after correcting
for the photon time of flight. Particles are divided into two
broad categories based upon their Cherenkov ring pattern
and opening angle. Rings from particles which produce
electromagnetic showers, such as electrons and photons,
tend to have rough edges due to the many overlapping rings
from particles in the shower and are labeled e-like or
showering. Muons and charged pions on the other hand,
which do not form showers, produce Cherenkov rings with
crisp edges. Such rings are labeled μ-like or non-shower-
ing. The event reconstruction assigns momenta to each
reconstructed ring in an event based on the observed
number of photons in the ring. Particles with higher
momenta produce brighter Cherenkov rings. Similarly,
particle directions are inferred based on the shape of their
ring pattern. Since the neutrino itself is unobserved, energy
and direction variables for use in the oscillation analysis
described below are based on the properties of their
daughter particles.
More detailed descriptions of the detector and its

electronics can be found in [13–15].

A. Detector calibration

Over the 20 year history of the experiment changes in the
run conditions have been unavoidable. Seasonal changes in
precipitation and the expansion of underground activities at
the Kamioka site have variable impact on the quality and

FIG. 1. The propagation of two neutrinos through the simpli-
fied model of the Earth used in the analysis below. Both νA and νB
are produced in the atmosphere. νA then experiences 6 oscillation
steps (air → crust → mantle → outer core → mantle → crust),
while νB experiences 4 oscillation steps (air → crust → mantle →
crust).
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Figure 20: Definitions of variables used in the calculation of the average density along the
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where @H0i/@⇢ is the derivative of the Hamiltonian in layer i with respect to the density ⇢,695

and
R 1
0 ds ei�iaa0ssk is given as analytic expressions of �iaa0 (see following derivation). The696

oscillation probability amplitude A including the contribution of the density deviations �⇢ from697

the average densities along trajectory is now given to first order in �p by (A 2 C3⇥3 unitary)698

A ··= A0 exp[�iQ] (57)

where A0 = Un.699

The derivation is given in Appendix A.4.700

Since we will use this method together with the oscillation probability smearing of Algo-701

rithm 1, we must specify the order of operations. We choose to insert the �⇢ correction between702

the unperturbed propagator A0 and smearing terms
Q

↵ exp[�iJ↵�x↵] as703

A(�x) = A0 exp[�iQ]
Y

↵

exp[�iJ↵�x↵]. (58)

39
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Figure 5.2. Illustration of the propagation of atmospheric neutrinos. (a) Simplified Earth
model that is used in the conventional SK analysis, where the four layers shown in different
colors are the inner core, outer core, mantle, and crust from the inside. The figure is taken
from Ref. [52]. (b) Definitions of the variables used in the average density calculations.

5.3 Fitting method
In our main analysis described in Chapter 7, we use Markov-Chain Monte Carlo (MCMC)
to obtain the marginal likelihood and the posterior probability distributions. However,
several other methods are also prepared to make inputs for MCMC and to perform val-
idation and additional studies. In particular, the profiling method is used to find the
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best-fit parameter set that maximizes the likelihood and to make a Gaussian approxi-
mation of the prior constraints on the systematic uncertainty parameters as described in
Section 5.3.1. A numerical marginalization based on the importance sampling method,
which is described in Section 5.3.2, is used to validate the result of MCMC and to perform
many fits at the same time, as it can produce similar results but faster than MCMC.

5.3.1 Profiling method

The best-fit values are obtained by profiling over all the oscillation (o) and systematic (s)
parameters using the gradient-descent method in MINUIT [153]:

ô, ŝ = argmin
o,s

[− logLtotal(o, s|n)] . (5.18)

The set of parameters that gives the maximum likelihood is known as the maximum
likelihood estimator (MLE) and is denoted with a hat (i.e. ô, ŝ).

In general, the Hessian matrix H(s), a square matrix of second-order partial deriva-
tives, can be computed at the best-fit point (MLE) as

Hi,j(s) =
∂2(logL)
∂si ∂sj

. (5.19)

This is equivalent to the negative Fisher information matrix I(s) at MLE:

Ii,j(s) =
∂2(− logL)
∂si ∂sj

= −Hi,j(s). (5.20)

The inverse of the Fisher information (and therefore the inverse of the negative Hessian)
at MLE is known to give the asymptotic covariance matrix [154]:

Σ ≡ Cov(s) = I(s)−1 = −H(s)−1. (5.21)

This method is used to propagate the T2K near detector fit constraints to the analysis at
SK, where the systematic uncertainty parameters are approximated to be the multivariate
Gaussian function

f(s|ŝ,Σ) = 1√
2π|Σ|2

exp

[
−1

2
(s− ŝ)TΣ−1(s− ŝ)

]
. (5.22)

One can also compute the standard error of the parameters by taking the square root of
diagonal elements of the obtained covariance matrix.

A profile likelihood function is computed by fixing the parameter of interest (θ) at grid
points and maximizing the likelihood at each grid by profiling the nuisance parameters
(η) using MINUIT:

Lprof.(θ|n) = Ltotal(θ, η̂|n), where η̂ = min
η

[− logLtotal(θ,η|n)] . (5.23)

This method is not used for the main analysis but is used for some validation studies.
Unless explicitly mentioned, we always use the marginal likelihood for our analysis.
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5.3.2 Importance sampling method

In the numerical marginalization method, one can marginalize the nuisance parameters
η by randomly throwing them many times and computing the prior-weighted average
of the throws. This method has been used in the T2K analyses by using the Gaussian
approximation of the near detector fit for the systematic constraints and sampling the
throws from it (i.e. η ∼ π(η) ≡ Lconst.). In this case, the marginal likelihood can be
written as

Lmarg.(θ|n) =
∫
dη Lstat.(θ,η|n)Lconst.(η) (5.24)

=

∫
dη π(η)Lstat.(θ,η|n) (5.25)

N throws−−−−−→
η∼π(η)

=
1

Nthrow

Nthrow∑

i

Lstat.(θ,ηi|n). (5.26)

However, this does not work well for the fit including the atmospheric samples as the
atmospheric systematic uncertainty parameters have larger prior uncertainties than the
post-fit uncertainties (i.e. they are not well-constrained in the prior). Since the volume
of the parameter space increases in proportion to the power of the number of parameters,
throwing unconstrained systematic uncertainty parameters from their priors will give us
very sparse throws around the parameter region of interest. This significantly worsens the
efficiency of the numerical marginalization (i.e. many throws fall in the small-likelihood
regions). Therefore, for the joint analysis, we use an updated importance sampling method
using the best-fit results.

We first obtain the best fit to the T2K e-like samples and the SK atmospheric samples
using MINUIT. To avoid finding the best fit at local minima, we run the fits at several
combinations of the octant, mass ordering, and δcp. Then, we construct the sampling
distribution based on the Hessian of these best-fit results and throw the nuisance parame-
ters from this sampling distribution. The final likelihood is obtained by reweighting each
throw to obtain the weights from the original prior constraints. This method gives us
a volume reduction of roughly ∼ 1018 and therefore allows us to perform the numerical
marginalization with better efficiency (i.e. we can reduce the number of throws that fall
in the small likelihood region). We do not include the T2K µ-like samples in the profiling
fit when obtaining the best-fit results because they give too strong constraints on sin2 θ23
and ∆m2

32 and give a poor estimation of the posterior parameter spaces.
To illustrate the impact of importance sampling, examples of the numerical marginal-

ization results based on the importance sampling from the prior and the best-fit results are
shown in Fig. 5.3. The errors are computed from the jackknife resampling method [155],
where we repeat removing 1/10 of the throws to compute the variance with the rest of
the throws and rescale the averaged variance to get an estimate of the variance of full
throws. We use N = 100, 000 throws to compute the marginal likelihood for both fits.
When we sample the atmospheric systematic uncertainty parameters from their priors,
we have large throw statistical errors due to the fewer number of throws that resulted
in the large likelihood region. This issue is improved when we sample these systematic
uncertainty parameters from the best-fit results.
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Figure 5.3. Comparison of the δcp ∆χ2 obtained from the fit to MC data set using the
numerical marginalization based on different sampling distributions. The errors estimated
using the jackknife method are shown as the shaded bands. See Section 5.5.1 for the
definition of the data set (Asimov A).

Despite the improvement in the sampling method, there still remains a possibility of
getting large throw statistical errors in this method. The issue will be more crucial for the
data fit where we have statistical fluctuations, and it is difficult to further improve the
stability of the fit. Therefore, the use of the importance sampling method is limited to
the validations and additional studies where we need to run many fits at the same time.
For the main analysis, we use the MCMC method.

5.3.3 Markov-Chain Monte Carlo

Overview of MCMC Markov-Chain Monte Carlo (MCMC) is a frequently used ap-
proach to obtain Bayesian inferences with a complex model [156]. The Markov chain refers
to the process where the probability of obtaining a certain state at one step only depends
on the state at the previous step. This probability is called the transition probability. One
can obtain the posterior probability distributions by running a chain of random walks that
stochastically explore the parameter space according to the transition probabilities. For
the implementation, we adopt a method called the random walk Metropolis-Hastings
algorithm [157].

Let us denote the parameter set with x (corresponds to the state at each step) and the
target posterior distribution with f(x). From Bayes’ theorem in Eq. (5.2), the posterior
distribution is defined using the likelihood L(x) and prior distributions π(x) as f(x) =
L(x)π(x) (here the normalization constant is ignored). To obtain the target posterior
distribution with MCMC, the transition probability p(x′|x) from the state x to x′ must
satisfy the detailed balance equation:

p(x′|x)f(x) = p(x|x′)f(x′), (5.27)
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where the transition probability can be further broken down into the proposal function
q(x′|x) and the acceptance rate α(x′|x) as

q(x′|x)α(x′|x)f(x) = q(x|x′)α(x|x′)f(x′). (5.28)

Here, the proposal function gives a proposal of the next step in a stochastic way, and
the acceptance rate decides whether we should accept or reject that proposal. When
the proposal is rejected, the next step will stay the state place. Equation (5.28) can be
rewritten as

α(x′|x)
α(x|x′)

=
q(x|x′)f(x′)

q(x′|x)f(x) . (5.29)

In the random walk Metropolitan-Hastings algorithm, we define the acceptance rate as

α(x′|x) = min

(
1,
q(x|x′)f(x′)

q(x′|x)f(x)

)
. (5.30)

Under this definition, since one of the acceptance rates α(x′|x) or α(x|x′) always take the
value of 1 and the other takes q(x|x′)f(x′)/q(x′|x)f(x) (or its inverse), it automatically
satisfies the modified detailed balance equation in Eq. (5.29).

In our analysis, we use the Gaussian distribution obtained from the best fit to the
atmospheric samples as the proposal function. Since the proposal function is symmetric
between x and x′ under the Gaussian definition (q(x|x′) = q(x′|x)), the acceptance rate
will be equal to the ratio of the posterior probabilities at x and x′ as

α(x′|x) = min

(
1,
f(x′)

f(x)

)
. (5.31)

In the actual fitting, the algorithm works in the following way:

1. Choose an initial state x0 with a random seed.

2. Propose the next step x′ according the proposal function q(x′|x).

3. Decide whether to accept the proposed step x′ or not depending on the acceptance
rate α(x′|x). One can generate a random number a uniformly distributed in [0, 1]
and define the next step as follows:

xn+1 =

{
x′ (a ≤ α(x′|xn))

xn (otherwise)
. (5.32)

Note that the acceptance rate is always 1 when the posterior probability at the
proposed step is larger than that at the current step, and therefore, the proposed
step will always be accepted in that case.

4. Repeat steps 2 and 3 many times until the chain reaches the stationary state.

We should note that the choice of the first step is arbitrary and therefore it could bias
our result if we choose the initial point far from the stationary point. Therefore, we need
to remove some steps at the beginning of the chain (these steps are called the “burn-in”).
More details about the tuning of MCMC can be found in Appendix C.
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Multicanonical method Using the algorithm described above, we can sample the
steps directly from the target posterior distribution. However, in this oscillation analysis,
certain regions of oscillation parameters (e.g. δcp ∼ π/2 at inverted ordering) get signifi-
cantly smaller probabilities to be explored. For example, when ∆χ2 is above ∆χ2 > 25
in some region, the corresponding posterior probability is < 4 × 10−6, which ends up
with only a few steps in this region even if we have a few million steps. This causes a
large statistical error and makes the posterior distributions around this region unreliable.
For sin2 θ23, it is also important to have enough transitions between the lower and upper
octant to get reliable posterior probabilities for both octants. Due to the octant problem
of θ23, the posterior probability distribution of sin2 θ23 is known to have a bimodal shape
(see for example Fig. 5.8). In that case, the transition between the two octants can be
suppressed due to the lower probability around the valley between the two octants.

To get enough number of steps in all the regions for the parameters of interest (es-
pecially for δcp) and to get enough transitions between octant, we use a so-called “multi-
canonical method”3 [158]. To adapt this method in our analysis, we construct a sampling
probability distribution fsample(x) by reweighting the target posterior probability f(x)
with the predicted posterior probability fpred.(x):

fsample(x) = f(x)/(fpred.(x))
1−β, (5.33)

where β = 1.0 conserves the sampling distribution as the same as the original posterior
probability. Although any predicted probability distributions are acceptable in principle,
the reweighting works efficiently when it is closer to the true target posterior probability.
In this study, we use the two-dimensional marginal likelihood for δcp-sin2 θ23 in both mass
ordering (MO) obtained from the importance sampling method as the predicted posterior
probability fpred.(δcp, sin

2 θ23,MO), which we denote as the “2D multicanonical method”
hereafter.

Figure 5.4 shows the posterior distributions of δcp and sin2 θ23 from the raw output of
MCMC with different values of β. Given a good approximation of the target posterior
as the prediction, β = 0.0 gives an almost uniform (flat) distribution over all the regions
of δcp and sin2 θ23. In the actual fit, however, we use an intermediate value around
β = 0.5 to avoid losing the steps in the high posterior regions and having an unexpected
concentration of the sampling distributions due to the mismatch in fpred.(x) and f(x).

To get the target posterior distribution from the raw output of the MCMC, we should
reweight each step s with the weight

ws =
[
fpred.(δcps, sin

2 θ23s,MOs)
]1−β

. (5.34)

The reweighted posterior distributions from the raw posterior (in Fig. 5.4) are shown in
Fig. 5.5, which demonstrates that we can get roughly consistent distributions from the
different values of β within statistical fluctuations. In the actual data fit, however, it could
give incorrect results when the multicanonical β is not well tuned, so we should tune β
properly to obtain a reliable result. More detailed discussions on the tuning of β, including
the MCMC convergence diagnostics and autocorrelations, are given in Appendix C.

3The multicanonical method was originally developed in the context of statistical physics to study
the behavior of the system (e.g. Ising model) at the first-order transition point where the transition
probability is suppressed.
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Figure 5.4. Comparison of the raw posterior distributions for normal and inverted ordering
with different values of β for the 2D multicanonical method. See Section 5.5.1 for the
definition of the MC data set (Asimov A).
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Figure 5.5. Comparison of the reweighted posterior distributions for normal and inverted
ordering with different values of β for the 2D multicanonical method. See Section 5.5.1
for the definition of the MC data set (Asimov A).

5.4 T2K near detector analysis
The T2K near detector (ND) data is used to constrain the flux and cross-section systematic
uncertainties presented in Chapter 4. The joint analysis between the SK atmospheric and
T2K accelerator neutrinos does not modify the ND part of the analysis. Therefore, we
do not repeat the ND analysis and simply use the results from the past T2K analysis
reported in Ref. [37]. An overview of the ND analysis results is briefly described in the
following.

The likelihood used in the ND analysis is defined as

Ltotal = Lstat. × LMC stat. × Lsyst., (5.35)

where Lstat. is the statistical likelihood, LMC stat. is the MC statistical uncertainty likeli-
hood, and Lsyst. is the prior constraints on the systematic uncertainties. The MC statis-
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tical uncertainty likelihood is included to take into account the uncertainty due to using
a finite size of MC simulation data set. This is defined as

− 2 logLstat. − 2 logLMC stat.

= 2

samples∑

i

bins∑

j

[(
NMC −NData +NData log

NData

NMC

)
+

(βj − 1)2

2σ2
βj

]
, (5.36)

where βj gives the scaling from the raw MC (N raw
MC ) to the weighted MC (NMC = βjN

raw
MC ),

and σj gives the MC statistical uncertainty in bin j. The value of βj is obtained by
analytically solving the following equation at run time:

β2
j + (N raw

MCσ
2
j − 1)βj −NDataσ

2
j = 0. (5.37)

This MC statistical uncertainty estimation is based on the method proposed by Barlow
and Beeston [159] with an approximation proposed by Conway [160].

The ND fit is performed by maximizing the likelihood defined in Eq. (5.35) over the
systematic uncertainties using MINUIT. The flux and cross-section systematic uncertainties
are mostly common to the far detector (SK) analysis described in Chapter 4, and the other
systematic uncertainty parameters unique to the ND analysis (e.g. detector systematics)
are detailed in Ref. [37].

Figure 5.6 shows an example of the pre-fit and post-fit event spectra (projected onto
pµ) of the selected near detector samples. The pre-fit spectrum for the FHC FGD1 νµ
CC0π sample shows that data is underpredicted by the MC. After the fit, the CCQE
component increased while the CC resonant 1π component decreased, which resulted
in a better agreement between data and MC. In the RHC FGD2 ν̄µ CC0π sample, the
agreement between data and pre-fit MC is not as bad as the FHC FGD1 νµ CC0π sample,
but it becomes even better after the fit. It is important to note that the momentum
(energy) dependence or target dependence (CH or H2O) of the MC/data discrepancies is
also taken into account in the fit, which allows us to achieve different sizes of adjustment
in different samples.

The results of these near-detector fits allow us to give precise predictions of flux and
cross-sections at SK. To propagate the constraints on the systematic uncertainties to the
SK fit, we assume that the systematic uncertainty parameters can be approximated with
a multivariate Gaussian function defined in Eq. (5.22).
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Fig. 14 Comparison of predicted pre-fit (top) and post-fit (bottom)
event distributions for the ND FGD1 ν-mode νµ CC0π sample (left)
and FGD2 ν-mode νµ CC0π sample (right). The data and prediction

are shown in the reconstructed momentum of the muon candidate, and
the simulation is broken down by interaction channel. The bottom insets
show the ratio of data to simulation

Fig. 15 Reconstruction performance at the FD of stopping cosmic-
ray muons and the Michel electrons from their decays. The left panel
shows the reconstructed momentum distribution of those electrons for
data taken during the SK-IV (blue) and SK-V (red) detector periods.

The right is a similar comparison showing the parent muon’s particle
ID parameter, which separates events into electron-like (positive val-
ues) and muon-like (negative values) categories. The uncertainty on the
data points is statistical
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and FGD2 ν-mode νµ CC0π sample (right). The data and prediction

are shown in the reconstructed momentum of the muon candidate, and
the simulation is broken down by interaction channel. The bottom insets
show the ratio of data to simulation

Fig. 15 Reconstruction performance at the FD of stopping cosmic-
ray muons and the Michel electrons from their decays. The left panel
shows the reconstructed momentum distribution of those electrons for
data taken during the SK-IV (blue) and SK-V (red) detector periods.

The right is a similar comparison showing the parent muon’s particle
ID parameter, which separates events into electron-like (positive val-
ues) and muon-like (negative values) categories. The uncertainty on the
data points is statistical
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Figure 5.6. The pre-fit (top) and post-fit (bottom) event spectra of selected near detector
samples. The data/MC ratio is 1.10 (pre-fit) and 1.00 (post-fit) for the FHC FGD1 νµ
CC0π sample, and 1.06 (pre-fit) and 1.02 (post-fit) for the RHC FGD2 ν̄µ CC0π sample.
The figures and MC/data ratio values are taken from Ref. [37].

5.5 Analysis sensitivity
We evaluate the sensitivity of our analysis using the predefined MC data set before per-
forming the data analysis. The MC data set we use for the sensitivity study is defined in
Section 5.5.1, and the results of the sensitivity studies are described in Section 5.5.2.

5.5.1 Definition of the Asimov data set

For the sensitivity study, we use an MC data set constructed by setting the oscillation
parameters at a predefined set of values, the beam flux and cross-section systematic un-
certainty parameters at the T2K ND post-fit values, and the other systematic uncertainty
parameters at the nominal values of the model. The MC data set is produced without
having any additional statistical fluctuations and is scaled to be the same statistics as the
real data we analyze (see Section 3.3). This data set is called the “Asimov” data set and
we assume that the result of the fit to this data set represents the expected sensitivities of
our analysis4. The predefined sets of oscillation parameters are summarized in Table 5.3.

4The name is taken after the American writer Isaac Asimov who wrote a short science fiction story
in which a computer determines the result of the presidential election. In this story, public opinion is
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The Asimov A oscillation parameter set is closer to the best-fit values in the past T2K
analysis which takes the maximal violation of CP and upper octant of sin2 θ23. On the
other hand, Asimov B is a hypothetical set of oscillation parameter values complemen-
tary to Asimov A where CP is assumed to be conserved and sin2 θ23 is set to be the lower
octant.

Table 5.3. Summary of the Asimov oscillation parameter set used in the MC sensitivity
study.

Parameter Asimov A Asimov B

sin2 θ12 0.0307
sin2 θ13 0.0218
sin2 θ23 0.528 0.45

∆m2
21 7.53× 10−5 eV2

∆m2
32 (NO)/ |∆m2

31| (IO) 2.509× 10−3 eV2

δcp -1.601 0

Mass ordering Normal ordering

5.5.2 Result of the sensitivity study

5.5.2.1 Comparison of the different sample fits

Here we perform three types of fits to compare the joint fit sensitivity with the contribu-
tions from individual experiments. The performed fits are (1) a fit to only the T2K beam
samples (denoted as “T2K”), (2) a fit to only the SK atmospheric samples using the T2K
near detector constraints (denoted as “SK (+ND)”), and (3) a joint fit to both the SK
atmospheric and T2K beam samples (denoted as “SK + T2K”).

Figure 5.7 shows the sensitivity results from the importance sampling method for the
oscillation parameter set A. For normal ordering, the constraints on δcp, sin2 θ23, and
∆m2

32 mostly come from the T2K samples. The addition of the SK samples improves the
constraints on δcp and sin2 θ23 slightly. A more visible effect can be seen in the rejection of
the inverted ordering, which appears as the offset in the ∆χ2 curves. The constraints on
sin2 θ13 are dominated by the prior constraints from the reactor experiments, and we do
not have much improvement in this parameter except for the inverted ordering rejection.
Overall, we do not have a significant improvement beyond a simple sum of ∆χ2 from the
beam and atmospheric samples at this oscillation parameter set A.

Figure 5.8 shows the sensitivity results for the oscillation parameter set B. For δcp,
the T2K-only fit has a weak rejection of δcp = π due to the symmetric feature of sin δcp
at δcp = 0 (true value) and δcp = π. However, in the joint fit, we gain stronger rejection
power for δcp = π thanks to the addition of the SK samples. For sin2 θ23, we gain a
stronger rejection of the wrong octant (upper octant in this case, i.e. sin2 θ23 > 0.5) than
the T2K-only fit.

represented by only one selected citizen’s opinion [161].
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Figure 5.7. Comparison of the Asimov sensitivity at true oscillation parameter set A
among the SK + T2K, T2K, and SK (+ND) fits within the joint analysis framework.

5.5.2.2 Power of rejecting CP conservation

Since one of the most important questions we seek to answer in this analysis is whether
the CP symmetry is violated, we examined the power of rejecting CP conservation (CPC).
Here we construct many Asimov data sets at different values of true δcp for true normal
ordering (NO) and inverted ordering (IO) while fixing the other oscillation parameters at
Asimov A. We define the power of CPC rejection using the difference between χ2 at CP
conserving values (δcp = 0, π) and the minimum χ2 in all the δcp regions and both mass
ordering (MO):

f(δtruecp ,MOtrue) = min
α
χ2(α|δtruecp ,MOtrue)− min

δcp,MO
χ2(δcp,MO|δtruecp ,MOtrue), (5.38)

where α runs over the four points of the CPC hypothesis: δcp = 0, π for NO and IO,
respectively.

The results of the power of rejecting CP conservation are shown in Fig. 5.9. Some
examples of the fit ∆χ2 distributions at different values of true δcp and different true mass
ordering are also shown in Fig. 5.10. In Fig. 5.9a, the SK (+ND) fit shows small CPC
rejecting power in all the regions, which implies that the atmospheric samples do not have
strong CP sensitivity. The T2K-only fit shows good CPC rejection around δcp = −π/2
but significantly loses the rejection power around δcp = π/2. As discussed in Section 2.4,
this is due to the degeneracy between δcp and mass ordering in the T2K measurement.
The effect of the degeneracy can be seen in the (δtruecp = 1.57, true normal ordering) plot in
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Figure 5.8. Comparison of Asimov sensitivity at true oscillation parameter set B among
the SK + T2K, T2K, and SK (+ND) fits within the joint analysis framework.

Fig. 5.10, where the T2K-only fit has similar χ2 at both the normal and inverted ordering.
This degeneracy, however, can be broken when we fit the T2K and SK samples simul-

taneously since the atmospheric neutrinos give almost constant wrong-ordering rejection
which is independent of true δcp. This effect appears as an offset in the ∆χ2 curves for
the wrong ordering (e.g. IO plots in the true NO) in Fig. 5.10. As a result, SK+T2K
shows a significant improvement in CPC rejection power around δtruecp = π/2. The opposite
behavior is also seen for the true inverted ordering case as shown in Fig. 5.9b.

The benefit of degeneracy breaking is pronounced at the combinations of a certain
region of true δcp and true mass ordering. For the other regions, the result of the joint
analysis becomes closer to a simple sum of ∆χ2 from the beam and atmospheric samples.

5.5.2.3 Sample likelihood scanned over oscillation parameters

Using the sensitivity framework, we study how each parameter gets constrained from the
samples. For each parameter of interest θ, we scan the sample likelihood defined as

−2 logLsample(θ|n,η = η0) = −2 logLstat.(λ(θ,η0)|n) (5.39)

=
bin∑

b

2

[
λb(θ,η0)− nb + nb log

nb

λb(θ,η0)

]
, (5.40)

where the nuisance parameters η are fixed at the values used to define the Asimov data
set and nb is the number of MC events in each bin b. We call this process the likelihood
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Figure 5.9. Power for rejecting CP conservation (CPC) as a function of the true δcp.

scan.
The results of the likelihood scan for δcp, sin2 θ23, and ∆m2

32 are shown in Fig. 5.11.
Only the total likelihood and the likelihood of the five samples that have the largest
contributions are shown. Since the MC data set is constructed using the same parameter
tuning, the sample likelihood always takes 0 at the Asimov A value (i.e. δcp = −1.601,
sin2 θ23 = 0.528, and ∆m2

32 = 2.509× 10−3 eV2).
For δcp, the largest contribution comes from the T2K FHC 1Re and the atmospheric

sub-GeV e-like 0de samples. These are mostly dominated by the νµ → νe appearance
probability which gives the sensitivity to δcp. The contributions from the RHC 1Re
and FHC 1Re 1de samples are relatively small compared to these samples due to the
relatively small statistics. For sin2 θ23 and ∆m2

32, the largest contributions come from
the T2K FHC/RHC 1Rµ samples. The shapes of the event spectra in these samples are
subject to the νµ → νµ disappearance probability, which gives strong constraints to these
parameters. Some contributions also come from the atmospheric samples such as the
sub-GeV µ-like 1 de sample.

However, we have correlations among these parameters in the actual fit, which is not
taken into account in these likelihood scan studies. In addition, the likelihood distribution
also depends on the data set n used when computing Eq. (5.39). Therefore, although these
studies are helpful to get an idea of how each parameter is constrained by each sample,
it is possible that we would get different constraints in the actual data fit.

5.5.2.4 Comparison of the different fitting methods

As described in Section 5.3, we have two methods to compute the marginal likelihood:
MCMC and the importance sampling method. These two methods are used to evaluate the
same marginal likelihood but are based on different methodologies. Therefore, we make
a comparison of the likelihood obtained from these two methods as validation before the
data fit.

The comparison of the 1D ∆χ2 contours obtained from both the importance sampling
method and MCMC are shown in Figs. 5.12 and 5.13 for Asimov A and B, respectively.
For MCMC, we use the 2D multicanonical method with β = 0.5 by taking the 2D δcp-



5.5. Analysis sensitivity 103

3− 2− 1− 0 1 2 3

CPδ Fit 

0

5

10

15

20

25

30

352 χ
Δ

 = -3.14 | Normal orderingCPδTrue 

SK + T2K T2K SK (+ND)
Normal ordering Inverted ordering

 = -3.14 | Normal orderingCPδTrue 

3− 2− 1− 0 1 2 3

CPδ Fit 

0

5

10

15

20

25

30

352 χ
Δ

 = -1.57 | Normal orderingCPδTrue 

SK + T2K T2K SK (+ND)
Normal ordering Inverted ordering

 = -1.57 | Normal orderingCPδTrue 

3− 2− 1− 0 1 2 3

CPδ Fit 

0

5

10

15

20

25

30

352 χ
Δ

 = 0.00 | Normal orderingCPδTrue 

SK + T2K T2K SK (+ND)
Normal ordering Inverted ordering

 = 0.00 | Normal orderingCPδTrue 

3− 2− 1− 0 1 2 3

CPδ Fit 

0

5

10

15

20

25

30

352 χ
Δ

 = 1.57 | Normal orderingCPδTrue 

SK + T2K T2K SK (+ND)
Normal ordering Inverted ordering

 = 1.57 | Normal orderingCPδTrue 

3− 2− 1− 0 1 2 3

CPδ Fit 

0

5

10

15

20

25

30

352 χ
Δ

 = -3.14 | Inverted orderingCPδTrue 

SK + T2K T2K SK (+ND)
Normal ordering Inverted ordering

 = -3.14 | Inverted orderingCPδTrue 

3− 2− 1− 0 1 2 3

CPδ Fit 

0

5

10

15

20

25

30

352 χ
Δ

 = -1.57 | Inverted orderingCPδTrue 

SK + T2K T2K SK (+ND)
Normal ordering Inverted ordering

 = -1.57 | Inverted orderingCPδTrue 

3− 2− 1− 0 1 2 3

CPδ Fit 

0

5

10

15

20

25

30

352 χ
Δ

 = 0.00 | Inverted orderingCPδTrue 

SK + T2K T2K SK (+ND)
Normal ordering Inverted ordering

 = 0.00 | Inverted orderingCPδTrue 

3− 2− 1− 0 1 2 3

CPδ Fit 

0

5

10

15

20

25

30

352 χ
Δ

 = 1.57 | Inverted orderingCPδTrue 

SK + T2K T2K SK (+ND)
Normal ordering Inverted ordering

 = 1.57 | Inverted orderingCPδTrue 

Figure 5.10. Comparison of Asimov sensitivity at different values of true δcp and different
true mass ordering. The other oscillation parameters are fixed at Asimov A. The dotted
vertical line shows the true δcp value.
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Figure 5.11. Sample likelihood distributions when varying the selected oscillation param-
eters. While one parameter is varied, the other oscillation parameters and the systematic
parameters are fixed at the Asimov A parameter set and the Post-ND tuning. Only the
total likelihood and likelihood of the five samples with the largest contributions are shown
for each parameter.

sin2 θ23 likelihood distributions from the importance sampling method as the predicted
distribution. The number of steps used in MCMC is two million steps after removing the
burn-in period. The errors are estimated using the jackknife resampling for the importance
sampling method and MCMC statistical error with a correction of autocorrelation for
MCMC5.

The overall agreement between the importance sampling and MCMC is good, except
for the upper octant region in sin2 θ23 for the Asimov B sensitivity (Fig. 5.13c). We
think this is because of the insufficient transitions between the upper and lower octant
in MCMC. Since we have a deeper valley between the two octants in the posterior distri-
bution of sin2 θ23 at Asimo B, it causes a less frequent transition between the upper and
lower octants (the steps might have stayed longer in the upper octant in this case). We
need to either increase the step size or optimize the value of β to fix this issue.

Figure 5.14 shows the sin2 θ23 1D ∆χ2 curve for MCMC with β = 0.0 (the step size is
the same). The agreement between the importance sampling and MCMC becomes better,
which implies we can fix the octant transition problem by tuning β properly. We will use
β = 0.5 as the baseline for data fit as it did not show a problem in the Asimov A fit,
but a similar validation between the importance sampling and MCMC will be repeated

5More details on the MCMC error estimation can be found in Appendix C.
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in Chapter 7, as there could be more difference in a data fit than the Asimov data set
which has more smooth distributions.

We should note that the importance sampling method shows a relatively stable per-
formance in the Asimov fit (MC data set without any statistical fluctuations), but it may
have larger errors in the data fit due to the less efficient sampling, which is difficult to fix.
On the other hand, it is easier to reduce the MCMC errors as we can simply increase the
number of steps. We will use 200 million steps in the actual data fit to get more stable
MCMC results (×100 more than that for the sensitivity study).
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Figure 5.12. Comparison of Asimov A sensitivity 1D ∆χ2 contours for the importance
sampling method and MCMC. The 2D multicanonical is used for MCMC with β = 0.5.
For ease of interpretation, MCMC ∆χ2 values are not shown for the bins that have less
than five raw MCMC steps where it has a large MCMC fluctuation.
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Figure 5.13. Comparison of Asimov B sensitivity 1D ∆χ2 contours for the importance
sampling method and MCMC. The 2D multicanonical is used for MCMC with β = 0.5.
For ease of interpretation, MCMC ∆χ2 values are not shown for the bins that have less
than five raw MCMC steps where it has a large MCMC fluctuation.
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Figure 5.14. Comparison of Asimov B sensitivity sin2 θ23 1D ∆χ2 contour for the im-
portance sampling method and MCMC. The 2D multicanonical is used for MCMC with
β = 0.0. For ease of interpretation, MCMC ∆χ2 values are not shown for the bins that
have less than five raw MCMC steps where it has a large MCMC fluctuation.



Chapter 6

Robustness test of the model

6.1 Overview of the robustness test of model
This study is the first joint analysis between the beam and atmospheric neutrinos. There-
fore, we developed a combined systematic model for the neutrino fluxes, cross-sections,
and detector responses as described in Chapter 4. These systematic models are mostly
based on the models used in the individual experiments but include some modifications
to take into account the correlations between beam and atmospheric samples. Possible
problems that would come with the joint analysis have been addressed during the con-
struction of these models. However, our understanding of neutrino-nucleus interaction
cross-sections and sources of other systematic uncertainties are limited in accuracy, and
their impact on the oscillation analysis needs to be carefully studied.

In this section, the motivations and procedures of the model robustness test are de-
scribed including the definitions of the metrics and criteria that need to be fulfilled to
ensure our model is robust against the possible out-of-model effects. The alternative mod-
els to be tested will be described in Section 6.2 and the results of the robustness test will
be discussed in Section 6.3.

6.1.1 Motivations and procedures

In the model robustness test, we test whether we would have a potential bias in the
measured oscillation parameters when our systematic model is incorrect (i.e. different
from the true nature that the actual data follows). The study is done by generating
a “fake” data set by modifying the input MC beyond the uncertainties assigned in our
nominal model and fitting them using the nominal systematic model that we use for the
actual analysis. This process allows us to test whether a possible out-of-model effect
can be absorbed in the current systematic model or whether it would leave a bias in the
oscillation parameter measurements. In addition, since the fake data fit is performed
at both the T2K near detector (ND) and SK, it also allows us to check whether our
extrapolation scheme of the near detector constraints to the SK analysis is robust.

The study is done by first generating fake data sets at the ND and SK. In practice,
this is done by reweighting the MC events according to an alternative theoretical model or
a data-driven assumption. Then, we fit the T2K ND fake data with our nominal model.

107
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The results of the ND fake data fit are extrapolated to make the predictions at SK and
are used in the SK fake data fit to extract the constraints on the oscillation parameters.
The SK side of the fit is performed using the importance sampling method instead of
MCMC. The importance sampling method produces similar results with MCMC but in
1/10 amount of time and therefore is chosen in this test. Once the fit is performed, we
compare the results of the SK fake data fit to the results of the nominal Asimov fit (i.e.
we fit the nominal MC Asimov data set with the nominal model) and check whether there
would be a bias or not. The metrics and criteria that are used to evaluate the size of
the bias will be described in Section 6.1.3. Since we use the “fake” data sets to study
the impact of out-of-model effects, this study is called the “Fake Data Study” (FDS). In
addition, for some studies, a so-called “scaled Asimov” method is used to mitigate the
possible biases due to the change in the statistics in the fake data set. More details on
this method and a criterion to apply this treatment are detailed in Section D.1.

The ideal situation is that any out-of-model effects can be absorbed into our nominal
systematic model and the oscillation parameters get no bias, but it is difficult to model
everything perfectly. When the fake data study fails the predefined criteria, we take
the following approaches. If a bias is observed in an oscillation parameter that can be
approximated with a Gaussian, we manually inflate the error on the obtained data fit result
by applying Gaussian smearing. The size of the smearing factor is computed from the size
of the biases we obtained from all the robustness tests. This approach is straightforward
but only applicable to the oscillation parameter that has a (near-)parabolic likelihood,
which is ∆m2

32 in our analysis.
If we observe a bias in the other parameters (δcp, sin2 θ23, and mass ordering), we take

another approach, where we add or modify the systematic parameters so that our model
can cover such a bias. For example, the extra PID systematics described in Section 4.4.2.3
were added after the first iteration of the robustness test to mitigate the effect of data/MC
excess seen in the atmospheric down-going CC1π events.

Finally, after the data fit, we will perform additional tests to see whether our conclusion
of CP violation could be affected by the out-of-model effects.

6.1.2 Parameter set

For the fake data studies, we use both the Asimov A and B oscillation parameter sets
defined in Table 5.3. Asimov A is closer to the best-fit values of the past T2K analysis and
Asimov B is a hypothetical set of values that are complementary to Asimov A. Although
we require the fake data studies to pass the criteria at both parameter sets, the result
with Asimov A is regarded as the main result of the fake data study, as it is expected to
be closer to our data fit results.

For the systematic parameters, we mostly use the set of values used as the prior in
the T2K near detector fit, which is called the “Pre-ND” tuning. Since the systematic
parameters are mostly implemented near their prior values, this treatment gives better
control of the systematic uncertainties that are not relevant to the out-of-model effect that
we want to test. However, depending on the alternative model we choose, we need to use
different tunings for the construction of the fake data set. One alternative tuning is the set
of best-fit values obtained in the near detector real data fit, which is called the “Post-ND”
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tuning. In the “Pre-ND” tuning, we also have two possible approaches to deal with the
low-Q2 parameters. The first approach is to define these variables simply to 1 which is
the nominal value of the SF prediction and does not change the MC normalization. The
other one is to set these parameters to values smaller than 1 to account for the observed
deficit in the external cross-section measurements1. Therefore, we denote the former as
the “Pre-ND (Q2 = 1)” tuning to distinguish it from the latter.

Since we have three tunings of the systematic parameters, the three different nominal
Asimov fits are defined by setting the systematic parameters at these tunings. The choice
of tuning is mentioned in each fake data study’s description in the following section. The
intervals obtained from the fit results of each nominal Asimov are described in Section 6.3.

6.1.3 Test metrics and criteria

In this section, the metrics and criteria that we use to evaluate the effects of fake data
studies on the oscillation parameters are introduced. For ∆m2

32, sin
2 θ23, and δcp, we define

two metrics to assess the bias in the central values of the oscillation parameters and the
change in the size of uncertainties. For mass ordering, we define one metric based on
the Bayes factor to assess the change in the preference for normal ordering over inverted
ordering. Finally, additional checks will be performed for δcp and Jarlskog invariant Jcp

after the data fit.

Bias The bias and interval size metrics are defined using the confidence intervals ob-
tained from the one-dimensional ∆χ2 curves for each oscillation parameter. The fixed-∆χ2

method is used for calculating the confidence interval sizes, where ∆χ2 = 1 and ∆χ2 = 4
correspond to 1σ and 2σ intervals, respectively2.

Let us denote the size of the 1(2)σ interval of the fake data fit as 1(2)σFDS
tot. and that of

the reference Asimov fit as 1(2)σref
tot., where tot. refers to the fit using the total likelihood

(Eq. (5.8)). We denote the center of the 2σ confidence interval as x̄2σ. We perform a
statistics-only reference Asimov fit by fixing the systematic parameters at their central
values (where the Asimov data set is defined) and compute the statistics-only interval size
1(2)σref

stat.. By combining these two values, we can define the systematic-only uncertainty
as

1σ2
syst. ≡ 1σ2

tot. − 1σ2
stat.. (6.1)

The bias metric is defined as the fractional shift in the center of the 2σ confidence in-
tervals between the fake data fit and the reference Asimov fit, divided by the 1σ systematic
uncertainty in the reference Asimov fit:

Bsyst.
x =

x̄FDS
2σ − x̄ref2σ

1σref
syst.

. (6.2)

1Here we use the values of [0.495, 0.695, 0.780, 0.890, 0.930] for the low-Q2 parameters that are tuned
to the MINERνA data [117, 137].

2This fixed-∆χ2 method does not guarantee the actual frequentist coverage for δcp and sin2 θ23 in the
oscillation analysis as Wilks’ theorem does not hold in this case. Therefore, the fixed-∆χ2 is only used
for the construction of the fake data study metrics and not used for the main analysis.
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We require that the observed bias is less significant compared to the estimated size of
systematic uncertainty 1σref

syst.. Therefore, using the bias metric defined above, we require
the following criterion should be satisfied for sin2 θ23 and ∆m2

32:
∣∣Bsyst.

x

∣∣ < 0.5. (6.3)

If this criterion is broken, it means that the observed bias is at a similar level to the
systematic uncertainty, and it should be mitigated.

Size of the error A secondary metric used to assess the change in the size of uncertainty
is defined as the relative size of the 2σFDS

tot. interval to the 2σref
tot. interval:

R2σ
x =

2σFDS
tot.

2σref
tot.

. (6.4)

We require the change in the interval size should be small compared to the full interval
size. Therefore, using the interval size metric defined above, we require the following
criterion should be satisfied for δcp, sin2 θ23, and ∆m2

32:
∣∣R2σ

x − 1
∣∣ < 0.1. (6.5)

Mass ordering Bayes factor The sensitivity to mass ordering is where we expect
the main gain in sensitivity compared to the individual beam and atmospheric analyses.
Therefore, we define a metric to assess the change in the preference between the normal
and inverted orderings. From the results of the marginal likelihood for δcp at fixed mass
ordering, we compute the Bayes factor as follows:

BFNO/IO =
L(NO|x)
L(IO|x) =

∫ π

−π
L(δcp,NO|x)π(δcp|NO)dδcp∫ π

−π
L(δcp, IO|x)π(δcp|IO)dδcp

,

where L(MO|x) is the marginal likelihood for each mass ordering hypothesis. In this
study, the prior distribution for δcp under each mass ordering hypothesis, π(δcp|MO), is
defined to be uniform in δcp. Thus, one can simply integrate the likelihood for all values
of δcp. To assess the change in this Bayes factor, we compute the ratio of them in the
fake data fit and Asimov fit as

RMO =
BFFDS

NO/IO

BFref
NO/IO

. (6.6)

For changes to the mass ordering preference, we require the following criterion

|RMO − 1| < 0.3. (6.7)

This criterion was made by looking at one of the frequently used scales of the Bayes
factor: Lee and Wagenmakers’ scale [162]. In this scale, change from one category to
another roughly corresponds to a factor of 3 increase in Bayes factor as summarized in
Table 6.1. Thus, we set the criterion at a 30% change in the Bayes factor ratio taking
10% of this change to the next category.
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Bayes factor Interpretation

1 No evidence
1 to 3 Anecdotal evidence
3 to 10 Moderate evidence
10 to 30 Strong evidence
30 to 100 Very strong evidence

> 100 Extreme evidence

Table 6.1. Lee and Wagenmakers’ scale on Bayes factor [162].

δcp and Jcp interval edges Due to the cyclic nature and current statistical limitation
in the sensitivity to δcp, the bias metric defined in Eq. (6.2) is not well suited for assessing
changes to the δcp intervals. Therefore, instead of the bias metric defined in Eq. (6.2), we
directly test the effects of the fake data studies on the data fit results after performing
the data fit.

The test is done by imposing a shift coming from the fake data effects to the δcp
and Jcp credible interval edges and checking whether it changes our conclusion on CP
violation at an interesting level of significance (i.e. 1σ, 2σ, 1.5σ, and 3σ). Let us denote
each interval edge as bs,↓x , bs,↑x for x = δcp, Jcp and s = 1σ, 1.5σ, 2σ, 3σ. A shift in each
edge, ∆bs,↓x and ∆bs,↑x , is computed by taking the ratio between the posterior distributions
obtained from the fake data fit and reference fit at Asimov A and scaling the data fit
posterior distributions with that ratio. We should note that we perform this test for both
the flat δcp prior and flat sin δcp prior as we have different credible intervals corresponding
to these priors.

The calculation of the Jarlskog invariant depends on four variables (δcp, θ23, θ13, θ12),
and it cannot be directly computed in the current importance sampling framework that
we use for the fake data study. Therefore, we employ some special treatments to obtain
the δcp and Jcp posterior distributions for each fake data fit. Here we assume that the
posterior distribution of θ13 and θ12 is independent of the other two parameters and almost
identical to their priors (denoted as π(·)). On the other hand, δcp and sin2 θ23 have
strong correlations, so we cannot separate these two variables. Therefore, the posterior
distribution can be written as

p(δcp, θ23, θ13, θ12) ≃ p(δcp, θ23)× p(θ13)× p(θ12)

≃ p(δcp, θ23)× π(θ13)× π(θ12). (6.8)

Based on this assumption, we generate 10 million sets of these oscillation parameter
values and construct the posterior distributions of δcp and the Jarlskog invariant. Each
parameter is randomly sampled from

π(sin2 2θ13) ∼ Gaussian(µ = 0.085, σ = 0.0027),

π(sin2 θ12) ∼ Gaussian(µ = 0.307, σ = 0.013),

p(δcp, sin
2 θ23) ∼ L(δcp, sin2 θ23)× π(δcp),

where we take both the flat δcp prior and flat sin δcp prior for π(δcp). After constructing
the posterior distributions, we calculate the shifts induced by each fake data study in each



6.2. Alternative models 112

edge of four credible intervals: bs,↓δcp
, bs,↑δcp

, bs,↓Jcp
, bs,↑Jcp

for s = [1σ, 1.5σ, 2σ, 3σ]. We should
note that we use the MCMC result to obtain the data fit posterior distributions of δcp
and Jcp. The method described above is only used for the test of fake data effects based
on the importance sampling method and it will not be used in our main analysis.

6.2 Alternative models
In this analysis, we tested the robustness of our nominal model using 12 alternative models
in total, which are summarised in Table 6.2.

The alternative models can be classified into three categories. The first category
is the theory-driven interaction model which is used to cover the possible weakness of
our nominal model. The second category is the data-driven model for testing the possible
biases coming from the observed data/MC discrepancies. The last category is the analysis
validation to test the validity of our analysis method itself.

Theory-driven models Two alternative nuclear models, Continuum Phase Space Ap-
proximation (CRPA) [141, 163] and Local Fermi Gas (LFG) [115], are tested as alternates
of the nominal nuclear model, Spectral Function (SF). To test whether our systematic
model for the removal (binding) energy can absorb the variation of possible Eb values, a
fake data study to test an extreme alternate value of Eb = 15 MeV is used instead of the
nominal value of 4 (0) MeV for neutrons (protons) in oxygen. For the CCQE cross-section,
we assume a dipole-shape axial form factor as discussed in Section 4.3.1.1. There are sev-
eral possible choices of the form factor parameterizations and here we test the so-called
3-component form factor as an alternative model (expansion of [164]). We use the Nieves
model [126] for the 2p2h process but there are also several possible choices of the model
that give a different cross-section prediction up to a factor of 2. Here we test the Martini
model [127] as an alternative 2p2h model. For the simulation of the multi-pion mode, the
probability of having a certain number of outcoming pions is given by the pion multiplicity
model. An alternative model can give different predictions of the number of pions and
can change the cross-section of the multi-pion mode accordingly. Therefore, we tested an
alternative pion multiplicity model to test whether our nominal model can absorb these
differences. As discussed in Section 4.3, in the joint analysis, the same electron neutrino
cross-section σνe uncertainty parameters (which is defined as scaling from the muon neu-
trino cross-section σνµ) are applied to both the low-energy and high-energy samples under
the assumption that σνe/σνµ does not have energy dependence. One robustness test is
used to test whether it could affect the oscillation parameter measurements in case there
is energy dependence in the σνe/σνµ difference.

Data-driven models As discussed in Section 4.3.2.2, we observed a data/MC excess in
the atmospheric down-going CC1π samples. A possible bias in the oscillation parameters
from this excess is tested in the atmospheric CC1π fake data study. Two additional fake
data studies are performed to test the effect of MC/data discrepancies observed in the
T2K near detector measurements.



6.2. Alternative models 113

Analysis validity test The validity of using the cross-section constraints from the
near detector (ND) fit in the low-energy atmospheric samples is tested through the ND
extrapolation fake data study. In addition, an effect of a bug found in the simulation of
the pion secondary interactions (SI) in the T2K near detector analysis is also tested.

Among these fake data studies, three selected studies from each category are described
in detail in the following sections: CRPA, atmospheric CC1π excess, and ND extrapola-
tion. The rest of the studies are summarized in Appendix D.

Table 6.2. Summary of the robustness tests studied in this analysis.

Alternative model name Model component Description Results

CRPA Nuclear model Section 6.2.1 Section 6.3.1
LFG Nuclear model Section D.2.1 Section D.3
Removal energy Nuclear model Section D.2.2 Section D.3
Axial form factors CCQE Section D.2.3 Section D.3
Martini 2p2h 2p2h Section D.2.4 Section D.3
Pion multiplicity CCnπ Section D.2.5 Section D.3
Energy-dependent σνe/σνµ σνe/σνµ Section D.2.6 Section D.3

Atmospheric CC1π CC1π Section 6.2.2 Section 6.3.2
ND Non-QE CC0π CC0π Section D.2.7 Section D.3
ND CC1π CC1π Section D.2.8 Section D.3

ND extrapolation Fit Section 6.2.3 Section 6.3.3
Pion SI bug fix CC1π, CCnπ Section D.2.9 Section D.3

6.2.1 CRPA

The main neutrino interaction target nuclei at SK and T2K ND are oxygen and carbon.
Since these nuclei are composed of multiple nucleons, the modeling of the nucleus plays a
key role in the prediction of the neutrino interaction cross-sections. In this analysis, we use
SF as the baseline model, but there are several other theoretical models proposed, such as
Hartree-Fock with Continuum Random Phase Approximation (HF + CRPA) [141], Local
Fermi Gas with Random Phase Approximation corrections (LFG + RPA) [115, 116], and
Super-Scaling Approach (SuSAv2 [165, 131]). This CRPA model robustness study (and
LFG described in Section D.2.1) is developed to test a possible bias from the wrong choice
of nuclear model.

In the HF method, a nucleus is described using an effective potential that summarizes
all the nucleons in the nucleus. This potential allows us to calculate the neutrino-nucleus
cross-section as well as the final state interaction of the outgoing leptons and hadrons in-
side the nucleus. The model CRPA refers to HF with the Random Phase Approximation
which deals with the correction of the W propagator due to the long-range nuclear screen-
ing. This HF + CRPA model was found to give a good agreement with the cross-sections
of electron scattering measurements [163].
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On the other hand, SuSAv2 can calculate the QE cross-section of both the electron
scattering and neutrino-nucleus scattering using the scaling functions which gives the
scaling from single-nucleon cross-section to multi-nucleon cross-section. SuSAv2 is an
updated version of SuSA including more realistic and accurate treatments of relativistic
mean field theory [165].

The comparison of the T2K flux integrated νµ and ν̄µ double-differential cross-sections
for HF (+CRPA), SuSAv2, and LFG (+RPA) is shown in Fig. 6.1. The HF + CRPA model
(simply referred to as CRPA hereafter) was found to give different predictions compared
to the other nuclear models especially in the low momentum and energy transfer regions
(i.e. smaller scattering angles) [166]. Therefore, if CRPA is the true model that describes
the nature of the neutrino interaction, using SF as the baseline of the fit could cause a
bias in the oscillation parameter measurements.
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(at low energy transfers the energy transfer spacing of
the hadron tensors is 0.25 MeV).

(b) Antineutrino

Figure 6.1. Comparison of the T2K flux integrated CC0π νµ and ν̄µ double-differential
cross-sections on carbon predicted by several 1p1h models. The figures are taken from
Ref. [166].

The input MC at the Pre-ND (Q2 = 1) tuning is reweighted to obtain the event
spectra predicted by CRPA. Since CRPA is not valid at higher energy transfer q0, we use
CRPA only at q0 < 0.5 GeV and use SuSAv2 at q0 ≥ 1 GeV. In the intermediate region
of q0 ∈ [0.5, 1.0] GeV, we use a linear interpolation between these two models defined as

σHybrid = σCRPA + (σSuSAv2 − σCRPA)×
q0 − 0.5

1.0− 0.5
. (6.9)

The reweighting factors are obtained separately for different neutrino types (neutrino and
antineutrino), different neutrino flavors (muon and electron), and different target nucleus
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species (carbon and oxygen) by taking the ratio of SF and CRPA cross-section predictions.
Since we use the Pre-ND (Q2 = 1) tuning for the generation of this fake data set, we use
the nominal Asimov defined at the same Pre-ND (Q2 = 1) tuning for the reference fit.

6.2.2 Atmospheric CC1π excess

This fake data study is developed to test a possible bias from the large data/MC excess
seen in the atmospheric down-going (cosΘz > 0.4) sub-GeV CC1π samples. The data/MC
comparisons of the down-going events in the e-like and µ-like samples are shown in Fig. 6.2.
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(b) Sub-GeV µ-like 2de

Figure 6.2. The data/MC comparison in the atmospheric sub-GeV CC1π samples down-
going events (cosΘz > 0.4). The MC prediction is tuned at the best-fit values of the
ND fit and the oscillation probabilities are applied by assuming the oscillation parameter
set Asimov A. For the µ-like sample 2de, the data in the momentum region below pℓ <
631 MeV is not shown as it could be sensitive to the oscillation.

The fake data set is constructed by reweighting both the T2K beam CC1π and atmo-
spheric sub-GeV CC1π samples assuming the excess observed in the down-going events
will also appear in the entire samples. All the other samples are kept the same. The
weights are defined by fitting the data/MC ratio as an exponential function of the recon-
structed lepton momentum for e-like samples and as a constant weight for µ-like samples
to take into account the shape of the excess:

wdown-going =

{
2.07× exp(−7.4× preclep/GeV) + 1.2 (e-like)

1.61 (µ-like)
(6.10)

The data/MC excess is not seen in the T2K near detector data, so here we assume that
these effects only appear at SK and do not apply the reweighting to the near detector
MC data set. Since we use the Pre-ND tuning for the generation of this fake data set, we
use the nominal Asimov fit defined at the same Pre-ND tuning.

6.2.3 Near detector fit extrapolation

As explained in Section 4.3, we use the T2K ND fit results to constrain not only the flux
and cross-section uncertainties of the T2K samples but also the cross-section uncertainties
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of the atmospheric sub-GeV samples through the common low-energy cross-section model.
It is, however, not trivial whether we can apply these constraints to the atmospheric
samples. In the typical T2K analysis, the flux and cross-section systematic uncertainties
achieve significant anticorrelations after the near detector fit as demonstrated in Fig. 6.3.
This anticorrelation helps to reduce the overall uncertainties on the predicted number of
events at SK. However, since we only extrapolate the near detector constraints to the
cross-section part of the uncertainties in the atmospheric samples, this treatment could
cause an unexpected pull in the event rate predictions in these samples.
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Fig. 13 Correlations between selected ν-mode νµ FD flux and CCQE cross-section parameters. The flux and Q2 normalisation parameters’
ranges are in units of GeV. The strong anti-correlations between the flux and cross-section parameters significantly reduce the uncertainties on the
predictions at the FD

tainties in Table 7, the selected samples are generally
described well with p = 0.82, with individual p-values
for the CC0π selections between p = 0.15−0.93. Split-
ting the neutrino flux contributions into ν-mode νµ, ν-mode
νµ, ν-mode νµ and ν-mode νµ, p = 0.74, 0.74, 0.31, 0.37
respectively, showing good compatibility. The cross-section
systematics are the worst contributor with p = 0.01, com-
ing predominantly from parameters that are pulled away from
their external constraints, e.g. MQE

A , MRES
A and CA

5 . When
instead varying the systematic uncertainty parameters with
respect to their constraints after fitting to data, the cross-
section model p-value improves to approximately p = 0.3.
This indicates that the cross-section model before the fit
to data is unfavourable, but after the fit to data is satisfac-
tory. The near-detector analysis constrains the product of the
neutrino flux, ND detector, and neutrino interaction uncer-
tainties, leading to large correlations between the systematic
uncertainties, as demonstrated in Fig. 13. Therefore, studying
one group’s p-value in isolation from the other is not exact.
For this reason, the p-values from the uncertainty parameters
do not have to follow the same strict criteria of p > 0.05.
However, the low p-value does highlight the need for contin-

ued effort in developing realistic neutrino interaction models
and associated uncertainties.

7 Far-detector selection

The FD event selection in this analysis is the same as used in
previous T2K results [1]; only the data have been updated,
and the selection is briefly reviewed here. Similarly, the
method of evaluating systematic uncertainties related to the
FD is unchanged from previous analysis, where atmospheric
events in SK are used to calculate the uncertainties using a
MCMC-based approach.

The event reconstruction in SK uses both charge and
timing information from hits in the PMTs, and particles
are detected using their Cherenkov rings. The vertex posi-
tion, momentum, and particle type of each ring is recon-
structed [133]. Muons and electrons are differentiated by
their ring profiles, where muons generally produce “sharper”
rings due to less scattering, and electrons produces “fuzzier”
rings due to their electromagnetic showers. All samples in
this analysis are based on observing one electron-like (1Re)

123

Figure 6.3. Correlations between FHC νµ flux and CCQE cross-section uncertainties
constrained by the T2K near detector fit. The neutrino energy Eν and four-momentum
transfer Q2 ranges are shown in the unit of GeV and GeV2, respectively. The flux and
cross-section parameters have clear anticorrelations. The figure is taken from Ref. [37].

This fake data study is used to test the possible bias coming from using the near
detector constraints to the atmospheric samples. The fake data set is constructed using
the two systematic parameter tunings. The beam part of the fake data set is constructed
by using the Post-ND tuning (best-fit values of the T2K ND fit to the real data, not to
the simulated Asimov data set). The atmospheric part is then constructed by using the
values of the special ND data fit which is done by fixing the flux parameters at their
prior values. In this special ND fit, the systematic effects are absorbed only by the cross-
section parameters. The atmospheric fake data, therefore, are tuned to these modified
cross-section parameters that do not have correlations with the beam flux parameters.
Finally, we fit the fake data set using the covariance matrix obtained from the normal ND
data fit, which has the anticorrelations between flux and cross-section systematics. If this
fake data fit shows a bias in the measured oscillation parameter values, it would imply
that we cannot simply apply the near detector constraints to the atmospheric samples
due to the correlations between beam flux and cross-section uncertainties. Since we use
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the Post-ND tuning for the generation of this fake data set, we use the nominal Asimov
fit defined at the same Post-ND tuning.

6.3 Result of the robustness test
In this section, the result of each fake data study (FDS) discussed in Section 6.2 are de-
tailed. For the oscillation parameters, the one-dimensional (1D) ∆χ2 curves are reported
along with the changes and biases observed in every FDS.

As described in Section 6.1.1, the results of the fake data fits are compared to the
results of the corresponding nominal Asimov fit. The three different nominal Asimov fits
are defined by setting the systematic parameters at Pre-ND tuning, Pre-ND (Q2 = 1)
tuning, and Post-ND tuning. The intervals obtained from the fit results of each nominal
Asimov are shown in Fig. 6.4, and the summary tables are shown in Section D.3. For the
nominal Asimov at Pre-ND (with and without Q2 = 1), the ∆χ2 surface of δcp is below
the 2σ threshold in all the regions in the Asimov B fit and the bias metric cannot be
defined properly. Therefore, we do not require δcp to pass the criterion of the bias metric
at Asimov B. In fact, for the CP conclusions, we will later investigate whether the fake
data effects would affect the data fit results, which is supposed to be supplemental to the
bias check.
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Figure 6.4. 1D ∆χ2 curves for the nominal Asimov fit with different systematic parameter
tunings. The true oscillation parameter set of Asimov A is used on the left column and
Asimov B is used on the right column. The results of the nominal Asimov defined at
Pre-ND tuning, Pre-ND (Q2 = 1) tuning, and Post-ND tuning are shown in red, blue,
and green, respectively.
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6.3.1 CRPA

The generated FDS spectra and ND prediction error bands are shown in Fig. 6.5. The
event spectra of the nominal Asimov (green solid line), the fake data (blue solid line),
and the prediction from the ND fit to the CRPA fake data (red band) are compared. As
CRPA gives different predictions of CCQE cross-sections at low momentum transfer, the
fake data event spectra have different shapes compared to the nominal spectra mostly
below 1 GeV in the T2K FHC/RHC 1Re/µ samples. The predictions from the ND fake
data fit capture these features only partially, and the fake data spectra are not well covered
by the predictions.
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Figure 6.5. Comparison between the nominal event spectra at Pre-ND (Q2 = 1) (solid
green) and the CRPA fake data event spectra (solid blue) at the Asimov A oscillation
parameter set. The prediction from the T2K near detector (ND) fake data fit is shown
with the red band. The bottom panel shows the ratio to the nominal spectra.

The 1D ∆χ2 curves for sin2 θ23, ∆m2
32, and δcp are shown in Fig. 6.6, and the size of the

intervals and biases are quantified in Table 6.3. This fake data study gives a significant
bias on ∆m2

32 and fails the FDS criterion. We considered adding an extra systematic for
which the 1σ variation would be this fake data study but did not adopt this approach
because this FDS is just one possible variation at low transferred energy. Therefore, we
simply apply smearing to ∆m2

32. For sin2 θ23, it has a deeper valley shape around the
maximal mixing point in Asimov B fit, and the 2σ intervals are divided into two parts.
The interval size is therefore defined as the sum of two 2σ intervals. This causes a slightly
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smaller interval ratio when compared to the nominal, but it still satisfies the criterion of
the interval ratio. Therefore, we do not require an action for sin2 θ23.

The mass ordering Bayes factors for the fake data fit and reference Asimov fits and
their ratios are summarized in Table 6.4 and they satisfy the criteria.
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Figure 6.6. 1D ∆χ2 distribution for the nominal fit at Pre-ND (Q2 = 1) and the CRPA
fake data fit. The left column shows the results at the oscillation parameter set Asimov
A and the right column shows the results at Asimov B.
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Table 6.3. Summary of the bias for the CRPA fake data study at both Asimov A and B.
The values of interest are highlighted in blue and the values that break the criterion are
highlighted in red.

δCP ∆m2
32 sin2 θ23

AsimovA

Middle of the 1σ interval -1.66 0.002541 0.5206

1σ interval size: 1σ 0.9982 4.77e-05 0.04787

1σ interval ratio to Nominal 1.013 0.949 1.156

Fractional change in the 1σ interval size wrt the syst interval
(
1σFDS

tot. − 1σref
tot.

)
/1σref

syst. 2.1% -12% 31.6%

Bias in the middle of 1σ interval wrt the size of the 1σref
tot. interval 0.465% 54% -13.6%

Bias in the middle of 1σ interval wrt the size of the 1σref
syst. interval 0.774% 128% -27.6%

Middle of the 2σ interval -1.678 0.002541 0.5164

2σ interval size: 2σ 1.701 9.55e-05 0.07159

2σ interval ratio to Nominal 1 0.9486 1.031

Fractional change in the 2σ interval size wrt the syst interval
(
2σFDS

tot. − 2σref
tot.

)
/2σref

syst. -7.18e-14% -12% 6.21%

Bias in the middle of 2σ interval wrt the size of the 2σref
tot. interval -1.05% 27% -4.41%

Bias in the middle of 2σ interval wrt the size of the 2σref
syst. interval -1.93% 63.3% -8.88%

Bias in the middle of 2σ interval wrt the size of the 1σref
tot. interval -1.82% 54.1% -7.4%

Bias in the middle of 2σ interval wrt the size of the 1σref
syst. interval -3.03% 128% -15%

AsimovB

Middle of the 1σ interval 0.06925 0.002548 0.4481

1σ interval size: 1σ 0.6841 5.052e-05 0.0198

1σ interval ratio to Nominal 0.9663 0.9457 0.884

Fractional change in the 1σ interval size wrt the syst interval
(
1σFDS

tot. − 1σref
tot.

)
/1σref

syst. -5.42% -12.9% -20.6%

Bias in the middle of 1σ interval wrt the size of the 1σref
tot. interval -11.9% 60.9% -16.9%

Bias in the middle of 1σ interval wrt the size of the 1σref
syst. interval -19.1% 145% -30.1%

Middle of the 2σ interval 1.237 0.002547 0.4635 and 0.5605

2σ interval size: 2σ 3.053 0.0001011 0.05076 and 0.03101

2σ interval ratio to Nominal 0.9718 0.9458 -

Fractional change in the 2σ interval size wrt the syst interval
(
2σFDS

tot. − 2σref
tot.

)
/2σref

syst. -3.41% -13% -

Bias in the middle of 2σ interval wrt the size of the 2σref
tot. interval - 30.4% -

Bias in the middle of 2σ interval wrt the size of the 2σref
syst. interval - 72.7% -

Bias in the middle of 2σ interval wrt the size of the 1σref
tot. interval - 60.7% -

Bias in the middle of 2σ interval wrt the size of the 1σref
syst. interval - 144% -

Table 6.4. Summary of the Bayes factors for the CRPA fake data fit and reference Asimov
fit, and their ratio.

Fake data Reference Ratio (fake data/reference)

Asimov A 7.02 7.08 0.99
Asimov B 1.33 1.29 1.04

6.3.2 Atmospheric CC1π excess

The generated FDS spectra and ND prediction error bands are shown in Fig. 6.7. In this
fake data study, the reweighting is applied only to the CC1π-enhanced samples (i.e. T2K
FHC 1Re1de, atmospheric sub-GeV e-like 1de, and µ-like 2de), and clear differences are
seen in the event spectra compared to the nominal.
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Figure 6.7. Comparison between the nominal event spectra at Pre-ND (solid green) and
the atmospheric CC1π fake data event spectra (solid blue) at the Asimov A oscillation
parameter set. The prediction from the T2K near detector (ND) fake data fit is shown
with the red band. The bottom panel shows the ratio to the nominal spectra.

The 1D ∆χ2 curves for sin2 θ23, ∆m2
32, and δcp are shown in Fig. 6.8, and the size of

the intervals and biases are quantified in Table 6.5. The mass ordering Bayes factor for
fake data fit and reference Asimov fits and their ratios are summarized in Table 6.6.

The δcp contour in the Asimov B fit goes above the ∆χ2 = 4 line and the 2σ intervals
are divided into two parts. The interval size is therefore defined as the sum of two 2σ
intervals. This causes a slightly smaller interval ratio when compared to the nominal,
where all the δcp regions [−π, π] are considered as the 2σ interval in the nominal Asimov
B fit. Although it breaks the criterion on the interval ratio for δcp, the value of the metric
is very close to the criterion, and it only happens in Asimov B fit which is far from the
past T2K best-fit point. Therefore, we do not require further action for δcp.



6.3. Result of the robustness test 123

3− 2− 1− 0 1 2 3

CPδ

0

5

10

15

20

25

2 χ∆

Asimov A
Nominal (Pre-ND)

πAtm. CC1

Normal ordering
Inverted ordering

SK + T2K preliminary

(a) δcp (Asimov A)

3− 2− 1− 0 1 2 3

CPδ

0

5

10

15

20

25

2 χ∆

Asimov B
Nominal (Pre-ND)

πAtm. CC1

Normal ordering
Inverted ordering

SK + T2K preliminary

(b) δcp (Asimov B)

2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75

3−10×

]2| (IO) [eV31
2 m∆ (NO)/|32

2 m∆

0

5

10

15

20

25

2 χ∆

Asimov A
Nominal (Pre-ND)

πAtm. CC1

Normal ordering
Inverted ordering

SK + T2K preliminary

(c) ∆m2
32 (Asimov A)

2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75

3−10×

]2| (IO) [eV31
2 m∆ (NO)/|32

2 m∆

0

5

10

15

20

25

2 χ∆

Asimov B
Nominal (Pre-ND)

πAtm. CC1

Normal ordering
Inverted ordering

SK + T2K preliminary

(d) ∆m2
32 (Asimov B)

0.40 0.45 0.50 0.55 0.60 0.65

23θ2sin

0

5

10

15

20

25

2 χ∆

Asimov A
Nominal (Pre-ND)

πAtm. CC1

Normal ordering
Inverted ordering

SK + T2K preliminary

(e) sin2 θ23 (Asimov A)

0.40 0.45 0.50 0.55 0.60 0.65

23θ2sin

0

5

10

15

20

25

2 χ∆

Asimov B
Nominal (Pre-ND)

πAtm. CC1

Normal ordering
Inverted ordering

SK + T2K preliminary

(f) sin2 θ23 (Asimov B)

Figure 6.8. 1D ∆χ2 distribution for the nominal fit at Pre-ND and the atmospheric CC1π
fake data fit. The left column shows the results at the oscillation parameter set Asimov
A and the right column shows the results at Asimov B.
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Table 6.5. Summary of the bias for the atmospheric CC1π fake data study at both
Asimov A and B. The values of interest are highlighted in blue and the values that break
the criterion are highlighted in red.

δCP ∆m2
32 sin2 θ23

AsimovA

Middle of the 1σ interval -1.381 0.002514 0.5284

1σ interval size: 1σ 0.9453 5.39e-05 0.04272

1σ interval ratio to Nominal 0.9316 1.003 0.9514

Fractional change in the 1σ interval size wrt the syst interval
(
1σFDS

tot. − 1σref
tot.

)
/1σref

syst. -11.4% 0.697% -8.91%

Bias in the middle of 1σ interval wrt the size of the 1σref
tot. interval 26.3% -2.14% 8.51%

Bias in the middle of 1σ interval wrt the size of the 1σref
syst. interval 44% -5.57% 15.6%

Middle of the 2σ interval -1.5 0.002514 0.521

2σ interval size: 2σ 1.714 0.0001079 0.07177

2σ interval ratio to Nominal 0.9786 1.002 0.9902

Fractional change in the 2σ interval size wrt the syst interval
(
2σFDS

tot. − 2σref
tot.

)
/2σref

syst. -3.97% 0.6% -1.94%

Bias in the middle of 2σ interval wrt the size of the 2σref
tot. interval 8.29% -0.913% 2.29%

Bias in the middle of 2σ interval wrt the size of the 2σref
syst. interval 15.4% -2.34% 4.54%

Bias in the middle of 2σ interval wrt the size of the 1σref
tot. interval 14.3% -1.83% 3.69%

Bias in the middle of 2σ interval wrt the size of the 1σref
syst. interval 23.9% -4.75% 6.77%

AsimovB

Middle of the 1σ interval 0.09058 0.002516 0.4531

1σ interval size: 1σ 0.675 5.829e-05 0.02404

1σ interval ratio to Nominal 0.9202 1.009 1.007

Fractional change in the 1σ interval size wrt the syst interval
(
1σFDS

tot. − 1σref
tot.

)
/1σref

syst. -14.1% 2.39% 1.35%

Bias in the middle of 1σ interval wrt the size of the 1σref
tot. interval -12.8% 4.01% 3.06%

Bias in the middle of 1σ interval wrt the size of the 1σref
syst. interval -22.7% 10.2% 5.53%

Middle of the 2σ interval 1.135 0.002516 0.5042

2σ interval size: 2σ 2.793 0.0001167 0.09263

2σ interval ratio to Nominal 0.8891 1.009 0.9961

Fractional change in the 2σ interval size wrt the syst interval
(
2σFDS

tot. − 2σref
tot.

)
/2σref

syst. -13.7% 2.34% -0.771%

Bias in the middle of 2σ interval wrt the size of the 2σref
tot. interval - 1.9% -0.147%

Bias in the middle of 2σ interval wrt the size of the 2σref
syst. interval - 4.83% -0.288%

Bias in the middle of 2σ interval wrt the size of the 1σref
tot. interval - 3.8% -0.574%

Bias in the middle of 2σ interval wrt the size of the 1σref
syst. interval - 9.63% -1.04%

Table 6.6. Summary of the Bayes factors for the atmospheric CC1π fake data fit and
reference Asimov fit, and their ratio.

Fake data Reference Ratio (fake data/reference)

Asimov A 7.99 6.75 1.18
Asimov B 1.34 1.23 1.09
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6.3.3 Near detector fit extrapolation

The generated FDS spectra and ND prediction error bands are shown in Fig. 6.9. The
fake data event spectra have in general more events than the nominal spectra in the
atmospheric samples, but they are still within the predictions.
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Figure 6.9. Comparison between the nominal event spectra at Post-ND (solid green) and
the ND extrapolation fake data event spectra (solid blue) at the Asimov A oscillation
parameter set. The prediction from the T2K near detector (ND) fake data fit is shown
with the red band. The bottom panel shows the ratio to the nominal spectra.

The 1D ∆χ2 curves for sin2 θ23, ∆m2
32, and δcp are shown in Fig. 6.10. The mass order-

ing Bayes factor for fake data fit and reference Asimov fit and their ratios are summarized
in Table 6.7. No significant change in the oscillation parameters is observed in the fake
dat fit. Following our criteria, no action is required for this fake data study.

Table 6.7. Summary of the Bayes factors for the ND extrapolation fake data fit and
reference Asimov fit, and their ratio.

Fake data Reference Ratio (fake data/reference)

Asimov A 8.89 8.05 1.10
Asimov B 1.42 1.32 1.07
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Figure 6.10. 1D ∆χ2 distribution for the nominal fit at Post-ND and the ND extrapolation
fake data fit. The left column shows the results at the oscillation parameter set Asimov
A and the right column shows the results at Asimov B.
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6.3.4 Summary

We performed 12 fake data studies to test the possible weakness of our analysis to the
effects that are not taken into account in our nominal model. The results of all the fake
data studies performed in this analysis are summarized in Tables 6.8 and 6.9. A bias was
found in ∆m2

32 from the CRPA and pion multiplicity fake data studies. To reduce the
effect of this bias in the oscillation analysis such that it is no longer significant, we will
smear the likelihood curve of ∆m2

32. Using the result of fake data studies at Asimov A,
the smearing factor is calculated from the quadrature-sum of the biases in all the fake
data studies as

SAsimovA =

√∑

FDS

(
1σref

syst. ×Bsyst. FDS

∆m2
32

)2
= 3.6× 10−5 eV2.

We use the results of all the fake data studies to compute the smearing factor regardless of
whether each study passes the criteria or not. This approach gives a slightly conservative
estimation of the fake data effects than simply using the results of the studies that broke
the criteria. However, since we compute the quadrature sum of the obtained biases,
the final smearing factor will be dominated by a few studies that had larger biases. The
values used in the calculation of the smearing are summarized in Table 6.10. For reference,
the smearing factor computed only from the fake data studies that failed the criteria is
3.3× 10−5 eV2.

The ND non-QE CC0π FDS did not satisfy the interval ratio criterion for ∆m2
32 in

Asimov B, but since the obtained metric is very close to the criterion, this effect will be
covered when we apply Gaussian smearing on ∆m2

32. The interval criterion is not met
for δcp in the Asimov B fit of the atmospheric CC1π excess FDS either. However, since
this is also very close to the criterion and it only breaks the criterion in the Asimov B fit
which is far from the T2K best-fit point, we do not require additional action for this fake
data study. The change in the mass ordering Bayes factor is also shown to be small in all
the fake data studies.

Based on these results, we conclude that our model is robust to possible out-of-model
effects and we can move on to the data fit. The remaining tests of the fake data effects
on the δcp and Jcp credible interval edges are presented in Section 7.3.6.
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Table 6.8. Summary of the metrics to assess the effect of alternate models at Asimov A
oscillation parameter set. The values that broke the criteria are highlighted with a red
background color.

Fake data Reference
Interval ratio R2σ

x Bias Bsyst.
x Mass ordering

BF ratioδcp ∆m2
32 sin2 θ23 δcp ∆m2

32 sin2 θ23

CRPA Normal Asimov 0.991 0.969 1.02 -4.85% 154% -10.5% 0.99

LFG Normal Asimov 0.969 0.988 0.926 2% 38.4% -4.76% 1.12

Removal energy Normal Asimov 1.01 1 1 1.49% -22.5% 3.54% 0.96

Axial form factor Scaled Asiomv 0.998 0.995 0.978 -1.22% 7.49% -0.944% 0.97

Martini 2p2h Scaled Asiomv 0.972 0.989 0.982 -1.29% -8.03% -3.89% 1.09

Pion multiplicity Normal Asimov 1 0.999 1.02 2.35% -63.5% -4.53% 0.90

Energy-dependent σνe/σνµ Scaled Asiomv 0.988 0.994 0.992 0.04% -5.82% 1.72% 1.08

Atmospheric CC1π Normal Asimov 0.963 0.998 1 15.2% -11% 8.45% 1.18

ND CC1π Normal Asimov 1.02 1 0.964 0.501% 18.4% -4.57% 1.01

ND Non-QE CC0π Normal Asimov 0.948 0.904 0.995 -5.57% -20.3% -10.6% 1.00

ND extrapolation Normal Asimov 1.01 0.989 0.991 5.02% 17% -2.54% 1.10

Pion SI bug fix Normal Asimov 0.997 1.02 0.985 2.05% 44.8% -0.91% 1.00

Table 6.9. Summary of the metrics to assess the effect of alternate models at Asimov B
oscillation parameter set. The values that broke the criteria are highlighted with a red
background color.

Fake data Reference
Interval ratio R2σ

x Bias Bsyst.
x Mass ordering

BF ratioδcp ∆m2
32 sin2 θ23 δcp ∆m2

32 sin2 θ23

CRPA Normal Asimov 1 0.95 0.909 - 153% - 1.04

LFG Normal Asimov 1 0.985 0.945 - 32.8% -5.97% 1.04

Removal energy Normal Asimov 1 1.01 0.998 - -31.2% -4.32% 1.04

Axial form factor Scaled Asiomv 1 1.01 1.02 - -4.13% 9.13% 0.97

Martini 2p2h Scaled Asiomv 1 0.993 0.976 - -4.49% -15.1% 0.99

Pion multiplicity Normal Asimov 1 0.996 0.98 - -44.6% -23.3% 0.90

Energy-dependent σνe/σνµ Scaled Asiomv 1 1 0.99 - 1.42% 7.06% 1.00

Atmospheric CC1π Normal Asimov 0.891 1.07 0.999 - 43.7% 4.77% 1.09

ND CC1π Normal Asimov 1 0.986 0.954 - 23.5% -8.27% 1.04

ND Non-QE CC0π Normal Asimov 1 0.896 0.937 - -9.56% -35.1% 0.97

ND extrapolation Normal Asimov 0.979 1 1.01 -8.18% 25.2% 1.94% 1.07

Pion SI bug fix Normal Asimov 1 1.01 0.99 - 49% -5.47% 1.05
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Table 6.10. Summary of the size of biases used to calculate the ∆m2
32 smearing factor.

Fake data Reference 1σref
syst. Bias

CRPA Normal Asimov 1.98× 10−5 153.77%

LFG Normal Asimov 1.98× 10−5 38.35%

Removal energy Normal Asimov 2.14× 10−5 -22.52%

Axial form factor Scaled Asiomv 2.06× 10−5 7.49%

Martini 2p2h Scaled Asiomv 2.19× 10−5 -8.03%

Pion multiplicity Normal Asimov 2.14× 10−5 -63.52%

Energy-dependent σνe/σνµ Scaled Asiomv 2.22× 10−5 -5.82%

Atmospheric CC1π Normal Asimov 2.14× 10−5 -11.02%

ND CC1π Normal Asimov 2.14× 10−5 18.41%

ND Non-QE CC0πi Normal Asimov 2.14× 10−5 -20.31%

ND extrapolation Normal Asimov 1.79× 10−5 17.04%

Pion SI bug fix Normal Asimov 1.98× 10−5 44.85%



Chapter 7

Oscillation analysis results

This chapter presents the results of the joint analysis between the T2K beam and SK
atmospheric neutrinos. The obtained data distributions and best-fit spectra are first
shown in Section 7.1. The ∆χ2 distributions obtained from the importance sampling
method are shown in Section 7.2, including the comparison to the MCMC method. Then,
the main Bayesian analysis based on the MCMC method is presented in Section 7.3.

7.1 Global best-fit results
The global best-fit values are obtained by profiling all the oscillation and systematic
uncertainty parameters and minimizing the test statistic −2 logL. The best-fit values of
four oscillation parameters at both the normal and inverted ordering are summarized in
Table 7.1. In all three fits, the global best fit prefers the normal ordering. The offset
∆(−2 logL) for inverted ordering is the largest in the SK+T2K fit, which means that
the power of the IO-rejection is stronger than the fits to the samples from the individual
experiments. The number of events in data and best-fit predictions are summarized in
Table 7.2 along with χ2 for each sample.

It is insightful to have a look at the best-fit event spectra to understand the relation-
ships between the prediction and the actual data. The corresponding best-fit spectra are
shown in Fig. 7.1. In the T2K beam samples, the SK+T2K fit predicts more events in
the νµ (ν̄µ) samples than the T2K-only fit while predicting fewer events in the νe (ν̄e)
samples. Since the leading term of the νµ → νe oscillation probability is proportional to
sin2 θ23, this overall normalization difference is coming from the different θ23 octant pref-
erence. The difference between the SK+T2K fit and SK (+ND) fit in the SK atmospheric
samples is not as apparent as in the T2K samples when projected onto one dimension.
However, some differences are observed in the high-energy samples. The SK+T2K fit pre-
dicts slightly fewer upward-going events (cosΘz < 0) in the µ-like samples and predicts
the opposite for the e-like samples. These differences are thought to be caused by the
different mass ordering and δcp preferences when combined with the T2K beam data.

To illustrate the effect of alternative δcp, mass ordering, and octant choices, the event
spectra of the local best fits where we fix the parameter at δcp = 0, inverted ordering,
or upper octant are shown in Fig. 7.2. The T2K beam e-like sample prediction shows a
large variation under different hypotheses. The SK atmospheric samples show the largest

130
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Table 7.1. Best-fit oscillation parameter values for SK+T2K, T2K, and SK (+ND) fits
with the reactor constraint on sin2 2θ13 = 0.0853± 0.0027. The errors are assigned using
the fixed-∆χ2 method for a 1D marginal likelihood fit with fixed mass ordering (Fig. 7.3).
It should be noted that the ∆m2

32 smearing is applied only to the SK+T2K case when
extracting the errors.

SK+T2K T2K SK (+ND)

Mass ordering Normal Inverted Normal Inverted Normal Inverted

sin2(2θ13) 0.0859 0.0858 0.0854 0.0858 0.0852 0.0852

δcp −1.76+0.60
−0.74 −1.49+0.50

−0.52 −2.08+1.05
−0.52 −1.40+0.53

−0.62 −2.18+1.06
−1.62 −2.00+1.13

−1.83

∆m2
32 (NO)/|∆m2

31| (IO) 2.514+0.057
−0.060 2.485+0.056

−0.061 2.505+0.045
−0.054 2.472+0.049

−0.049 2.499+0.831
−0.197 2.495+0.872

−0.214

sin2 θ23 0.471+0.104
−0.017 0.556+0.021

−0.033 0.563+0.023
−0.029 0.564+0.022

−0.025 0.427+0.054
−0.028 0.435+0.082

−0.035

−2 logL 1165.28 1168.58 586.849 588.886 575.193 577.235

∆(−2 logL) 0.0 3.31 0.0 2.036 0.0 2.041

impact from the mass ordering in the upward-going events in the multi-ring e-like νe
sample.

The two-dimensional event distributions are shown in Appendix E.
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Table 7.2. Summary of the event rates and sample χ2 at the best-fit oscillation and
systematic parameters at SK + T2K, T2K-only, and SK-only (+ND) fit with reactor
constraint on sin2 θ13. Note that UpMu samples have non-integer event numbers due to
the background subtraction. The corresponding plots are shown in Fig. 7.1.

Sample
SK+T2K T2K SK (+ND)

Data
Prediction χ2 Prediction χ2 Prediction χ2

FHC 1Rµ 351.10 243.83 341.91 242.28 323
RHC 1Rµ 140.33 173.54 135.21 173.50 137
FHC 1Re 88.93 77.59 95.60 76.78 95
RHC 1Re 15.49 49.17 17.09 48.73 16
FHC 1Re 1de 10.85 43.44 11.29 43.14 14

SubGeV e-like 0de 7916.50 76.07 7913.33 76.07 7899
SubGeV e-like 1de 795.44 1.63 791.67 1.67 799
SubGeV µ-like 0de 1490.37 39.35 1493.85 39.48 1489
SubGeV µ-like 1de 6558.69 51.15 6572.47 50.84 6587
SubGeV µ-like 2de 499.24 2.95 498.65 2.81 495
SubGeV pi0like 1749.32 5.56 1749.14 5.47 1768
MultiGeV e-like νe 181.60 46.18 181.38 46.13 167
MultiGeV e-like ν̄e 1024.65 49.62 1021.35 49.31 1011
MultiGeV µ-like 1015.45 15.03 1018.65 14.70 1026
MultiRing e-like νe 1090.22 30.54 1089.18 30.93 1122
MultiRing e-like ν̄e 1025.24 36.40 1025.54 36.50 1003
MultiRing µ-like 2693.86 39.07 2693.58 38.46 2757
MultiRing Other 1405.89 40.32 1405.47 40.30 1443
PCStop 351.28 18.40 350.89 18.24 349
PCThru 1738.45 44.07 1739.58 44.02 1728
UpStop µ 804.04 26.03 806.14 25.94 815.2
UpThruNonShower µ 3096.82 18.82 3094.44 19.33 3107.2
UpThruShower µ 538.75 9.08 538.48 9.02 537.8
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Figure 7.1. SK+T2K and T2K-only or SK-only (+ND) best-fit spectra for the T2K beam
and SK atmospheric sub-GeV samples overlaid with the data. Error bars on the data
show the statistical errors. The bottom panel shows the ratio to the SK+T2K best-fit
spectra. The corresponding table is Table 7.2.
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Figure 7.1. SK+T2K and SK-only (+ND) best-fit spectra for the SK atmospheric multi-
GeV, PC, and UpMu samples overlaid with the data. Error bars on the data show the
statistical errors. The bottom panel shows the ratio to the SK+T2K best-fit spectra. The
corresponding table is Table 7.2.
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Figure 7.2. Comparison of the SK+T2K best-fit spectra under different δcp and mass
ordering conditions for the selected samples. The spectra correspond to the overall best-
fit, best-fit under δcp = 0, and best-fit under the inverted ordering are shown in red, blue,
and green, respectively. The data points are overlaid with the statistical errors. The
bottom panel shows the ratio to the overall best-fit spectra.
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7.2 ∆χ2 distributions
In this section, the one-dimensional and two-dimensional ∆χ2 distributions computed
using the importance sampling method are presented.

The comparison of one-dimensional ∆χ2 curves among the SK+T2K, T2K, and SK
(+ND) fits are shown in Fig. 7.3. For δcp, the data shows a preference for the value of
δcp close to the maximal mixing (δcp ≃ −1.8). The constraints mostly come from the
T2K beam samples, but the SK atmospheric samples also contribute to the rejection of
the values around δcp ≃ [−1, 2]. There is tension between T2K and SK for sin2 θ23, where
SK has a preference for the lower octant and T2K has a preference for the upper octant.
Therefore, the joint fit has a very similar likelihood in both the lower and upper octants.
In addition, the SK+T2K fit has a stronger preference for the normal ordering compared
to the individual experiments.

The comparison of two-dimensional confidence intervals among the SK+T2K, T2K,
and SK (+ND) fits are shown in Fig. 7.4. The overall constraint mostly comes from T2K
in either case, but the δcp-sin2 θ23 contour shrinks around the upper octant thanks to the
constraint from SK. These two-dimensional likelihood distributions in δcp-sin2 θ23 are used
as an input to the multicanonical MCMC method.
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Figure 7.3. Comparison of the 1D ∆χ2 from the SK+T2K, T2K, and SK (+ND) data fit
results. The importance sampling method is used. ∆m2

32 smearing is not applied here.
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Figure 7.4. Comparison of the 2D confidence level contours in δcp-sin2 θ23 and ∆m2
32-

sin2 θ23 from the SK+T2K, T2K and SK (+ND) data fit for normal mass ordering. The
importance sampling method is used.

7.2.1 Comparison of the importance sampling and MCMC

The comparison of ∆χ2 distributions obtained from the importance sampling and MCMC
are shown in Fig. 7.5 with estimated errors from each method. For the MCMC, we use
the results of the pilot chains with two million steps, while we use 200 million steps in the
main analysis1.

The overall agreement is good but MCMC shows a slightly stronger rejection of the in-
verted ordering around the maximal CP-violating value of δcp (∼ −π/2) and the maximal
mixing of sin2 θ23 (∼ 0.5). We should be careful, however, that the importance sampling
method has non-negligible errors around these regions and its results are not fully reliable.
Considering the smaller errors around the most probable regions, we take the result of
MCMC as our main result for Bayesian analysis in Section 7.3.

1See Appendix C for more details of the MCMC configurations.
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Figure 7.5. Comparison of the 1D ∆χ2 contour for each oscillation parameter computed
from the importance sampling method and MCMC. ∆m2

32 smearing is not applied. For
ease of interpretation, MCMC ∆χ2 values are not shown for the bins that have less than
five raw MCMC steps where it has a large MCMC fluctuation.

7.3 Bayesian analysis
This section presents the Bayesian analysis based on the results of 200 million MCMC
steps using the 2D multicanonical method with β = 0.5. We apply the Gaussian smearing
of 3.6×10−5 eV2 to the obtained ∆m2

32 contours from the model robustness test performed
in Chapter 6 unless specifically noted otherwise.

7.3.1 Posterior distribution of the CP parameters

For the test of CP conservation (violation), we use both δcp and the Jarlskog invariant
Jcp. The posterior probabilities of these CP parameters are shown in Fig. 7.6. The
credible intervals are shown for both the prior flat in δcp and the prior flat in sin δcp. The
corresponding most probable values and credible intervals are summarized in Tables 7.3
and 7.4.

For δcp, the CP conserving values (δcp = 0, π) are excluded from the 2σ credible
intervals in both the normal and inverted ordering when we apply the flat δcp prior.
However, δcp = π is not excluded in normal ordering when the flat sin δcp prior is applied.
One of the maximal CP violating values (δcp = π/2) is excluded at more than 3σ in either
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case.
For Jcp, the CP conserving value of Jcp = 0 is consistently excluded from the 2σ

credible intervals under both the mass ordering hypotheses. Moreover, Jcp = 0 is excluded
at 3σ under the flat δcp prior when inverted ordering is assumed.

The reason we have a more conservative result in δcp is that we have a cos δcp depen-
dence in the oscillation probability, and therefore, the result is not symmetric between
δcp = 0 and δcp = π. Since we require both values (δcp = 0, π) to be excluded from the
credible intervals when we look at δcp, the requirement becomes more strict. On the other
hand, when it comes to sin δcp, the contributions from both δcp = 0, π are marginalized
over at sin δcp = 0. Therefore, sin δcp (or Jcp) gives a more moderate conclusion on CP
conservation than δcp.

Table 7.3. The most probable values and credible interval ranges for δcp, sin δcp, and Jcp

obtained from MCMC. The flat prior in δcp is applied. The most probable value is
taken to be the point where the posterior probability density becomes the maximum by
applying the cubic interpolation to the bin contents.

Normal ordering δcp sin δcp Jcp

Most probable value -1.872 -1.000 -0.033
1σ [-2.464, -1.205] [-1.000, -0.776] [-0.034, -0.026]
2σ [-3.021, -0.556] [-1.000, -0.261] [-0.034, -0.008]
3σ [-3.142, 0.085] and [2.682, 3.142] [-1.000, 0.344] [-0.035, 0.012]

Inverted ordering δcp sin δcp Jcp

Most probable value -1.476 -1.000 -0.033
1σ [-2.003, -0.976] [-1.000, -0.870] [-0.034, -0.029]
2σ [-2.528, -0.506] [-1.000, -0.523] [-0.034, -0.017]
3σ [-3.048, -0.023] [-1.000, -0.052] [-0.035, -0.002]

Both ordering δcp sin δcp Jcp

Most probable value -1.797 -1.000 -0.033
1σ [-2.417, -1.159] [-1.000, -0.787] [-0.034, -0.026]
2σ [-2.985, -0.552] [-1.000, -0.281] [-0.034, -0.009]
3σ [-3.142, 0.072] and [2.704, 3.142] [-1.000, 0.325] [-0.035, 0.011]
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Figure 7.6. 1σ, 2σ, and 3σ credible intervals of δcp and Jarlskog invariant Jcp for normal
and inverted ordering, and marginalized over both ordering. These are computed using
the MCMC 2D multicanonical method with β = 0.5 and two different priors are applied:
flat in δcp and flat in sin δcp. For the δcp distributions under the flat sin δcp prior, the
interval edges around δcp = −π/2 are not drawn for simplicity.
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Table 7.4. The most probable values and credible interval ranges for δcp, sin δcp, and Jcp

obtained from MCMC. The flat prior in sin δcp is applied. The most probable value
is taken to be the point where the posterior probability density becomes the maximum
by applying the cubic interpolation to the bin contents.

Normal ordering δcp sin δcp Jcp

Most probable value -2.315 -0.998 -0.032
1σ [-2.873, -1.811] and [-1.182, -0.912] [-1.000, -0.595] [-0.033, -0.019]
2σ [-3.142, -1.644] and [-1.491, -0.353] and [3.068, 3.142] [-1.000, -0.090] [-0.034, -0.003]
3σ [-3.142, 0.210] and [2.589, 3.142] [-1.000, 0.434] [-0.034, 0.015]

Inverted ordering δcp sin δcp Jcp

Most probable value -1.062 -0.998 -0.032
1σ [-2.326, -1.811] and [-1.370, -0.642] [-1.000, -0.737] [-0.033, -0.024]
2σ [-2.754, -1.625] and [-1.519, -0.295] [-1.000, -0.359] [-0.034, -0.012]
3σ [-3.142, 0.113] and [3.085, 3.142] [-1.000, 0.089] [-0.035, 0.003]

Both ordering δcp sin δcp Jcp

Most probable value -2.314 -0.998 -0.032
1σ [-2.838, -1.811] and [-1.226, -0.851] [-1.000, -0.607] [-0.033, -0.020]
2σ [-3.142, -1.642] and [-1.495, -0.346] and [3.089, 3.142] [-1.000, -0.105] [-0.034, -0.003]
3σ [-3.142, 0.198] and [2.607, 3.142] [-1.000, 0.422] [-0.035, 0.014]

7.3.2 Posterior distribution of the other oscillation parameters

Figure 7.7 shows the credible intervals computed from the 2D multicanonical MCMC
method for ∆m2

32, sin2 θ23, and sin2 θ13. The corresponding most probable values and
credible intervals are summarized in Table 7.5.

sin2 θ23 has an almost equal preference for both the upper and lower octant in normal
ordering but it prefers the upper octant in inverted ordering. When marginalized over
both mass ordering, it has a slightly higher posterior density in the upper octant. When
marginalized over both ordering, 1σ interval of ∆m2

32 is fully contained in the normal
ordering region (∆m2

32 > 0).
The 2D posterior distributions are shown in Fig. 7.8 which is marginalized over both

ordering. The flat δcp prior is applied for these plots.

7.3.3 Comparison of the different sample fits

The comparison of posterior distributions among the SK+T2K, T2K, and SK (+ND)
MCMC fits are shown in Figs. 7.9 and 7.10. Similarly to the importance sampling re-
sults shown in Fig. 7.3, it enhances the δcp constraints when both samples are combined.
∆m2

32 is mostly constrained from the T2K samples, but the most probable value is slightly
shifted when combined. The 1σ credible interval is fully contained in the normal ordering
region (∆m2

32 > 0) for the SK+T2K fit, while it is not in the T2K-only or SK (+ND) fits.
In sin2 θ23, T2K has higher probabilities in the upper octant, while SK has higher prob-
abilities in the lower octant. Therefore, the joint fit results show almost equal posterior
density for the lower and upper octant. In all cases, the joint fit has higher probabilities
for the normal ordering.



7.3. Bayesian analysis 142

2.2 2.3 2.4 2.5 2.6 2.7 2.8

3−10×

]2 [eV32
2 m∆

0

1

2

3

4

5

6

7

8

9

310×
Po

st
er

io
r 

de
ns

ity

Normal ordering
σ1
σ2
σ3

SK + T2K preliminary

(a) ∆m2
32 (NO)

2.8− 2.7− 2.6− 2.5− 2.4− 2.3− 2.2−
3−10×

]2 [eV32
2 m∆

0

1

2

3

4

5

6

7

8

9

310×

Po
st

er
io

r 
de

ns
ity

Inverted ordering
σ1
σ2
σ3

SK + T2K preliminary

(b) ∆m2
32 (IO)

2.8− 2.6− 2.4− 2.2−

3−10×0

1

2

3

4

5

6

7

8

310×

Po
st

er
io

r 
de

ns
ity

2.2 2.4 2.6 2.8

3−10×

]2 [eV32
2 m∆

Po
st

er
io

r 
de

ns
ity

Both ordering
σ1
σ2
σ3

SK + T2K preliminary

(c) ∆m2
32 (both)

0.35 0.40 0.45 0.50 0.55 0.60 0.65

23θ2sin

0

2

4

6

8

10

Po
st

er
io

r 
de

ns
ity

Normal ordering
σ1
σ2
σ3

SK + T2K preliminary

(d) sin2 θ23 (NO)

0.35 0.40 0.45 0.50 0.55 0.60 0.65

23θ2sin

0

2

4

6

8

10

12

14

16

Po
st

er
io

r 
de

ns
ity

Inverted ordering
σ1
σ2
σ3

SK + T2K preliminary

(e) sin2 θ23 (IO)

0.35 0.40 0.45 0.50 0.55 0.60 0.65

23θ2sin

0

2

4

6

8

10

Po
st

er
io

r 
de

ns
ity

Both ordering
σ1
σ2
σ3

SK + T2K preliminary

(f) sin2 θ23 (both)

0.018 0.020 0.022 0.024 0.026

13θ2sin

0

100

200

300

400

500

600

700

800

Po
st

er
io

r 
de

ns
ity

Normal ordering
σ1
σ2
σ3

SK + T2K preliminary

(g) sin2 θ13 (NO)

0.018 0.020 0.022 0.024 0.026

13θ2sin

0

100

200

300

400

500

600

700

800

Po
st

er
io

r 
de

ns
ity

Inverted ordering
σ1
σ2
σ3

SK + T2K preliminary

(h) sin2 θ13 (IO)

0.018 0.020 0.022 0.024 0.026

13θ2sin

0

100

200

300

400

500

600

700

800

Po
st

er
io

r 
de

ns
ity

Both ordering
σ1
σ2
σ3

SK + T2K preliminary

(i) sin2 θ13 (both)

Figure 7.7. 1σ, 2σ, and 3σ credible intervals of ∆m2
32, sin

2 θ23, sin2 θ13 for normal and
inverted ordering, and marginalized over both ordering. These are computed using the
MCMC 2D multicanonical method with β = 0.5. ∆m2

32 smearing of 3.6 × 10−5 eV2

is applied. The corresponding most probable values and credible interval ranges are
summarized in Table 7.5.

7.3.4 Posterior probabilities for mass ordering and sin2 θ23

The posterior probabilities for the four combinations of mass ordering and sin2 θ23 octants
are summarized in Table 7.6. The joint SK+T2K fit favors the combination of the normal
ordering and the upper octant the most, while the preference for the upper octant is less
significant than the T2K-only fit.

In the standard Bayesian analysis, the Bayes factor between two hypotheses H1 and
H2 is defined as the ratio of the marginal likelihood

BF(H1, H2) =
p1(n)

p2(n)
=
p(H1|n)/π(H1)

p(H2|n)/π(H2)
, (7.1)

where n denotes the data, π(·) is the prior probability, and p(·|x) is the posterior
probability. The Bayes factor for the normal ordering over inverted ordering is computed
to be 8.98± 0.06. It should be noted that the error only shows the MCMC statistical
errors evaluated as described in Appendix C. This Bayes factor does not have enough
significance to give a certain conclusion on these hypotheses. As a reference, this value
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Figure 7.8. 2D posterior distributions computed with MCMC and marginalized over both
ordering. 1σ, 2σ, and 3σ contours are shown together. The flat δcp prior is used and
∆m2

32 smearing of 3.6× 10−5 eV2 is applied.

is classified as “substantial” evidence according to the Jeffreys’ scale [167], “moderate”
according to the Lee and Wagenmakers’ scale [162], and “positive” according to the Kass
and Raftery’s scale [168].

In the traditional particle physics field, a threshold for a hypothesis being favored has
been defined in terms of the confidence level in a frequentist sense. To obtain intuition
of significance level in the traditional particle physics sense, we can find the Bayes factor
corresponding to the posterior probability for a hypothesis is equal to the probability
of obtaining a certain deviation from a Gaussian. The correspondence between these
thresholds and Bayes factors are listed in Table 7.7. Therefore, the mass ordering Bayes
factor we obtained from the joint analysis is equivalent to the significance level of 89.8%,
which corresponds to 1.64σ.
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Figure 7.9. Comparison of the joint analysis SK+T2K, T2K, and SK (+ND) fit posterior
probability densities obtained from MCMC. The posterior densities are normalized so that
the sum of the area for normal and inverted ordering should be 1. Therefore, the ratio
between the normal and inverted ordering densities shows the mass ordering preference.
∆m2

32 smearing is not applied here because the smearing factor of 3.6× 10−5 eV2 is
computed based on the SK+T2K fit to every fake data study and we do not have smearing
factors for T2K and SK (+ND) fits. Therefore, the SK+T2K result differs from the final
result shown in Fig. 7.7.
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Figure 7.10. Comparison of joint analysis SK+T2K, T2K, and SK (+ND) fit 2D credible
intervals obtained from MCMC. All fits are run with the reactor constraint on sin2 θ13.
∆m2

32 smearing is not applied here because the smearing factor of 3.6× 10−5 eV2 is
computed based on the SK+T2K fit to every fake data study and we do not have smearing
factors for T2K and SK (+ND) fits. Therefore, the SK+T2K result differs from the final
result shown in Fig. 7.8.
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Table 7.5. The most probable values and credible interval ranges obtained from MCMC.
The flat δcp prior is used and ∆m2

32 smearing of 3.6 × 10−5 eV2 is applied. The most
probable value is taken to be the point where the posterior probability density becomes
the maximum by applying the cubic interpolation to the bin contents. The corresponding
plots are shown in Fig. 7.7.

Normal ordering sin2 θ13 ∆m2
32 [10−3 eV2] sin2 θ23

Most probable value 0.0219 2.511 0.549

1σ [0.0212, 0.0226] [2.453, 2.570] [0.459, 0.505] and [0.523, 0.568]

2σ [0.0205, 0.0233] [2.394, 2.630] [0.442, 0.585]

3σ [0.0199, 0.0240] [2.335, 2.690] [0.424, 0.603]

Inverted ordering sin2 θ13 ∆m2
32 [10−3 eV2] sin2 θ23

Most probable value 0.0220 -2.558 0.557

1σ [0.0213, 0.0227] [-2.616, -2.499] [0.508, 0.581]

2σ [0.0206, 0.0234] [-2.676, -2.440] [0.455, 0.591]

3σ [0.0199, 0.0240] [-2.735, -2.382] [0.430, 0.605]

Both ordering sin2 θ13 ∆m2
32 [10−3 eV2] sin2 θ23

Most probable value 0.0219 2.510 0.553

1σ [0.0212, 0.0226] [2.443, 2.580] [0.461, 0.502] and [0.520, 0.570]

2σ [0.0206, 0.0233] [-2.620, -2.494] and [2.373, 2.651] [0.443, 0.585]

3σ [0.0199, 0.0240] [-2.701, -2.414] and [2.322, 2.703] [0.424, 0.604]

Table 7.6. Posterior probabilities for different combinations of mass ordering and octant
hypotheses for SK+T2K, joint analysis T2K-only, and SK (+ND). The Bayes factor for
normal ordering (NO) over inverted ordering (IO) and the Bayes factor for upper octant
(UO) over lower octant (LO) are shown together.

SK+T2K T2K SK (+ND)

LO UO Line total LO UO Line total LO UO Line total

Normal ordering 0.367 0.533 0.900 0.190 0.642 0.832 0.468 0.186 0.654

Inverted ordering 0.022 0.078 0.100 0.025 0.142 0.168 0.214 0.132 0.346

Column total 0.389 0.611 1.000 0.215 0.785 1.000 0.682 0.318 1.000

BF(NO,IO) 8.98 4.96 1.89

BF(UO,LO) 1.57 3.65 0.47
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Table 7.7. List of Bayes factors equating to traditional particle physics probability thresh-
olds in the case of equal prior for the two hypotheses under test.

Threshold P (θ1|Data) P (θ2|Data) B(θ1, θ2)

90% 0.9 0.1 9
2σ 0.954 0.046 20.74

99% 0.99 0.01 99
3σ 0.9973 0.0027 369.4

7.3.5 Goodness of fit

It is important to check the goodness of fit to ensure the validity of our analysis. In the
context of Bayesian analysis, the posterior predictive p-value is used for this purpose. It
measures how well the observed data agrees with our post-fit predictions [169].

To obtain the posterior predictive p-values, we first make many pseudo data sets by
using both the oscillation and systematic uncertainty parameters sampled from the data-
fit MCMC posterior distributions. Then we define the test statistic for pseudo data set i
as

T (ni,θi) ≡ −2 logLstat(ni|λi) = 2

Nbin∑

j=1

[
λj(θi)− ni,j + ni,j log

ni,j

λj(θi)

]
, (7.2)

where the number of events ni,j in bin j is thrown from the Poisson distribution with the
predicted event number λj(θi). Finally, the posterior predictive p-value (ppp) is defined
as the fraction of the pseudo data sets that have larger test statistics T (ni,θi) than the
one computed using the observed data T (nobs,θi):

ppp =
1

Npseudo

Npseudo∑

i=1

I (T (ni,θi) > T (nobs,θi)) , (7.3)

where I(·) is an indicator function that returns 1 if the inequality is satisfied and returns
0 otherwise. For the sampling of the parameters, we use the posterior distribution of the
MCMC without the multicanonical method (β = 1.0). We do not use the multicanonical
method here because we want to equally sample the steps from all the posterior regions.
In addition, to get rid of the effect of the MCMC autocorrelation, we sampled a step for
every 2,000 steps from 200 million steps, which gives 100,000 steps in total. We compute
the p-values using not only the binning used in the analysis (two-dimensional for most of
the samples) but also a projected one-dimensional binning. This is because the analysis
binning has many bins that receive few events and the p-values could be dominated by
statistical fluctuation. The p-values in the 1D binning could mitigate this issue and are
therefore expected to capture the systematic effects more effectively.

The computed posterior predictive p-values are summarized in Table 7.8. The distri-
butions of the test statistics for the T2K beam, SK atmospheric, and total p-values are
also shown in Fig. 7.11. The total p-values satisfy the standard criterion of p > α = 0.05,
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Table 7.8. Summary of the posterior predictive p-values for each sample.

Sample
Analysis binning 1D binning

p-value Projection p-value Projection

FHC 1Rµ 0.695 (Erec, θ) 0.539 (Erec)
RHC 1Rµ 0.962 (Erec, θ) 0.833 (Erec)
FHC 1Re 0.844 (p, θ) 0.168 (Erec)
RHC 1Re 0.697 (p, θ) 0.658 (Erec)
FHC 1Re 1de 0.182 (p, θ) 0.907 (Erec)

SubGeV elike 0de 0.007 (p, cosΘz) 0.052 (cosΘz)
SubGeV elike 1de 0.664 (p) 0.662 (p)
SubGeV mulike 0de 0.831 (p, cosΘz) 0.440 (cosΘz)
SubGeV mulike 1de 0.361 (p, cosΘz) 0.447 (cosΘz)
SubGeV mulike 2de 0.572 (p) 0.573 (p)
SubGeV pi0like 0.221 (p) 0.220 (p)
MultiGeV elike nue 0.294 (p, cosΘz) 0.123 (cosΘz)
MultiGeV elike nuebar 0.139 (p, cosΘz) 0.884 (cosΘz)
MultiGeV mulike 0.698 (p, cosΘz) 0.844 (cosΘz)
MultiRing elike nue 0.386 (p, cosΘz) 0.740 (cosΘz)
MultiRing elike nuebar 0.186 (p, cosΘz) 0.608 (cosΘz)
MultiRingOther 0.408 (p, cosΘz) 0.637 (cosΘz)
MultiRing mulike 0.370 (p, cosΘz) 0.826 (cosΘz)
PCStop 0.497 (p, cosΘz) 0.398 (cosΘz)
PCThru 0.253 (p, cosΘz) 0.319 (cosΘz)
UpStop mu 0.590 (p, cosΘz) 0.360 (cosΘz)
UpThruNonShower mu 0.031 (cosΘz) 0.032 (cosΘz)
UpThruShower mu 0.449 (cosΘz) 0.448 (cosΘz)

T2K beam 0.944 0.763

SK atmospheric 0.041 0.331

Total 0.422 0.571

which implies our fit is not a bad description of the data. The p-value for the total atmo-
spheric samples does not satisfy this criterion, but since this is consistent with the value
obtained in the SK-standalone analysis [78], we think this is acceptable.

We should be careful about the so-called “look elsewhere effect” when we look at
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Figure 7.11. Distributions of the test statistics used to compute the posterior predictive p-
values for total T2K beam samples, SK atmospheric samples, and all samples, respectively.
The top row shows the distributions with the analysis binning and the bottom row shows
the distributions with the 1D binning. The shaded region shows the toys that satisfy
T (n,θ) > T (nobs,θ).

the p-value for each sample. Since we are testing whether the deviations between the
observed data and predictions are statistical fluctuations or not, it would be a too strict
condition if we require all the samples to satisfy the same α = 0.05 criterion. If we
repeat the test of p-values many times, some of them can break the criterion due to pure
statistical fluctuation. Therefore, we should correct our criterion to take into account
this look elsewhere effect, and one of the well-known countermeasures to this kind of
problem is the Holm-Bonferroni correction [170]. In the Holm-Bonferroni method, we
sort the obtained p-values (let us say we have n p-values) in increasing order and apply
the criterion of pi > α/(n− i) for i-th p-value (i = 0, 1, · · · , n− 1). The test is repeated
from i = 0 (i.e. the smallest p-value) to i = n − 1 one by one, and we consider that the
i-th and all the following tests pass the criteria when the i-th p-value satisfies the criterion
pi > α/(n − i). In this study, we have n = 23 tests and the smallest p-values are 0.007
(sub-GeV e-like 0de) for the analysis binning and 0.032 (UpThru non-shower µ) for the
1D binning. Consequently, these p-values satisfy the first test (p > 0.05/23 = 0.0022) and
all the samples automatically pass the tests. In conclusion, we found no problem with
these p-values and therefore conclude that the goodness of fit in this analysis is acceptable
level.

The 1D posterior predictive distributions for all the samples are shown in Fig. 7.12.
These distributions are drawn using the same steps sampled from the MCMC posterior
distributions. The UpThru non-shower µ sample, which showed the worst p-value in the
1D binning, has a clear data/MC excess in the most horizontal bin (cosΘz ∈ [−0.1, 0.0]).
This is also seen in the SK-standalone analyses [52, 36]. One possible reason is the
underestimation of the background events such as cosmic muons, but the exact reason
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has not been understood yet. Similarly, the atmospheric sub-GeV e-like 0de sample has a
data/MC excess in the most upward-going bin (cosΘz ∈ [−1.0,−0.8]), which might be a
statistical fluctuation but could affect the oscillation parameter constraints. We will have
more detailed discussions in Section 8.3.2.
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Figure 7.12. Posterior predictive distributions for the T2K beam and SK atmospheric
sub-GeV samples. The highest posterior density point is drawn with a cross marker and
1, 2, and 3σ credible intervals are drawn with the shaded histograms.
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Figure 7.12. Posterior predictive distributions for the SK atmospheric muli-GeV, PC, and
UpMu samples. The highest posterior density point is drawn with a cross marker and 1,
2, and 3σ credible intervals are drawn with the shaded histograms.
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7.3.6 Impact of the alternative model effect

As described in Section 6.1.3, we test the effects of alternative models on the δcp and
Jcp credible interval edges. We tested twelve fake data studies in total, but only the
atmospheric CC1π excess FDS is described here, representative of the others.

7.3.6.1 Atmospheric CC1π excess

The effects of alternative models on the δcp and Jcp credible intervals are tested with both
the prior flat in δcp and the prior flat in sin δcp. The data fit posterior distribution and the
distribution shifted by taking into account the atmospheric CC1π FDS effects are shown
in Figs. 7.13 and 7.14. The corresponding credible intervals of 1σ, 1.5σ, 2σ, 3σ are shown
with the vertical dotted/dashed lines.

When we apply the shift from this fake data study, the left edges of the credible
intervals of δcp move closer to δcp = −π. However, the 2σ credible interval under the
flat δcp prior and the 1.5σ credible interval under the flat sin δcp prior still exclude the
CP-conserving values of δcp. Since the effect was mostly seen in cos δcp, the shift in Jcp

was not as large as that in δcp. Therefore, our conclusion on the Jarlskog invariant is also
not affected by this data/MC excess.
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Figure 7.13. Comparison of the δcp 1D posterior distribution and credible intervals from
the data with and without the shift from the atmospheric CC1π fake data study. The flat
prior in δcp is applied on the left, and the flat prior in sin δcp is applied on the right.
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Figure 7.14. Comparison of the Jarlskog invariant 1D posterior distribution and credible
intervals from the data with and without the shift from the atmospheric CC1π fake data
study. The flat prior in δcp is applied on the left, and the flat prior in sin δcp is applied
on the right.

7.3.6.2 Summary

Tables 7.9 to 7.12 show the shift in δcp and Jcp credible interval edges with the priors
flat in δcp and flat in sin δcp. The largest shifts were observed not from a single fake data
study but from a few different fake data studies depending on the interval edges. None
of the studies causes a shift over a value of interest for δcp at the 2σ level under the flat
δcp prior and at the 1.5σ level under the flat sin δcp prior. The conclusion on the Jarlskog
invariant (exclusion at 2σ) is not affected.

Therefore, our final conclusion, the conservation of CP symmetry is excluded at 2σ
under the prior flat in δcp and at 1.5σ under the prior flat in sin δcp, is robust against the
possible out-of-model effects.
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Table 7.9. Summary of the fake data study effects on the δcp credible intervals with the
prior flat in δcp, calculated for the Asimov A oscillation parameter set. The largest
positive and negative shift for each interval boundary is highlighted with the red and blue
background colors, respectively.

Credible interval 1σ 1.5σ 2σ 3σ

Data fit interval edge
b1σ,↓δcp

b1σ,↑δcp
b1.5σ,↓δcp

b1.5σ,↑δcp
b2σ,↓δcp

b2σ,↑δcp
b3σ,↓δcp

b3σ,↑δcp

-2.464 -1.205 -2.743 -0.875 -3.021 -0.556 -3.601 0.085

Fake data Reference ∆b1σ,↓δcp
∆b1σ,↑δcp

∆b1.5σ,↓δcp
∆b1.5σ,↑δcp

∆b2σ,↓δcp
∆b2σ,↑δcp

∆b3σ,↓δcp
∆b3σ,↑δcp

CRPA Normal Asimov 0.020 0.043 0.012 0.052 0.014 0.055 -0.002 0.076

LFG Normal Asimov -0.051 -0.010 -0.054 0.001 -0.066 0.024 -0.124 0.084

Removal energy Normal Asimov 0.000 -0.021 0.005 -0.022 0.011 -0.023 0.009 -0.011

Axial form factor Scaled Asimov 0.002 0.001 0.005 0.002 0.013 0.002 0.009 0.015

Martini 2p2h Scaled Asimov 0.040 0.124 0.026 0.128 0.005 0.124 -0.092 0.159

Pion multiplicity Normal Asimov -0.019 -0.021 -0.011 -0.015 -0.004 -0.018 -0.008 -0.015

Energy-dependent σνe/σνµ Scaled Asimov 0.004 0.040 0.008 0.028 0.004 0.029 -0.011 0.031

Atmospheric CC1π Normal Asimov -0.103 -0.118 -0.096 -0.108 -0.079 -0.093 -0.071 -0.065

ND CC1π Normal Asimov 0.035 0.024 0.031 0.005 0.025 -0.005 0.024 -0.013

ND Non-QE CC0πi Normal Asimov -0.007 0.036 -0.013 0.043 -0.023 0.049 -0.061 0.095

ND extrapolation Normal Asimov -0.012 0.032 -0.010 0.051 -0.004 0.047 -0.039 0.044

Pion SI bug fix Normal Asimov 0.020 0.029 0.007 0.021 0.007 0.018 -0.008 0.012
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Table 7.10. Summary of the fake data study effects on the δcp credible intervals with the
prior flat in sin δcp, calculated for the Asimov A oscillation parameter set. The largest
positive and negative shift for each interval boundary is highlighted with the red and blue
background colors, respectively.

Credible interval 1σ 1.5σ 2σ 3σ

Data fit interval edge
b1σ,↓δcp

b1σ,↑δcp
b1.5σ,↓δcp

b1.5σ,↑δcp
b2σ,↓δcp

b2σ,↑δcp
b3σ,↓δcp

b3σ,↑δcp

-2.873 -0.912 -3.024 -0.614 -3.215 -0.353 -3.694 0.210

Fake data Reference ∆b1σ,↓δcp
∆b1σ,↑δcp

∆b1.5σ,↓δcp
∆b1.5σ,↑δcp

∆b2σ,↓δcp
∆b2σ,↑δcp

∆b3σ,↓δcp
∆b3σ,↑δcp

CRPA Normal Asimov 0.024 0.090 0.018 0.059 0.008 0.071 0.009 0.081

LFG Normal Asimov -0.059 -0.001 -0.059 0.009 -0.063 0.034 -0.102 0.075

Removal energy Normal Asimov -0.005 -0.022 0.001 -0.017 0.004 -0.013 0.013 -0.015

Axial form factor Scaled Asimov 0.006 0.010 0.005 0.011 0.007 0.013 0.004 0.010

Martini 2p2h Scaled Asimov 0.041 0.187 0.010 0.143 -0.012 0.130 -0.078 0.134

Pion multiplicity Normal Asimov -0.018 -0.027 -0.004 -0.028 -0.008 -0.018 -0.002 -0.020

Energy-dependent σνe/σνµ Scaled Asimov 0.008 0.057 0.007 0.038 0.001 0.030 -0.005 0.027

Atmospheric CC1π Normal Asimov -0.128 -0.882 -0.083 -0.130 -0.071 -0.095 -0.056 -0.074

ND CC1π Normal Asimov 0.029 0.021 0.021 0.003 0.017 -0.007 0.014 -0.011

ND Non-QE CC0πi Normal Asimov -0.007 0.062 -0.015 0.054 -0.024 0.062 -0.059 0.089

ND extrapolation Normal Asimov -0.000 0.071 -0.003 0.055 -0.015 0.056 -0.046 0.026

Pion SI bug fix Normal Asimov 0.009 0.044 0.004 0.027 0.000 0.025 0.000 0.017
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Table 7.11. Summary of the fake data study effects on the Jarlskog credible intervals
(×102) with the prior flat in δcp, calculated for the Asimov A oscillation parameter set.
The largest positive and negative shift for each interval boundary is highlighted with the
red and blue background colors, respectively.

Credible interval 1σ 1.5σ 2σ 3σ

Data fit interval edge
b1σ,↑Jcp

b1.5σ,↑Jcp
b2σ,↑Jcp

b3σ,↑Jcp

-2.55487 -1.76817 -0.84733 1.16596

Fake data Reference ∆b1σ,↑Jcp
∆b1.5σ,↑Jcp

∆b2σ,↑Jcp
∆b3σ,↑Jcp

LFG Normal Asimov 0.06214 0.12216 0.18769 0.35173

CRPA Normal Asimov 0.02526 0.04391 0.05763 0.05263

Removal energy Normal Asimov -0.01572 -0.02499 -0.03246 -0.03936

Axial form factor Scaled Asimov 0.00369 0.00539 0.00478 -0.01819

Pion multiplicity Normal Asimov -0.00677 -0.01109 -0.01248 -0.01094

Energy-dependent σνe/σνµ Scaled Asimov 0.01853 0.02783 0.01695 0.03292

Martini 2p2h Scaled Asimov 0.08223 0.12561 0.16956 0.31376

Atmospheric CC1π Normal Asimov 0.00825 0.02197 0.04142 0.09370

ND CC1π Normal Asimov -0.02609 -0.04500 -0.05814 -0.09331

ND Non-QE CC0πi Normal Asimov 0.04081 0.07889 0.12344 0.23962

ND extrapolation Normal Asimov 0.05207 0.06842 0.06595 0.10836

Pion SI bug fix Normal Asimov 0.00692 0.01166 0.01553 -0.00169
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Table 7.12. Summary of the fake data study effects on the Jarlskog credible intervals
(×102) with the prior flat in sin δcp, calculated for the Asimov A oscillation parameter
set. The largest positive and negative shift for each interval boundary is highlighted with
the red and blue background colors, respectively.

Credible interval 1σ 1.5σ 2σ 3σ

Data fit interval edge
b1σ,↑Jcp

b1.5σ,↑Jcp
b2σ,↑Jcp

b3σ,↑Jcp

-1.94423 -1.12605 -0.28100 1.47322

Fake data Reference ∆b1σ,↑Jcp
∆b1.5σ,↑Jcp

∆b2σ,↑Jcp
∆b3σ,↑Jcp

CRPA Normal Asimov 0.03353 0.04988 0.04927 0.00987

LFG Normal Asimov 0.09193 0.14158 0.18929 0.27265

Removal energy Normal Asimov -0.01880 -0.02378 -0.03348 -0.03454

Axial form factor Scaled Asimov 0.00398 0.00353 0.00201 0.00894

Martini 2p2h Scaled Asimov 0.07254 0.11415 0.13642 0.25058

Pion multiplicity Normal Asimov -0.00791 -0.02123 -0.00935 -0.00479

Energy-dependent σνe/σνµ Scaled Asimov 0.01935 0.02497 0.01559 0.03006

Atmospheric CC1π Normal Asimov 0.01701 0.03388 0.05006 0.09828

ND CC1π Normal Asimov -0.03403 -0.04480 -0.04922 -0.04228

ND Non-QE CC0πi Normal Asimov 0.06223 0.09266 0.12251 0.17649

ND extrapolation Normal Asimov 0.05642 0.04566 0.02120 0.06343

Pion SI bug fix Normal Asimov 0.00954 0.01201 0.01339 0.00041



7.4. Summary of the Bayesian analysis results 158

7.4 Summary of the Bayesian analysis results
In this chapter, the first data fit results of the joint analysis of T2K beam and SK at-
mospheric neutrinos are presented. We achieved improvement in the δcp constraints and
mass ordering determination, compared to the fit to the samples from individual analyses.

The 2σ credible interval for δcp excludes the CP conserving values (δcp = 0, π) under
the flat δcp prior but does not exclude them with the flat prior in sin δcp. For the Jarlskog
invariant Jcp, the CP conserving value (Jcp = 0) is consistently excluded from the 2σ
credible intervals under both the flat prior in δcp and the flat prior in sin δcp.

The conclusions on CP conservation for different parameters and different priors are
summarized in Table 7.13. Although the conclusion depends on which parameter to
look at (δcp or Jcp), we would like to adopt the most conservative statement for each
prior choice as our final conclusion: conservation of CP symmetry is excluded at
2σ under the flat prior in δcp and at 1.5σ under the flat prior in sin δcp. We
confirmed that these results are robust against the out-of-model effects.

Table 7.13. Summary of the conclusion on CP conservation based on the Bayesian cred-
ible intervals. “✓” means that the CP conserving values are excluded from the credible
intervals while “×” means they are not. These results are robust against the out-of-model
effects studied through the fake data studies.

Parameter Prior 1σ 1.5σ 2σ 3σ

δcp
Flat in δcp ✓ ✓ ✓ ×
Flat in sin δcp ✓ ✓ × ×

Jcp
Flat in δcp ✓ ✓ ✓ ×
Flat in sin δcp ✓ ✓ ✓ ×

The Bayes factor for the normal ordering over inverted ordering is computed to be
8.98 ± 0.06 under the flat δcp prior, which corresponds to a significance level of 1.64σ.
It suggests a moderate preference for normal ordering, but it is not enough to claim a
discovery. The joint analysis shows almost equal preference to both θ23 octants.

In addition, the posterior predictive p-value of 0.422 (all samples in the analysis bin-
ning) shows no problem in the goodness of fit.



Chapter 8

Discussions

The results of our main Bayesian analysis have been presented in Chapter 7, but there are
some remaining questions we want to investigate. In particular, we discuss the contribu-
tion of each sample, the constraints on the systematic uncertainties, and alternative ways
to test the CP conservation (violation) hypothesis in this chapter. The studies presented
in this chapter are only intended to validate and understand the results, and therefore,
the results of the main analysis will remain unchanged.

8.1 Data best-fit results

8.1.1 Best-fit χ2 breakdown by sample

Using the best-fit χ2, one can study the contribution of each sample to the mass ordering
and octant preferences. Figure 8.1 shows the χ2 differences between the normal/inverted
ordering and upper/lower octant hypotheses broken down for each sample. The positive
values (in orange) indicate the preference for normal ordering and upper octant, respec-
tively.

For the mass ordering, the largest χ2 contributions come from the atmospheric multi-
GeV samples. Many of the samples show a preference for normal ordering, but the atmo-
spheric multi-GeV e-like νe and multi-ring µ-like samples show the opposite preference.
For the octant, the T2K samples show a preference for the upper octant, while the at-
mospheric samples show a preference for the lower octant except for the multi-ring e-like
νe.

8.1.2 Systematic uncertainty constraints

The post-fit constraints on the systematic uncertainty parameters can be studied using
the profiling fit results. The best-fit values and the estimated errors of the systematic
uncertainty parameters for the ND, SK (+ND), T2K, and SK+T2K fits are shown in
Fig. 8.2. The errors are computed from the Hessian at the best-fit point as described in
Section 5.3.1. Since the 2p2h parameters are given a flat prior and strongly pulled against
the boundary, it is not easy to estimate the post-fit uncertainty for these parameters.
Therefore, they are fixed at their post-fit values when estimating the uncertainties for all

159
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Figure 8.1. Differences of the best-fit χ2 between the normal/inverted ordering and up-
per/lower octant. In the mass ordering (octant) plot, the positive values (in orange)
indicate a preference for normal ordering (upper octant), and the negative values (in
blue) indicate a preference for inverted ordering (lower octant).

the other systematic uncertainty parameters and are drawn with 1σ error in the plots for
convenience.

Flux systematics In Fig. 8.2a, the T2K flux systematics show mostly consistent results
in all the cases. These parameters are well-constrained by the external experiments and
the T2K near detector fit. The near detector pulls up the flux parameters at the lower
energy regions and pulls down them at the higher energy regions. The opposite behavior is
seen for example in the Q2 cross-section parameters (low-Q2 parameters are pulled down),
which balances the overall event number predictions. The atmospheric flux systematics
shown in Fig. 8.2b are constrained by the atmospheric samples only.

Cross-section systematics Among the cross-section systematic uncertainty parame-
ters developed for this analysis, both of the Adler angle systematics (Adler angle lowp,
Adler angle highp in Fig. 8.2d) are pulled lower and they are about 2-3 post-fit σ away
from the nominal value. These Adler angle systematics are designed to make the pion
momentum lower when the parameter moves to a smaller value. When the pion momen-
tum gets below the Cherenkov threshold of pπ = 157 MeV, it cannot be detected as a ring
but can produce the decay electron signal. Since both the T2K and SK sub-GeV CC1π
samples are defined using the number of decay electrons, it increases the number of CC1π
events when the parameter is pulled lower. Therefore, the direction of the observed shift
is reasonable to cover the data excess in the CC1π samples. From the size of the errors, it
turned out that these Adler angle systematics are mostly constrained by the atmospheric
samples.
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Figure 8.2. Comparison of the flux systematic parameter best fits among SK+T2K, T2K,
and SK (+ND) fits. Parameters are normalized with their prior uncertainties.
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Figure 8.2. Comparison of the detector systematic parameter best fits among SK+T2K,
T2K, and SK (+ND) fits. Parameters are normalized with their prior uncertainties.
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We have two NCπ0-related parameters: one gives 30% uncertainty on NC1π0 reso-
nance and the other gives 100% uncertainty on NC1π0 coherent, which are tuned to the
MiniBooNE data. Both of them are mostly constrained by the Sub-GeV π0-like sample.
The former (NC pi0 norm in Fig. 8.2d) is significantly pulled up in the data fit, which
is nearly +2σ (+60% stat increase). This might indicate a mis-modeling of NCπ0 in our
current nominal model, which is worth investigating for future analysis. This time we
perform an additional fake data study to check whether the NC resonance normalization
change could bias the δcp sensitivity by changing the background estimation in the T2K
e-like samples. We construct a fake data set by increasing the NC1π0 resonance events
by 60% (corresponds to +2σ for NC pi0 norm) and fit the fake data set with our nominal
model. The result showed a very small difference in δcp as shown in Fig. 8.3. Therefore, we
concluded the impact of the observed shift in NC pi0 norm on δcp is small. This may be
because the NCπ0 background is well separated from the νe signals and the contribution
of NCπ0 is small enough in the e-like samples.
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Figure 8.3. Comparison of the 1D ∆χ2 for δcp between the nominal Asimov and NCπ0

normalization fake data fit. The oscillation parameters are set to the Asimov A parameter
set and the systematic uncertainty parameters are set to the Pre-ND tuning.

Detector systematics The effects of the correlations in the detector systematic uncer-
tainties can be seen in Fig. 8.2. Among the T2K detector systematic uncertainties, the
parameters applied to the FHC/RHC νµ → νµ disappearance CCQE ([1.1, 30] GeV) and
non-QE events are strongly correlated with the atmospheric ring separation systematics
(Section 4.4). The ring separation is the uncertainty on the count of reconstructed rings
(single-ring or multi-ring separation), and is constrained by the atmospheric multi-GeV
samples as shown in Fig. 8.4. Since this parameter is strongly pulled in the atmospheric
part of the fit, the correlated T2K detector systematics are also pulled up. Similarly,
the FHC/RHC νµ → νµ disappearance CCQE ([0.4, 1.1] GeV) parameter is also anti-
correlated with the SK atmospheric single-ring PID systematic uncertainty parameter
and is pulled up in the SK+T2K fit.
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The new low-momentum PID systematics (low-p PID beam, low-p PID atm) are
pulled up by both the beam and atmospheric CC1π samples as expected. They are
still within a post-fit 1.5σ uncertainty from the nominal.
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Figure 8.4. Sample likelihood distributions when varying the ring separation and the
single-ring PID systematic parameters within [−3σ, 3σ] ranges. While one parameter is
varied, the other oscillation parameters and the systematic parameters are fixed at the
Asimov A parameter set and the Post-ND tuning. Only the total likelihood and likelihood
of the five samples with the largest contributions are shown for each parameter.

8.2 Effect of the model changes
In this analysis, we added correlations between the beam and atmospheric detector sys-
tematics and employed new systematic uncertainties to cover the possible weakness in the
CC1π model. It has been shown in Section 8.1.2 that these parameters got constrained in
the data fit, and therefore, we further study the effect of these treatments. In this section,
fits are performed using the importance sampling method.

8.2.1 Detector systematic correlations

First, we test the effect of the correlations between the beam and atmospheric detector
systematic uncertainties. This can be done by simply performing a data fit with the
correlated and uncorrelated detector systematic uncertainties. The results of these fits
are shown in Fig. 8.5. There is no significant difference from this change, but the fit with
the correlated detector systematics shows a slightly stronger rejection of the inverted
mass ordering. The correlations of the detector systematic uncertainties do not affect the
overall conclusion of this analysis.

8.2.2 Energy scale correlation

We have two energy-scale (p-scale) systematics to cover the uncertainties in the energy
calibration. One is assigned to the T2K beam samples and the other is assigned to all the
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Figure 8.5. Comparison of data fit 1D ∆χ2 contours with the correlated and uncorrelated
detector systematic parameters between T2K beam and SK atmospheric samples. Both
fits were performed using the importance sampling method with the reactor constraint.
∆m2

32 smearing is applied.

SK atmospheric samples. These systematic uncertainty parameters are implemented as
scaling parameters that can directly modify the reconstructed lepton momentum indepen-
dent of the event topology and energy. In this analysis, we apply full (100%) correlations
between the beam and atmospheric energy-scale parameters assuming that the energy-
scaling effect is common to all the samples as we use the same detector. Here we also
perform the data fit with and without the energy-scale correlations to see if there could
be a difference in the results.

Figure 8.6 shows the results of the data fit with the correlated and uncorrelated energy-
scale parameters. When the two parameters are uncorrelated, it moves the best-fit point
of ∆m2

32 to a smaller value. In the formulation of the oscillation probabilities, the squared
mass difference is directly coupled to the neutrino energy through the sin2 ∆m2L

4E
term.

Therefore, it is natural that the change in the energy-scale parameter affects the mea-
surement of ∆m2

32. As shown in Fig. 8.2, the atmospheric counterpart of the parameter
is strongly pulled in the SK-only (+ND) data fit. When the beam and atmospheric
energy-scale parameters are correlated, the beam energy scale can also be pulled by the
atmospheric energy scale, which causes the shift in ∆m2

32.
Although we do not change our conclusion presented in Chapter 7, it will remain

an interesting question for future analysis whether we should correlate the energy-scale
systematics or not. Since we are using the same detector for the beam and atmospheric
analyses, it seems to be natural to assume that the energy scale systematics are corre-
lated. However, the energy scale uncertainties estimated using the control samples vary
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Figure 8.6. Comparison of data fit 1D ∆χ2 contours with the correlated and uncorrelated
energy-scale systematic parameters between T2K beam and SK atmospheric samples.
Both fits were performed using the importance sampling method with the reactor con-
straint. ∆m2

32 smearing is applied.

in different energy regions (Appendix A.1), and the atmospheric samples have wider en-
ergy ranges than T2K beam samples. Therefore, the full correlation of the atmospheric
and beam energy-scale parameters could result in unexpected bias. A more sophisticated
treatment of the energy-scale parameters (e.g. separating the parameters into different
energy regions) will be studied in future analysis.

8.2.3 Atmospheric CC1π samples and related parameters

We also test the contribution of the atmospheric CC1π samples and the effects of the
new systematics. In this analysis, we introduced the systematic uncertainties on the low-
momentum PID errors and the pion momentum freedom due to the Adler angle distortion
to cover the data/MC excess seen in the atmospheric CC1π samples. Here we perform
additional data fit with two options to investigate the effects of these treatments:

1. Data fit with the full systematic uncertainty model but not including the atmo-
spheric sub-GeV CC1π samples

2. Data fit using all the beam and atmospheric samples but without including the
low-momentum PID and Adler angle systematic uncertainties in the fit.

Figure 8.7 shows the results of these fits along with the standard data fit. When we do not
include the additional systematic uncertainties, the results are significantly affected by the
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CC1π samples (denoted as “No low-p PID and Adler param.” and drawn in green). On
the other hand, the removal/addition of the atmospheric CC1π samples does not cause a
difference when we include the additional systematics. These results imply that the extra
parameters successfully reduce the biases due to the data/MC excess in the atmospheric
CC1π samples. However, these parameters are ad-hoc parameters to deal with the excess
and they may be revised in future analysis.
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Figure 8.7. Comparison of data fit 1D ∆χ2 distributions with several options for inves-
tigating the effect of atmospheric CC1π samples. All the fits were performed using the
importance sampling method with the reactor constraint. ∆m2

32 smearing is applied.

8.3 Comparison of the data fit and sensitivity

8.3.1 Data fit and sensitivity comparison

Additional studies are performed to understand how our data fit results behave compared
to the sensitivity study. Figure 8.8 shows the comparison of the 1D ∆χ2 distributions
from the data fit and MC sensitivity studies using the importance sampling method. Two
sensitivity studies are performed using the data best-fit values at the lower and upper
octant summarized in Table 8.1 (called the “best-fit Asimov sensitivity”).

The data fit shows tighter constraints on δcp compared to the data best-fit sensitivity
results. For the other parameters, the data fit has mostly consistent constraints with the
best-fit Asimov sensitivity at the upper octant. The comparison of the two best-fit Asimov
sensitivity results implies that the choice of the octant has a non-negligible impact on δcp
and mass ordering sensitivity. In particular, the rejection of the inverted mass ordering
becomes significantly stronger when the upper octant is assumed.
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Table 8.1. Summary of the oscillation parameter best-fit values obtained from the data
fit at the upper and lower octant, respectively.

Parameter Global best fit
(lower octant)

Local best fit
in upper octant

sin2 θ23 0.471 0.551
∆m2

32 [×10−3 eV2] 2.514 2.516
δcp -1.76 -2.00
Mass ordering Normal ordering
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Figure 8.8. Comparison of the 1D ∆χ2 curves of the data fit and sensitivity. The sensi-
tivity is computed using the data best-fit parameter values at both the lower and upper
octant. The importance sampling method is used for all the fits.

8.3.2 Sample contribution

Here we try to investigate which sample makes the δcp constraints tighter in the data
fit. To visualize the contribution of each sample, we repeat a fit to the “hybrid” data set
where one sample is taken from the best-fit Asimov data set, and the others are taken
from the real data set. If the constraints of δcp change when we replace a certain sample
with the MC, it means this sample contributed to the change in the data fit constraints.
Fig. 8.9 shows the result of these hybrid studies for the T2K beam and SK atmospheric
FC samples. As we found the octant of sin2 θ23 has a large impact on the δcp sensitivity,
here we use the local best-fit values in the upper octant, which showed closer constraint
to the data fit.

The largest contributions come from the SK atmospheric sub-GeV e-like 0de sample.
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As we studied in Section 7.3.5, this sample had the smallest posterior probability p-value
due to the data/MC excess in the most upward-going bin. As the upward-going part of
the e-like samples have sensitivities to δcp through the νµ → νe appearance oscillation, the
better δcp constraints in the data fit may be caused by this excess. In addition, it shows
a stronger IO rejection when the multi-ring µ-like sample is replaced with the best-fit
Asimov, which means the multi-ring µ-like sample prefers the inverted ordering more in
the data fit.

On the T2K side, the FHC 1Re sample has the largest contribution. This effect is
further amplified when we use the best-fit values at the lower octant as shown in Fig. 8.10.
When sin2 θ23 is set to the lower octant, it reduces the MC prediction of the event rates
around the oscillation maximal (Eν ≃ 0.6 GeV) as shown in Fig. 7.2, so the data/MC
ratio becomes larger. This effect is therefore absorbed in δcp and makes the δcp constraints
tighter in the data fit.

3− 2− 1− 0 1 2 3

CPδ

0

5

10

15

20

25

30

352 χ∆ Hybrid study

Data fit

µAsimov for FHC 1R

µAsimov for RHC 1R

Asimov for FHC 1Re

Asimov for RHC 1Re

Asimov for FHC 1Re1de

All Asimov

Normal ordering
Inverted ordering

SK + T2K preliminary

(a) Beam

3− 2− 1− 0 1 2 3

CPδ

0

5

10

15

20

25

30

352 χ∆ Hybrid study
Data fit
Asimov for atm SubGeV elike 0dcy
Asimov for atm SubGeV elike 1dcy
Asimov for atm SubGeV mulike 0dcy
Asimov for atm SubGeV mulike 1dcy
Asimov for atm SubGeV mulike 2dcy
Asimov for atm SubGeV pi0like
All Asimov

Normal ordering
Inverted ordering

SK + T2K preliminary

(b) Atmospheric sub-GeV

3− 2− 1− 0 1 2 3

CPδ

0

5

10

15

20

25

30

352 χ∆ Hybrid study

Data fit

Asimov for atm MultiGeV elike nue

Asimov for atm MultiGeV elike nuebar

Asimov for atm MultiGeV mulike

All Asimov

Normal ordering
Inverted ordering

SK + T2K preliminary

(c) Atmospheric multi-GeV

3− 2− 1− 0 1 2 3

CPδ

0

5

10

15

20

25

30

352 χ∆ Hybrid study

Data fit

Asimov for atm MultiRing elike nue

Asimov for atm MultiRing elike nuebar

Asimov for atm MultiRing mulike

Asimov for atm MultiRingOther 1

All Asimov

Normal ordering
Inverted ordering

SK + T2K preliminary

(d) Atmospheric multi-GeV multi-ring

Figure 8.9. Comparison of the 1D ∆χ2 contours where one sample is replaced with the
data best-fit Asimov. The best-fit values at the upper octant are used.
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Figure 8.10. Comparison of the 1D ∆χ2 contours where one sample is replaced with the
data best-fit Asimov. The best-fit values at the lower octant are used.

8.4 Effect of the systematic uncertainties on the CP
measurements

In this section, we investigate the effect of the systematic uncertainties on the δcp mea-
surements.

8.4.1 Overall contribution of the systematic uncertainties

An overall contribution of the systematic uncertainties to the oscillation parameter con-
straints can be estimated by using the statistics-only uncertainty σstat. and computing

σsyst. =
√
σ2
total − σ2

stat.. (8.1)

The statistics-only uncertainty can be obtained by fixing the systematic uncertainty pa-
rameters at the best-fit values and running a fit only using the statistical term of the
likelihood Lstat. which is defined in Eq. (5.8).

Comparison of the ∆χ2 distributions for the full-likelihood fit and statistics-only fit
is shown in Fig. 8.11. It shows that the largest contribution to the uncertainty of these
oscillation parameters comes from the statistical uncertainties, which implies increasing
the statistics is very important for future analysis. However, the effects of systematic
uncertainties are already non-negligible, especially in δcp and sin2 θ23.

The computed statistic and systematic 2σ uncertainties on these parameters are sum-
marized in Table 8.2 from the fixed-∆χ2 method. For δcp, the 2σ systematic uncertainty
(1.478) is roughly ∼ 70% of the statistic uncertainty (2.065), which implies that in future
analysis when we get more statistics, the relative contribution of the systematic uncer-
tainties will be more significant.

8.4.2 Correlations between δcp and systematic uncertainties

It has been shown that the systematic uncertainties already have a non-negligible impact
on the δcp measurements. The next question we want to answer is which systematic
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Figure 8.11. Comparison of data fit 1D ∆χ2 distributions for the full likelihood fit and
statistics-only fit. All the fits were performed using the importance sampling method with
the reactor constraint. ∆m2

32 smearing is applied.

Table 8.2. Summary of the 2σ uncertainties on the oscillation parameters.

Normal ordering sin2 θ13 [10−3] δcp ∆m2
32 [10−3 eV2] sin2 θ23

2σtotal 2.752 2.540 0.234 0.158
2σstat. 2.739 2.065 0.226 0.136
2σsyst. 0.266 1.478 0.062 0.081

Inverted sin2 θ13 [10−3] δcp ∆m2
32 [10−3 eV2] sin2 θ23

2σtotal 2.742 2.028 0.235 0.145
2σstat. 2.732 1.694 0.225 0.135
2σsyst. 0.235 1.116 0.067 0.052

uncertainty has the biggest impact. To study this, we use the MCMC data fit results
and see how the constraints on δcp change when we modify each systematic uncertainty
parameter.

We first construct the posterior distribution for each systematic uncertainty parameter,
approximate it with a Gaussian, and obtain its width σ. Then, we reweight the MCMC
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steps so that the selected systematic uncertainty parameter has the posterior distribution
of half-width (σ/2). We also shift this narrowered posterior distribution to ±1σ. An
example of the modified posterior distributions is shown in Fig. 8.12.

0.85 0.90 0.95 1.00 1.05 1.10
0

5

10

15

20

25

30

35
MAQE

Nominal data fit

Half width

 shiftσHalf width & +1

 shiftσHalf width & -1

MAQE

Figure 8.12. The original and modified posterior distributions for MQE
A systematic uncer-

tainty parameter.

The same reweighting is applied to the data-fit δcp posterior probability distribution
to see how the constraint is affected. Figure 8.13 shows the ratio of the δcp 2σ credible
interval size to the nominal data fit result when each parameter is modified as described
above. Some systematics show a visible impact on δcp when they are shifted by ±1σ.
Among the cross-section systematics, the νe/νµ and ν̄e/ν̄µ cross-sections, and CRPA ν
systematic uncertainties make a visible shift in δcp. This is as expected because the
constraints on δcp mainly come from the νµ → νe and ν̄µ → ν̄e appearance oscillation
probabilities and the νe (ν̄e) cross-section uncertainties are almost directly coupled to the
δcp measurements through these channels.

The largest contribution among all the systematic uncertainty parameters comes from
the single-ring PID in the atmospheric detector systematics. However, since these detector
systematics are strongly correlated with each other, the effect of the shift cannot be
simply explained by the contribution of a single parameter. For example, some T2K
detector systematics are strongly correlated with this parameter, so they also change the
δcp intervals through the correlation with the single-ring PID systematics.
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Figure 8.13. Comparison of the scaling and shifting effect of flux systematic parameters
on the δcp 2σ credible intervals. The vertical axis shows the ratio of the 2σ credible
interval size of the modified δcp posterior distribution (2σmod) to that of the nominal
data-fit posterior distribution (2σnom).
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Figure 8.13. Comparison of the scaling and shifting effect of cross-section systematic
parameters on the δcp 2σ credible intervals. The vertical axis shows the ratio of the
2σ credible interval size of the modified δcp posterior distribution (2σmod) to that of the
nominal data-fit posterior distribution (2σnom).
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Figure 8.13. Comparison of the scaling and shifting effect of detector systematic param-
eters on the δcp 2σ credible intervals. The vertical axis shows the ratio of the 2σ credible
interval size of the modified δcp posterior distribution (2σmod) to that of the nominal
data-fit posterior distribution (2σnom).
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The comparison of the δcp posterior distributions when the selected systematic un-
certainty parameters are modified is shown in Fig. 8.14. The cross-section systematic
uncertainties mostly affect the width of the δcp posterior probability distribution, whereas
the single-ring PID also shifts the δcp distribution.
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Figure 8.14. Comparison of the δcp posterior distributions when scaling and shifting the
selected systematic uncertainty parameters.

8.5 Effect of different priors
We performed a Bayesian analysis in Chapter 7 using both the flat prior in δcp and the
flat prior in sin δcp. However, the result of the Bayesian analysis also depends on the
choice of the priors for the other parameters. In this section, some additional studies are
performed to test the effect of alternative prior choices.

Mixing angle In our main analysis, we use the flat prior in sin2 θ23. However, the prior
can be also chosen to be flat in θ23, sin θ23 or sin2 2θ23. The comparison of these different
prior distributions for the mixing angle parameter is shown in Fig. 8.15. In addition, the
constraints on θ23 mainly come from the νµ → νµ survival probability, which can also be
approximated using the effective mixing (sin2 θµµ) and squared mass difference (∆m2

µµ)
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as [17]

Pνµ→νµ ≈ 1− sin2 2θµµ sin
2
∆m2

µµL

4Eν

, (8.2)

where sin2 θµµ and ∆m2
µµ are defined as

sin2 θµµ = cos2 θ13 sin
2 θ23, (8.3)

∆m2
µµ = sin2 θ12∆m

2
31 + cos2 θ12∆m

2
32

+ cos δcp sin θ13 sin 2θ12 tan θ23∆m
2
21. (8.4)

It is shown that the survival probability has a dependence on sin2 2θµµ at the leading
order. Therefore, here we perform the additional comparison for the flat prior in sin2 2θµµ
as well.
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Figure 8.15. Comparison of the alternative prior distributions in the mixing angle param-
eter.

Squared mass difference In the main analysis, we apply the prior constraint on
sin2 2θ13 = 0.0853 ± 0.0027 from the reactor experiments. We also test the prior con-
straints on (∆m2

32, sin
2 2θ13) taken from the latest publication by the Daya Bay reactor

neutrino experiment [171]. The reactor neutrino experiments measure the ν̄e → ν̄e survival
probability and it can be approximated as

Pν̄e→ν̄e ≈ 1− sin2 2θ13 sin
2 ∆m

2
eeL

4Eν

, (8.5)
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where ∆m2
ee is defined as

∆m2
ee = cos2 θ12∆m

2
31 + sin2 θ12∆m

2
32. (8.6)

Therefore, Daya Bay can provide good two-dimensional constraints on (∆m2
32, sin

2 2θ13)
as shown in Fig. 8.16. Since it is pointed out by Nunokawa et al. that the combination of
the measurements of electron and muon neutrino (antineutrino) disappearance channels
has a sensitivity to determine the mass ordering [172], it is of interest to use the two-
dimensional constraints from Daya Bay.
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Figure 8.16. Two dimensional ∆χ2 distributions in the ∆m2
32 and sin2 2θ13 space reported

by the Daya Bay experiment [171]. The 1σ, 2σ, and 3σ confidence intervals based on the
fixed-∆χ2 method are shown together.

We perform these alternative prior studies by applying additional weights to the
MCMC steps used for the main analysis in Chapter 7. Denoting the parameter con-
version from θ to ϕ as ϕ = f(θ), the prior conversion can be written as

π′(ϕ) =

∣∣∣∣
dϕ

dθ

∣∣∣∣ π(θ) =
∣∣∣∣
df(θ)

dθ

∣∣∣∣ π(θ). (8.7)

Therefore, each MCMC step is reweighted with
∣∣∣df(θ)dθ

∣∣∣ to obtain the posterior distributions
under the different prior choices.

8.5.1 Posterior distribution comparison

Fig. 8.17 shows the posterior distributions of the oscillation parameters under different
prior assumptions. For the CP-related parameters (δcp and Jcp), the effects from the
flat sin2 2θµµ and Daya Bay priors are found to be small. Although the rejection of CP
conservation is slightly weaker under the flat prior in sin2 2θ23, the choice of the priors
flat in δcp and flat in sin δcp has a much larger impact.

For the squared mass differences, the Daya Bay prior has a visible impact in ∆m2
32 as

expected, which shifts the distribution to the smaller value of ∆m2
32 and makes the distri-

bution narrower. Other choices of the alternative priors (sin δcp, sin2 2θ23, and sin2 2θµµ)
do not have much impact on this parameter.
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Some interesting features are seen in the mixing angle parameters. If we compare
the flat δcp prior and the flat sin δcp prior, the latter makes the upper octant preference
stronger. On the other hand, the flat sin2 2θµµ prior makes the upper octant preference
weaker compared to the flat sin2 2θ23 prior. The Bayes factors for the upper octant
hypothesis over the lower octant hypothesis are computed to be Bsin2 2θ23

UO/LO = 2.4 and

B
sin2 2θµµ
UO/LO = 1.3 under the flat sin2 2θ23 prior and the flat sin2 2θµµ prior, respectively. In

this analysis, we do not have a strong statement on the octant preference, but we will
need to care about these prior effects in future analyses when we have better sensitivities
to the octant.

The comparisons of the 2D posterior distributions under different prior choices are
shown in Fig. 8.18. They also show similar tendencies as described above.

8.5.2 Mass ordering Bayes factor

The Bayes factor does not depend on the prior choice for the two hypotheses that are being
compared because it is defined as the ratio of marginal likelihood. However, it may depend
on the priors for the nuisance parameters. In the main analysis described in Chapter 7,
we computed the mass ordering Bayes factor under the nominal prior choice that is flat
in δcp and sin2 θ23. It was computed to be ∼ 9.0 and showed a moderate preference
for the normal ordering. The mass ordering Bayes factors computed at different prior
choices are summarized in Table 8.3. It has a variation around 7-11, but in any case, the
corresponding significance is lower than 2σ and it does not change our conclusion on the
mass ordering.

Table 8.3. Mass ordering Bayes factor under the different priors.

Prior MO Bayes factor Significance

δcp 8.97 1.64σ

sin δcp 11.10 1.74σ

sin2 2θ23 7.78 1.58σ

sin2 2θµµ 8.65 1.63σ

DayaBay 7.81 1.58σ
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Figure 8.17. Comparison of the posterior distributions under the different priors.
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Figure 8.18. Comparison of the 2D posterior distribution under the different priors.
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8.6 CP conservation and violation test

8.6.1 Savage-Dickey Bayes factor for CP violation

In general, the output of Bayesian analysis is given as a posterior distribution. Therefore,
it is not straightforward to test our preference for the CP violation hypothesis (sin δcp ̸= 0)
over the CP conserving hypothesis which is a point-like hypothesis (sin δcp = 0). One
approach is to construct credible intervals for the CP parameters (δcp or Jcp) and to test
whether the CP-conserving values are excluded from the intervals or not, as we did in
Chapter 7. An alternative approach for directly testing the point-like hypothesis within
the Bayesian analysis framework is the Savage-Dickey method [173, 174].

As described in Section 7.3.4, the Bayes factor is defined as the ratio of the marginal
likelihood between two hypotheses. Let us assume that the point-like hypothesis we want
to test (H0) corresponds to a particular value of parameter θ = θ0 in the complex model
for the alternative hypothesis (H1). For example, in our CP violation test, sin δcp = 0
stands for the CP-conserving hypothesis, and any other values of sin δcp (sin δcp ̸= 0)
stand for the CP-violating hypothesis. One can write the marginal likelihoods for the
hypotheses H0 and H1 as

p0(n) =

∫
L0(η|n)π0(η)dη, (8.8)

p1(n) =

∫∫
L1(θ, η|n)π1(θ, η)dθdη, (8.9)

where n is the data, η is the nuisance parameter(s), and π(·) is the prior. The marginal
likelihood for the hypothesis H0 can then be rewritten as

p0(n) =

∫
L1(η|n, θ = θ0)π1(η|θ = θ0)dη (8.10)

= L1(θ = θ0|n). (8.11)

By applying the Bayes’ theorem (Eq. (5.2)), we can write

p0(n) =
p1(θ = θ0|n)p1(n)

π1(θ = θ0)
. (8.12)

Therefore, the Savage-Dickey Bayes factor, the ratio of the marginal likelihood between
the hypotheses H0 and H1, can be computed as

BFSavage-Dickey =
p0(n)

p1(n)
=
p1(θ = θ0|n)
π1(θ = θ0)

. (8.13)

It means that the ratio between the posterior and prior at θ = θ0 gives the Bayes factor
for this point-like hypothesis H0. Since we want to test the CP-violating hypothesis in our
analysis, we take the inverse of this statistic to compute the Bayes factor for CP violation
(= p1(n)/p0(n)).

We compute the Savage-Dickey Bayes factor by taking the ratio of the posterior and
prior of the Jarlskog invariant at Jcp = 0. Fig. 8.19 shows the comparison of the Jarlskog
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invariant prior and posterior distributions under normal ordering, inverted ordering, and
both ordering, respectively. Since this factor directly depends on the choice of the prior,
we plotted both the flat δcp prior and flat sin δcp prior. In addition, we find that the
parameter range for the sin2 θ23 prior has a non-negligible impact on the prior value at
Jcp = 0. In the fit, we allow sin2 θ23 to vary freely in the range of [0, 1], but here we show
several options of sin2 θ23 prior ranges for completeness.
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Figure 8.19. Jarlskog invariant with the flat prior in δcp (left) and the flat prior in sin δcp
(right). Savage-Dickey Bayes factor is computed for CP violation (Jcp ̸= 0) over CP
conservation (Jcp = 0) under different prior ranges for sin2 θ23.
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The values of the Savage-Dickey Bayes factors are summarized in Table 8.4. It gives
a stronger preference for CP violation when we assume the wider parameter ranges for
the sin2 θ23 prior. In the inverted ordering, the Bayes factor is larger than 20 for both
the flat δcp and flat sin δcp priors when we assume sin2 θ23 ∈ [0, 1], which corresponds
to the significance level of > 2σ. For normal ordering, the Bayes factor is around 5-7,
which suggests a weak preference for CP violation. Overall, the CP-violating hypothesis
is preferred to the CP-conserving hypothesis, but it is not enough to claim the evidence
of CP violation.

Table 8.4. Summary of the Savage-Dickey Bayes factors under the different prior assump-
tions.

Prior Mass ordering
sin2 θ23

[0.0, 1.0] [0.1, 0.9] [0.2, 0.8] [0.3, 0.7]

Flat in δcp

Normal ordering 7.35 (1.56σ) 5.42 (1.42σ) 5.02 (1.38σ) 4.81 (1.37σ)

Inverted ordering 37.93 (2.23σ) 27.99 (2.11σ) 25.90 (2.08σ) 24.84 (2.07σ)

Both ordering 8.00 (1.59σ) 5.90 (1.46σ) 5.46 (1.42σ) 5.24 (1.40σ)

Flat in sin δcp

Normal ordering 5.42 (1.42σ) 4.01 (1.28σ) 3.71 (1.25σ) 3.56 (1.23σ)

Inverted ordering 22.60 (2.03σ) 16.71 (1.91σ) 15.46 (1.88σ) 14.83 (1.86σ)

Both ordering 5.78 (1.45σ) 4.28 (1.31σ) 3.96 (1.28σ) 3.79 (1.26σ)

8.6.2 Frequentist p-value for CP conservation

Although our Bayesian analysis result depends on the choice of prior, it is possible to
perform a prior-independent CP conservation test using a frequentist approach. In this
test, we compute a p-value of obtaining our data fit result, which prefers CP violation
(CPV), under the CP conservation (CPC) hypothesis. If the p-value takes a small value
(e.g. p ≤ 0.05 is a common criterion), it implies that our data preference for CPC is not
likely a statistical fluctuation but a real feature of nature.

In terms of δcp, CPC corresponds to the values of δcp = 0, π, while CPV corresponds
to any values other than them. Therefore, χ2 for each hypothesis can be written as

χ2[CPC] ≡ min
α
χ2(α), (8.14)

χ2[CPV] ≡ min
δcp,MO

χ2(δcp,MO), (8.15)

where α takes any of the combinations of δcp = 0, π for normal or inverted ordering.
Here we define the p-value as the probability of obtaining a difference in the minimum

χ2 values between CPC and CPV hypotheses ∆χ2 ≡ χ2[CPC]−χ2[CPV] larger than that
from the data fit (∆χ2

data), under a certain hypothesis. To obtain this p-value, we generate
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(N) pseudo data sets and compute

p =
1

N

N∑

i=1

I[∆χ2
i > ∆χ2

data], (8.16)

where I[·] is an indicator function that returns 1 when the argument is true and returns
0 otherwise.

For the CPC test, the pseudo data sets are generated by taking the oscillation param-
eters from the result of the MCMC data fit without the multicanonical method (β = 1.0),
which gives proper posterior correlations among the oscillation parameters. There is one
caveat that in MCMC we do not have the steps exactly at δcp = 0, π. Therefore, we take
the steps around sin δcp ≈ 0 and force them to be δcp = 0, π when generating the true
CP-conserving pseudo data sets. The densities of different combinations of δcp = 0, π and
the mass ordering are summarized in Table 8.5. The systematic uncertainty parameters
are varied according to the Gaussian from the near detector fit. The statistical variations
are applied to these data sets assuming the Poisson fluctuation. A fit to the ensemble of
pseudo data sets is performed using the profiling method.

Table 8.5. Densities of the generated true CP-conserving toys under different combinations
of δcp = 0, π and the mass ordering. These densities are extracted from the data fit
MCMC.

Normal ordering Inverted ordering

δcp = 0 0.143 0.013
δcp = π 0.837 0.006

Figure 8.20 shows the distribution of the obtained ∆χ2 distributions from the fit to
2000 pseudo data sets. The corresponding p-value is computed to be

p = 0.027± 0.004,

which means that the CP conservation hypothesis is excluded at more than 2σ confidence
level. However, since this result is based on only 2000 pseudo data sets, the validity of
the result is not fully guaranteed. A relatively small number of pseudo data sets used in
this analysis is due to the computational limit. Unfortunately, since it takes more than
10 days to perform a fit to 2000 data sets even with 1000 CPUs, it is difficult to increase
the number of pseudo data sets within the current framework. It is also pointed out that,
with p-values, the significance of the result may often be overestimated due to the lack
of reference to the alternative hypothesis [175]. Therefore, due to these limitations of the
p-value study, we do not treat it as our conclusion in this analysis.



8.6. CP conservation and violation test 187

0 1 2 3 4 5 6 7 8 9 10

[CPV]2χ[CPC] - 2χ

1

10

210

310

 N
um

be
r 

of
 p

se
ud

o 
da

ta
 s

et
s

Figure 8.20. Distribution of the χ2 difference between the CP conservation and CP
violation hypothesis fit. The red vertical line shows the value we obtained from the data
fit.



Chapter 9

Future sensitivity and prospects

This chapter presents the future sensitivity study assuming the data set expected to be
collected in the coming years. The prospects for the future analysis are also stated.

9.1 Future sensitivity with increased statistics
In this section, we discuss the future sensitivity of the joint beam and atmospheric neutrino
analysis assuming the data set that is expected to be collected by 2027, before starting
the data taking of the Hyper-Kamiokande (HK) detector, which is a successor of SK [176].
In addition, we study the impact of the inclusion of SK I-III periods which was not used
in this analysis.

9.1.1 Differences between the SK I-III phase and later phases

In the main analysis, we have used the SK atmospheric data taken during the SK IV
phase and T2K Run 1-10 data which corresponds to the SK IV and later phases. It is
valuable to add the SK atmospheric data taken during SK I-III as well to increase the
statistics. However, as summarized in Table 9.1, SK was operated under very different
conditions during the SK I-III periods compared to the SK IV and later. To summarize,
the main differences are the following:

1. Photo coverage is roughly half (19%) during SK II compared to the other periods
(40%) due to a PMT implosion accident that happened in 2001

2. An old electronics Analog Timing Module (ATM) [177] was used in SK I-III while
QBEE (Section 3.2.1.4) was used in SK IV and later

3. An old reconstruction algorithm APFit [178] was used in SK I-III while fiTQun
(Section 3.2.1.5) was used for SK IV and later.

In addition, in 2020, Gd was resolved into the water to obtain better neutron tagging
efficiencies. The SK VI phase was operated with 0.01% mass concentration of the Gd and
the current SK VII is operated with 0.03% concentration.

Due to these differences, it could be difficult to perform the joint analysis using the
data taken during these periods. In the following future sensitivity study, therefore, we
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study two possible scenarios with and without using the SK I-III data for the atmospheric
samples.

Table 9.1. Summary of the SK data-taking phases and properties.

Phase Dates
Livetime
[days]

Photo-
coverage

Electronics Reconstruction Composition

SK I 1996-2001 1489.19 40% ATM APFit H2O

SK II 2002-2005 798.59 19% ATM APFit H2O

SK III 2006-2008 518.08 40% ATM APFit H2O

SK IV 2008-2018 3244.4 40% QBEE APFit/fiTQun H2O

SK V 2019-2020 461.02 40% QBEE APFit/fiTQun H2O

SK VI 2020-2022 583.3 40% QBEE APFit/fiTQun H2O + Gd (0.01%)
SK VII 2022- - 40% QBEE APFit/fiTQun H2O + Gd (0.03%)

9.1.2 Future sensitivity

The future sensitivity study is performed simply by scaling the MC data set to the es-
timated amount of data. Therefore, we do not consider any additional modifications in
our analysis. In reality, we dissolve gadolinium in water from the SK VI phase and it
will enhance our ability to tag the neutron events. T2K has also developed an addi-
tional multi-ring µ-like sample to increase the statistics, but these improvements are not
included in the following study.

The assumed data sets for the SK atmospheric and T2K accelerator neutrinos until
2026 are summarized in Tables 9.2 and 9.3. For the SK atmospheric samples, we assume
the 365 days of livetime per year with 90% efficiency 365 × 0.9 = 328.5 for the coming
years. For T2K, we assume that we will obtain an equal amount of FHC and RHC data
set by the end of 2026, which end up in 9.7× 1021 POT in total.

Table 9.2. Assumed SK atmospheric neutrino data set for the future sensitivity study.
JFY denotes the Japanese fiscal year.

SK I-III IV V-VI Future
Total

Year 1996-2008 2008-2018 2019-2022 JFY2023-2024 JFY2025-2026

Livetime (day) 2,805.86 3244.4 1044.32 657.0 657.0 8408.58

The results of the sensitivity study are shown in Fig. 9.1 including the SK I-III data and
in Fig. 9.2 without including the SK I-III data. The results show the gradually improved
constraints on the oscillation parameters year by year. Based on the fixed-∆χ2 method,
it shows a sensitivity to exclude CP conserving values of δcp (δcp = 0, π) at a significance
between 2-3σ. The sensitivities for the mass ordering Bayes factor are summarized in
Table 9.4. It shows that we expect to achieve a 2σ level of significance in the normal
ordering preference within a few years in both with and without SK I-III scenarios.
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Table 9.3. Assumed T2K accelerator neutrino data set for the future sensitivity study.
JFY denotes the Japanese fiscal year.

T2K Run 1-10 Run 11 Future
Total

Year 2009-2020 2021 JFY2023-2024 JF2025-Y2026

FHC (/1020 POT) 19.664 1.764 9.959 17.00 48.387

RHC (/1020 POT) 16.346 0 15.041 17.00 48.387

Total (/1020 POT) 36.01 1.764 25.0 34.00 96.774
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Figure 9.1. Future sensitivity with estimated data until 2026.
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Figure 9.2. Future sensitivity with estimated data until 2026. The SK I-III phases are
excluded from the estimation.

Table 9.4. Expected Bayes factor for normal ordering over inverted ordering.

Data set MO Bayes factor Significance

SK IV + T2K Run 1-10 8.85± 0.35 1.64σ

SK I-V + T2K Run1-11 19.48± 1.94 1.97σ

JFY2024 47.63± 8.13 2.32σ

JFY2026 68.47± 13.10 2.45σ

Data set MO Bayes factor Significance

SK IV + T2K Run 1-10 8.85± 0.35 1.64σ

SK IV-V + T2K Run1-11 10.11± 0.31 1.70σ

JFY2024 (w/o SK I-III) 19.97± 6.01 1.98σ

JFY2026 (w/o SK I-III) 39.56± 4.27 2.25σ
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9.2 Future prospects
Possible updates for future joint analysis The future sensitivity study presented in
Section 9.1 was done by simply scaling the statistic of the data, but there are some possible
updates for future joint analysis. For the SK-VI and the following SK data-taking phases,
gadolinium is dissolved into water. This will improve the neutron tagging efficiency from
≃ 20% (pure water) to ≃ 50% (0.01% concentration) and to ≃ 75% (0.03% concentration),
which results in a better separation of the neutrino and antineutrino events and a better
resolution of the reconstructed neutrino energy. Therefore, the sensitivity to δcp and mass
ordering is expected to be improved.

In the joint analysis framework used in this thesis, the systematic uncertainties of the
neutrino fluxes are treated as uncorrelated due to the different origins of the SK atmo-
spheric neutrinos and the T2K accelerator neutrinos. However, the hadron interaction
processes between protons (primary cosmic ray protons or accelerator protons) and target
nuclei and the propagation of the secondary hadrons can be regarded as common to some
extent between SK and T2K. Although we apply the T2K near detector constraints only
to the cross-section systematic uncertainties for the atmospheric samples in this analysis,
it will be possible to also apply the constraints to the flux uncertainties if we can correlate
the flux modeling in future analysis.

Upgrades of the T2K beamline and near detectors T2K is currently undergoing
upgrades of the accelerators and the neutrino beamline [179], and the near detectors [180].
With the upgrade of the beamline, the beam power will be increased from 500 kW to
1.3 MW, which will help us to obtain more statistics in future analysis. The upgraded
ND280 is expected to reduce the neutrino interaction uncertainties through the precise
measurements of outcoming hadron kinematics and improve the sensitivities to the os-
cillation parameters [181]. The upgrade of ND280 may also improve the capability of νe
cross-section measurements using the intrinsic νe components in the neutrino beam [182],
which is particularly important for improving the δcp constraints.

Hyper-Kamiokande Hyper-Kamiokande (HK) is a 258 kton water Cherenkov detec-
tor [176]. It is being constructed and is expected to start data-taking in 2027. The HK
project includes both the atmospheric and long-baseline accelerator neutrino analyses, so
the joint analysis framework developed in this study will be vital for future HK analysis.
The latest study by the HK Collaboration shows that we expect to achieve a 5σ-level sig-
nificance of sin δcp = 0 exclusion with 10 years of data taking at HK as shown in Fig. 9.3.
The mass ordering determination at > 3.8σ confidence level can also be achieved when a
combined analysis of 10 years of atmospheric and accelerator neutrinos is performed.
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The figure is made by the Hyper-Kamiokande collaboration.



Chapter 10

Conclusions

This thesis presented the first data fit results of the joint oscillation analysis between the
SK atmospheric neutrinos and T2K accelerator neutrinos. The SK atmospheric neutrino
analysis and the T2K accelerator neutrino analysis have complementary sensitivities to
the open questions in neutrino oscillation physics: CP symmetry in the lepton sector,
neutrino mass ordering, and the octant of θ23. In this analysis, we established a method
to analyze the atmospheric neutrinos and accelerator neutrinos in a single framework by
correctly taking into account the correlations of systematic uncertainties.

The Bayesian analysis results showed improvements in the constraints of the CP-
related parameters and mass ordering determination compared to the individual exper-
iments. The CP-conserving values of δcp (δcp = 0, π) are excluded at 2σ under the flat
prior in δcp and at 1.5σ under the flat prior in sin δcp. The CP-conserving value of the
Jarlskog invariant (Jcp = 0) is excluded at 2σ under both priors. The Jarlskog invariant
is a parameterization-independent measure of CP violation, and it is the first time in the
world that we consistently exclude the CP-conserving value of Jcp from the 2σ credible
intervals.

The Bayes factor for the normal ordering over inverted ordering is computed to be
8.98 ± 0.06 under the flat δcp prior, which corresponds to the significance level of 1.64σ.
It suggests a moderate preference for normal ordering, but it is not enough to claim a dis-
covery. The preference for both octants was found to be almost equal as the atmospheric
and accelerator neutrino samples show opposite preferences for the octant.

A variety of detailed discussions have been presented in Chapter 8 to understand the
systematic uncertainty constraints and contribution of each sample. All these discussions
will be valuable inputs for future analysis. Finally, the future sensitivity study in Chap-
ter 9 showed that we expect to achieve better constraints in the CP phase and stronger
rejection of inverted ordering after a few years of data taking.
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Appendix A

Details of the detector systematic
uncertainties

This appendix presents the details of the detector systematic uncertainties that have not
been described in Section 4.4.

A.1 SK atmospheric detector systematic uncertainties
The SK atmospheric detector systematics are parametrized with 27 parameters that cor-
respond to the event normalization effect at each step of the selection, as described in
the appendix of Ref. [52]. The sizes of some detector systematic uncertainties are defined
separately for the events within 50 < dwall < 200 cm and events in dwall > 200 cm to take
into account the relatively larger uncertainties for the events with the vertex near the
wall. Detailed descriptions of these systematic uncertainties may be found in [78, 79], but
an overview is given in the following. The full list of the atmospheric detector systematic
uncertainty parameters is given in Table 4.3.

Data reduction and sample separation The first step of the selection, which clas-
sifies the observed events into FC, PC, and UpMu categories depending on the observed
inner and outer detector hits, is called “data reduction”. The uncertainties of these re-
duction processes are estimated from the data/MC comparison and are applied as a 1.3%
(1.0%) normalization error fully correlated among all the FC (PC) samples. For UpMu
samples, fully correlated normalization uncertainties of 0.5% and 0.3% are applied to the
stopping and through-going samples, respectively. In addition, a small fraction of FC
or PC events could be wrongly classified into the other sample, so an additional FC/PC
sample separation uncertainty is included as a 0.02% uncertainty fully anticorrelated be-
tween FC single-ring multi-GeV µ-like events and the corresponding PC events. The PC
samples have additional uncertainties on the separation of stopping and through-going
events. They are implemented as three anticorrelated normalization uncertainties for the
stopping/through-going events depending on the position of the hits in the outer detector
(top, bottom, and barrel).
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UpMu specific There are some additional uncertainties for the UpMu samples. For the
separations of the stopping/through-going events and showering/non-showering events,
fully anticorrelated normalization uncertainties are applied. Two additional normaliza-
tion uncertainties are applied to the UpMu stopping and through-going events due to
the energy selection cut and path-length cut. Finally, the uncertainties on the cosmic
muon background in the UpMu samples are included. These backgrounds come from the
up-scattering of cosmic ray muons and cannot be reduced in the selection. Therefore,
the estimated number of background events must be subtracted from the data when we
perform the data fit. This subtraction is only applied to the bins near the horizontal di-
rection (−0.2 < cosΘz < 0). The uncertainty on the estimated number of backgrounds is
used as the 1σ of normalization uncertainty of these samples. More details on the UpMu
sample background subtraction may be found in Ref. [183].

Fiducial volume and decay electron cut The fiducial volume definition is also re-
garded as a source of uncertainty. The FC and PC events can be wrongly reconstructed
inside or outside the fiducial volume due to the resolution of the vertex reconstruction.
This uncertainty is defined as a 2% normalization uncertainty fully correlated between
the FC and PC samples. It is not applied to the UpMu samples as the vertex fiducial
volume cut is not applied to these samples. The uncertainty on the decay electron tagging
is estimated by comparing the number of tagged Michel electrons in the cosmic ray muon
data and MC.

Reconstruction No control sample can cover the same energies and event topologies as
the atmospheric samples, and therefore, we use the atmospheric neutrino data to evaluate
the systematic uncertainties for the PID, the number of rings (ring separation), and the
likelihood-based two-stage multi-GeV multi-ring e-like sample separation (MME). For
each step of the selection, we construct the signal and background likelihood distributions
based on the MC and apply a shift and scaling to obtain the modified likelihood as

LMC
mod = (β1

sigLMC
sig + β0

sig)⊕ (β1
bkgLMC

bkg + β0
bkg), (A.1)

where βi denotes the shifting and scaling parameters. The signal and background samples
are selected for each likelihood. For example, e-like and µ-like samples are used as the
signal and background for the PID likelihood. Then, we fit this modified MC likelihood to
the data likelihood and obtain the errors for the four βi parameters. Using the obtained
errors, we vary the likelihood assuming the Gaussian fluctuation of each βi around their
best-fit values, and compute the fluctuation of the event rate in each sample. The size of
the fluctuation is then used as the normalization errors from these systematic uncertainty
sources. These systematic uncertainties therefore have correlations or anticorrelations
among samples as shown in Table 4.3.

The uncertainty on the two-ring π0 selection is estimated by applying the ring-counting
error and the PID error to both rings. The method described above is used to estimate
the uncertainties on each ring, and the final uncertainty on this selection is estimated to
be 1.03%.
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Non-neutrino background There are uncertainties on the two non-neutrino back-
ground sources. One is the cosmic ray muon background where cosmic muons can reach
the detector before decaying or stopping on the way. A normalization uncertainty is ap-
plied to the FC and PC samples. We also have an additional cosmic muon subtraction
step for the events with the vertex close to the inner detector wall (50 < dwall < 200) to
remove the larger cosmic ray background found in the multi-GeV µ-like samples. An addi-
tional uncertainty on this cosmic muon subtraction step is included on top of the overall
cosmic muon background normalization. The other non-neutrino background source is
the PMT flasher background. The PMTs can sometimes produce flashes of light which
mimics the low-energy neutrino events. A normalization uncertainty is included for this
flasher background.

Energy calibration In addition to the systematic uncertainties that affect the event
rate normalizations, there are also systematic uncertainties in the energy calibration.
The uncertainty of the absolute energy scale is estimated using several control samples
as shown in Fig. A.1. Although it has some variations in different energy regions, the
total systematic error is computed to be 2.17% from the quadrature sum of the largest
MC/data difference and the average of the momentum. The size of the uncertainty is
the same for all the samples independent of the event topology and energy. There is one
additional energy-scale uncertainty due to the up/down asymmetry of the detector light
transmission, which is only applied to the FC and PC samples.

PTEP 2019, 053F01 M. Jiang et al.

Fig. 18. Absolute energy scale error measurement for SK-IV with fiTQun and the expanded FV (dwall >

50 cm). Vertical error bars denote the statistical uncertainty and horizontal error bars shows the momentum
range spanned by each control sample.

Expanding the FV opens the possibility that events interacting within the ID but close to its
wall may produce particles that escape into the OD. Poor modeling of the response of the OD can
thereby potentially introduce biases and relative inefficiencies in the FC sample. Figure 15 shows
the distribution of OD hits used to define the FC sample after the reduction processes for data with
dwall > 50 cm. The detection inefficiency due to the cut on OD hits for both data and MC are
confirmed to be consistent, around 0.2%. Based on this result in conjunction with the stability of the
reconstruction algorithm, its systematic errors, and sample purities across the detector, the fiducial
volume definition is expanded from its conventional value to dwall > 50 cm (expanded FV) in the
analysis presented below.

Zenith angle distributions for each analysis sample using the expanded FV are shown in Fig. 16.
Their event rates since the start of SK-IV have been stable at 8.3 (2.2) FC events per day in the
conventional FV (new region), 0.73 PC events per day, and 1.49 Up-µ events per day, as shown in
Fig. 17.

7. Systematic error
While systematic errors related to the atmospheric neutrino flux and cross section model are the
same as those used in Ref. [6], systematic errors on the event selection have been updated for FC
events using the expanded fiducial volume outlined above. Since fiTQun is not used to reconstruct
PC or Up-µ events in the present work, the errors for those samples are the same as in the previous
publications.

The uncertainty on the absolute energy scale is estimated by comparison of data and MC across
three calibration samples spanning momenta up to 10 GeV/c: electrons from cosmic ray muon decay,
atmospheric neutrino events producing single π0s from neutral current interactions, and stopping
cosmic ray muons. The difference between data and MC for the calibration samples reconstructed
within the expanded FV is shown in Fig. 18. The calculation of the total systematic error follows that
of Ref. [6] and is the sum in quadrature of the absolute energy scale error, which is defined as the
largest data–MC difference across all samples, and momenta with the average of the time variation
of these samples throughout SK-IV. The uncertainty from the up/down asymmetry of the detector is
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Figure A.1. Uncertainty on the energy scale estimated from the comparison of data and
MC in the three calibration samples: cosmic muon decay, atmospheric neutrino NCπ0

events, and stopping cosmic ray muons. The vertical error bars show the statistical
uncertainty and the horizontal error bars show the momentum range covered by each
control sample. The figure is taken from [36].
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A.2 T2K detector systematic uncertainties
In the main analysis, we evaluated the T2K detector systematic uncertainties by taking
into account the correlations with the atmospheric detector systematic uncertainties. The
details of the uncorrelated detector systematic uncertainty can be found in [80], but
briefly reviewed in the following. The detector systematics are implemented as the event
rate normalization in each bin defined in Table 4.4. The size of uncorrelated detector
systematic uncertainties is estimated using the atmospheric control samples, cosmic ray
muon events, and the so-called hybrid π0 sample as summarized in Table A.1.

Table A.1. Summary of the T2K detector systematic uncertainties with the values and
evaluation method. The 1σ uncertainties are given as a fraction of the nominal value,
except for the spurious decaye tagging rate. See the text for the details of the PID and
ring-counting systematic uncertainties.

Source Nominal value 1σ Sample

Decay-e tagging efficiency 90% 1.0% Cosmic ray muon
Spurious decay-e tagging rate 0.0001/event 0.002/event Cosmic ray muon
µ→ e misidentification 3.0% 30% Cosmic ray muon
Fiducial volume acceptance 100% 0.3-0.4% Cosmic ray muon
NCπ0 reduction factor 41.3 26% Hybrid π0

PID and ring counting Atmospheric neutrino

Atmospheric control sample A fit to the atmospheric FC sub-GeV samples is used
to obtain the systematic uncertainties related to the PID (e/µ, e/π0, µ/π+) and ring
counting likelihood cuts. We first classify the MC events into six groups based on the
true event topologies: a single e, a single µ, a single e with other particles, a single µ with
other particles, a single π0, and a single p or π+. Then, the likelihood distributions (Le/µ,
Le/π0 , Lµ/π+ , Lsingle/multi) are constructed for each group. In the fit to the atmospheric
data, similarly to the atmospheric detector systematic uncertainty evaluation, these four
likelihoods are linearly transformed using the scaling (β1) and shifting (β0) parameters as

L′
i = β1

i Li + β0
i i ∈ [e/µ, e/π0, µ/π+, single/multi]. (A.2)

A fit to the atmospheric data is then performed for each number of decay electrons
(n = 0, 1, 2+). The fit is performed using the Markov-Chain Monte Carlo method where a
simplified flux and cross-section parameterization is used compared to the full atmospheric
analysis. The obtained constraints on the scaling and shifting parameters (βj

i ) are then
applied to the T2K beam MC events and translated into a covariance matrix taking into
account the correlations among βj

i .

Cosmic ray muons The cosmic muon events stopped inside the inner detector are used
to evaluate the uncertainties on the decay electron tagging efficiencies and the fiducial vol-
ume cut. The uncertainty on the Michel electron efficiency is estimated by comparing the
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number of decay electrons between the stopping cosmic muon data and MC. With a cor-
rection to obtain the T2K beam muon momentum and vertex distributions, uncertainties
are estimated to be 1% for the decay electron tagging and 0.002/event for the spurious
decay electron tagging rate (i.e. fake decay electrons due to the coincident signal). The
rate of muon misidentification as an electron is also estimated from the cosmic muon to
be 30% (of the nominal misidentification rate of 3%), though the contamination of νµ CC
events is smaller than 1% (2%) for the 1Re (1Re 1de) sample. An overall uncertainty due
to the fiducial volume, which is dominated by the resolution of the reconstructed vertex,
is also estimated from the data/MC comparison in the cosmic ray muon sample.

Hybrid π0 sample To estimate the uncertainty on the π0 background, a so-called
“hybrid sample” is used, where a single e-like event from the atmospheric data or MC
is superimposed with an MC gamma ring so that the composite event kinematics mimic
the π0 event. The T2K 1Re event selection is applied to these hybrid samples, and the
π0 background uncertainty is estimated by comparing the (atmospheric MC 1Re + MC
gamma) and (atmospheric data 1Re + MC gamma) results.

Other For a few background components that are difficult to estimate the uncertainties,
conservative values are assumed. These additional background uncertainty sources include
the νµ and NC backgrounds in the e-like samples and νeCC background in the µ-like
samples.

All the sources of the uncertainties described above are combined and summarized
as a covariance matrix which represents the event rate normalization for binned energy
(momentum) ranges. The binning is defined differently for each combination of the recon-
structed samples and true event topologies as summarized in Table 4.4. To construct this
covariance matrix, we make one million T2K beam pseudo data sets (MC) and randomly
throw the parameters corresponding to each systematic source in each pseudo data set.
Then, the selection is applied to these pseudo data sets to get the fluctuations in the event
rates.



Appendix B

Prior choice for the CP phase in the
Bayesian analysis

The Bayesian analysis depends on the choice of the prior by definition. Since the con-
servation (or violation) of CP symmetry is one of the most important questions we seek
to answer in this analysis, we should be careful about our prior choices. In the context
of the Bayesian analysis, the prior distribution for a certain parameter represents our
prior knowledge (belief) of that parameter. In case we have no prior knowledge of the
parameter or do not want to apply any arbitrary assumptions in advance, it is natural to
choose the so-called non-informative priors1. There are a few choices of non-informative
priors. A uniform probability distribution is the simplest choice where we assume that
the prior π(θ) for the parameter θ is flat over the allowed parameter space:

π(θ) = const. (B.1)

However, this prior has a potential problem in that it is not robust against different
parameterizations. For example, flat prior in θ is not flat in sin θ anymore.

One alternative approach is to use Jeffreys’ prior [184]:

π(θ) ∝
√

det I(θ), (B.2)

where I(θ) is the Fisher information matrix. For example, Jeffreys’ prior for the mean µ

of the Gaussian distribution f(x|µ, σ) = 1√
2πσ

exp

(
−1

2

(x− µ)2

σ2

)
can be calculated as

π(µ) ∝
√
I(µ) =

√√√√E

[(
x− µ

σ

)2
]
= 1/σ ∝ const., (B.3)

which is constant for µ. Similarly, Jeffrey’s prior for the Poisson distribution f(n|λ) =

1The statistical methods frequently used in the particle physics field are reviewed in Ref. [17]. The
different choices of the non-informative priors in the Bayesian analysis are also described.
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e−λλn

n!
can be calculated as

π(λ) ∝
√
I(λ) =

√√√√E

[(
n− λ

λ

)2
]
= 1/

√
λ. (B.4)

The uniform prior for sin δcp ∈ [−1, 1] is adopted as an approximation of the Jeffreys’
prior for δcp. According to Ref. [185], the neutrino oscillation probability can be written
in the form of

P (νµ → νe) = A cos δcp +B sin δcp + C. (B.5)

At the combination of the T2K neutrino energy and baseline, the δcp-independent term C
has the dominant contribution and the sin δcp term has only a sub-leading contribution as
shown in Fig. B.1. The likelihood is defined as the Poisson distribution of the predicted
number of events λ, and λ is proportional to the oscillation probability. Therefore, the
Jeffreys’ prior can be written as

π(λ) ∝ 1√
λ
≈ 1√

B sin δcp + C
≈ 1√

C
+O(sin δcp), (B.6)

which is approximately flat in sin δcp. We should however note that this flat sin δcp prior is
just a rough approximation to see the impact of an alternate prior choice to our analysis,
and we do not aim to represent a complete Jeffreys’ prior with it.
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Figure B.1. νµ → νe appearance oscillation probability broken down by the δcp contri-
butions shown in Eq. (B.5). The oscillation parameter set A defined in Table 5.3 is used
and the baseline of L = 295 km is assumed.



Appendix C

Configuration and validation of MCMC

This appendix presents the technical details of the MCMC method.

C.1 Overview
When using the MCMC method, one needs a long chain with many MCMC steps to
reduce the statistical fluctuation due to a finite step size. In addition, one should monitor
the obtained MCMC chains and confirm the following [186]

1. The chains have converged around the highest probability region(s) in the parameter
space.

2. The steps can move between the highest probability regions.

The first requirement is expressed as that the chain has achieved stationarity or has
converged. If the chain has not converged, it is not guaranteed that the obtained steps
represent the posterior probability distributions we want. In that case, the obtained
distribution would depend on the initial step and it returns different results depending
on when we stop the chain. The second condition is known as the mixing of the steps.
When we have several highest posterior probability regions in the parameter space and
the transitions between them are suppressed due to lower probabilities at the valley, the
steps would get stacked at one of these regions. This should also be avoided because the
results would depend on the choice of the first step. In Section C.3, some metrics for
monitoring these conditions are introduced and evaluated for our data fit MCMC chains.

In addition, since we adopted a multicanonical method in this analysis as discussed
in Section 5.3.3, we should tune the parameter β. In Section C.4, autocorrelations of the
MCMC chains with different values of β are computed and used to determine the value
of β used in the analysis.

It is important to estimate the errors in the inferences obtained from the MCMC
method. The MCMC statistical errors corrected with the integrated autocorrelation time
(IAT) are discussed in Section C.5.

Finally, the implementation of the mass ordering in the MCMC method is discussed
in Section C.6.

202



C.2. Configuration of MCMC 203

C.2 Configuration of MCMC
When utilizing the MCMC method in our Bayesian analysis, we run some short pilot
chains before actually running the longer data fit chains. The results of these pilot chains
are used to monitor the convergence of the MCMC chains and determine the value of
multicanonical β to be used in the main chains. The configurations of these chains are
summarized in Table C.1.

Although we run the main chains with both β = 1.0 and 0.5, only the results with
β = 0.5 are used for obtaining the credible intervals. The chains with β = 1.0 are only
used for the goodness of fit study and CP conservation test as described in Section 7.3.5
and Section 8.6.

Table C.1. Configurations of MCMC chains used for the pilot run and data fit.

Configuration Pilot chain Main chain

Multicanonical dimension 2D (sin2 θ23,δcp)
Multicanonical β 0.0, 0.5, 1.0 0.5, 1.0
Step size 0.09 0.09
Number of chains 10 1000
Number of steps/chain 1,100,000 210,000
Number of burn-in steps 100,000 10,000
Total number of steps 10 million 200 million

C.3 Convergence diagnostics
To test the convergence of the MCMC chains, we use two metrics known as Geweke’s Z
statistic [187] and Gelman-Rubin’s R̂ statistic [188]. As described in Section C.1, there are
two conditions to be satisfied when we use the MCMC results: stationarity (convergence)
and mixing.

Geweke’s Z statistic is used to test the convergence to a stationary distribution within
one chain by comparing the distributions at the beginning of the chain and the end of
the chain. Let us denote the MCMC steps as xi for i = 1, · · · , n. To compute Geweke’s
statistic, we extract the steps within two windows from each chain where one contains
the first 10% steps (n1 = n/10) after removing burn-in and the other contains the last
50% steps (n2 = n/2). Then Geweke’s Z statistic for a statistic g is defined as

Z =
gn1 − gn2√

Sg(0)/n1 + Sg(0)/n2

, (C.1)

where

gn1 =
1

n1

n1∑

i=1

g(xi), gn2 =
1

n2

n∑

i=n−n2+1

g(xi), (C.2)
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and Sg(ω) is the spectral density of function g. If the chain is converged, the asymptotic
limit of the statistic Z follows the standard normal distribution Z ∼ N (0, 1).

We calculate the p-value from Z for all the parameters to test whether they are con-
verged or not. We use the criterion of α = 0.05 with the Holm-Bonferroni correction
described in Section 7.3.5. Since this criterion is very conservative in this case due to a
large number of parameters (= 228), we also check the trace plots for oscillation param-
eters and some systematic parameters that show a worse p-value.

Gelman-Rubin’s diagnostic is used to test the mixing of the MCMC chains. We run
several independent chains with different initial steps and see whether these MCMC chains
converged to the same stationary distribution. We compute the statistic R̂ for each
parameter from m independent chains with n steps as

R̂ =
V̂

W

df

df − 2
, (C.3)

where V̂ , W , and df are defined as

V̂ =
n− 1

n
W +

m+ 1

mn
B (C.4)

B =
n

m− 1

m∑

i=1

(x̄i. − x̄..)
2, x̄i. =

1

n

n∑

j=1

xij, x̄.. =
1

m

m∑

i=1

x̄i. (C.5)

W =
1

m

m∑

i=1

s2i , s2i =
1

n− 1

n∑

j=1

(xij − x̄i.)
2 (C.6)

df =
2V̂ 2

V̂ar[V̂ ]
(C.7)

V̂ar[V̂ ] =

(
n− 1

n

)2
1

m

1

m− 1

m∑

i=1

(s2i −W )2 +

(
m+ 1

mn

)2
2B2

m− 1

+
2(m+ 1)(n− 1)

mn2

n

m

[
1

m− 1

m∑

i=1

(s2i −W )(x̄2i. − x̄2. )

− 2x̄..
m− 1

m∑

i=1

(s2i −W )(x̄i. − x̄..)

]
, x̄2. =

1

m

m∑

i=1

x̄2i. (C.8)

Here, the index i runs over m chains (i = 1, · · · ,m) and j runs over n steps in each chain
(j = 1, · · · , n). x̄i. is the mean in chain i, x̄.. is the inter-chain mean, and s2i is the variance
in chain i. The chains are regarded as well-mixed if |

√
R̂− 1| < 0.01 is satisfied.

Both Geweke’s diagnostic and Gelman-Rubin’s diagnostic are computed using the 10
pilot chains with 1 million steps after removing the first 100,000 steps as burn-in. The
results are shown in Fig. C.1. For Geweke’s diagnostic, all the parameters passed the
Holm-Bonferroni p-value test. Gelman and Rubin’s diagnostic also satisfies the criterion
for all the parameters.

The trace plots of the oscillation parameters are shown in Fig. C.2. It shows good
mixing and stationarity in all the parameters and no weird behavior is observed in the
trace plots. Based on these results, we conclude that our MCMC chains achieved good
convergence and can be used for the analysis.
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Figure C.1. Distribution of Geweke’s Z diagnostics (left) and Gelman and Rubin’s
√
R̂

statistic (right). Both diagnostics are computed for all the oscillation and systematic
parameters.
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Figure C.2. Trace plot of oscillation parameters. All the pilot chains are concatenated
into one trace plot after removing the burn-in period.

C.4 Autocorrelation
In the Monte Carlo method, we always have statistical errors due to a finite size of throws
or steps. The MCMC steps have correlations with the consecutive steps since the update
process depends on the previous step by definition. It means that an effective number
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of steps is much less than the obtained number of steps. The correlation between the
consecutive steps in the MCMC chains is called the autocorrelation.

Let us treat the MCMC steps x(t) as a function of time t. The autocorrelation function
at lag t, which is the correlation between the step x(t′) and x(t′ + t), is defined as

χ(t) =

∫
[x(t′)− E[x]] [x(t′ + t)− E[x]] dt′ (C.9)

=

∫ [
x(t′)x(t′ + t)− (E[x])2

]
dt′, (C.10)

where E[·] denotes the expectation. In general, the autocorrelation is expected to fall off
exponentially as a function of lag t [189]

χ(t) ≈ χ(0)e−t/τ . (C.11)

The time constant τ , which is known as the integrated autocorrelation time (IAT), can
be estimated by integrating the autocorrelation divided by the value of autocorrelation
at t = 0:

∫ ∞

0

χ(t)

χ(0)
dt ≈

∫ ∞

0

e−t/τdt = τ. (C.12)

This can also be denoted as

χ(t) = Cov[x(t′), x(t′ + t)], (C.13)

and therefore,

τ =
χ(t)

χ(0)
=

Cov[x(t′), x(t′ + t)]

Var[x(t′)]
= Cor[x(t′), x(t′ + t)], (C.14)

where Var[·], Cov[·], and Cor[·] denote the variance, covariance, and correlation, respec-
tively.

When we get an autocorrelation of τ in our results, the effective number of steps is
estimated to be neff = n/τ . Therefore, it is important to have a smaller value of τ to
increase the effective number of MCMC steps.

The integrated autocorrelation times for the oscillation and systematic parameters
under different β are shown in Fig. C.3. When we do not use the multicanonical method
(β = 1.0), the autocorrelation of sin2 θ23 is roughly ∼ 10 times longer than the other
oscillation parameters. This is due to the bimodality of sin2 θ23 posterior distribution
and the suppressed transition probabilities between the upper and lower octant. This
issue, however, disappears when we use the multicanonical method with 2D posterior
prediction fpred.(δcp, sin2 θ23,MO), which mitigates the suppression of the octant transition
probability. The option β = 0.0 is an extreme example and it enforces the MCMC steps
to explore a very low probability region, which makes the IAT longer than the β = 0.5
case. Therefore we do not use β = 0.0 in our main results.

A similar tendency is seen in the systematics parameters where the multicanonical
method with β = 0.0 and β = 0.5 give better autocorrelations. Among the systematic
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uncertainty parameters, some cross-section parameters related to DIS have the longest
IAT (τ ≃ 4000 at the longest), but other systematics have IATs shorter than 1500 steps.

Based on these results, we decided to use the multicanonical β = 0.5 in our main
analysis. Since the longest IAT is around ≃ 4000, the main chains give roughly ≃ 50, 000
effective steps when we run 200 million steps.
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Figure C.3. Summary of integrated autocorrelation time of oscillation and systematics
parameters for different values of multicanonical method β. The unit of integrated auto-
correlation time is steps.

C.5 MCMC statistical errors
In this section, we present a method to estimate the MCMC statistical errors in our
results. As described in Section C.4, an effective number of steps is smaller than the
actual number of steps in MCMC. Therefore, we should take into account the integrated
autocorrelation time when estimating the errors in our measurements.

Let us think about the statistic x and its estimator x̂. Since each step is weighted in
the multicanonical method, we will use the weighted mean of x as the estimator x̂:

x̂ :=

∑
iwixi∑
iwi

=
1

n

∑

i

w′
ixi = E[w′x], (C.15)

where we define the normalized weight w′ as

w′
i =

wi

1
n

∑
j wj

. (C.16)

In this case, the estimator x̂ is equivalent to the (unweighted) mean of w′x. The variance
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of this estimator can be computed as

Var [x̂] = E
[
(x̂− E[x̂])2

]
(C.17)

=
1

n2
E

[∑

i

∑

j

(w′
ixi − E[w′x])

(
w′

jxj − E[w′x]
)
]

(C.18)

=
1

n2
E

[∑

i

∞∑

k=−∞
(w′

ixi − E[w′x])
(
w′

i+kxi+k − E[w′x]
)
]

(C.19)

=
1

n
Var[w′x]

∞∑

k=−∞

Cov [w′x,w′
kxk]

Var[w′x]
(C.20)

=
1

n
Var[w′x]× 2τ, (C.21)

where τ is the integrated autocorrelation time defined in Eq. (C.14).
The error in each bin is estimated using this method in the plots shown in Section 7.2.1.

Here we define the statistic x as the (weighted) number of steps that fall in bin b

x̂b ≡
n∑
iwi

n∑

i=1

wiIb[xi] =
n∑

i=1

w′
iIb[xi], (C.22)

where Ib[·] is an indicator function which returns 1 when the parameter x falls in bin b
and returns 0 otherwise. The errors on the mass ordering Bayes factors in Eq. (7.1) are
also estimated using this method.

As a cross-check, we perform a jackknife resampling to estimate the error on the mass
ordering Bayes factor. The jackknife error is defined as

Varjackknife[BF] =
m− 1

m

m∑

i=1

(BFi − BF) (C.23)

BF =
1

M

m∑

i=1

BFi, (C.24)

where BFi is the mass ordering Bayes factor calculated using m − 1 chains by removing
the m-th chain. In this case, we use m = 10 pilot chains for the calculation. The result is
9.27± 0.21 and it is consistent with the error value estimated using the variance with the
integrated autocorrelation time correction (9.24± 0.24). We should note that this is just
for the validation of the method based on the pilot chains, and these values are different
from our main results presented in Section 7.3.4.

C.6 Mass ordering implementation in MCMC
Potential problems of continuous mass ordering implementation In the fitter
we used for the analysis, we implement the atmospheric squared mass difference as the
combination of two parameters: the absolute squared mass difference ∆m2

32/|∆m2
31| and

mass ordering. The neutrino mass ordering is a binary parameter that takes “normal
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ordering” or “inverted ordering”. However, in the MCMC method that we used for the
data fit, it was implemented as a continuous parameter (let us denote as θ) in [0,1],
similarly to the other continuous oscillation and systematics uncertainty parameters. We
use the uniform prior in [0,1] and it was regarded as normal ordering when θ ∈ [0.0, 0.5]
and as inverted ordering when θ ∈ [0.5, 1.0].

There are several potential problems with this implementation. When the random
walk goes away from the boundary (θ = 0.5), it suppresses the flipping probability of
mass ordering. It is not physical that the flipping probability depends on the distance
from the boundary. It could be regarded as an effective mass-ordering flip when the
jump between the two mass-ordering states happens frequently enough. However, another
problem is that we did not have a method to tune the relative step size for the mass
ordering parameter. The mass ordering flipping probability should be tunable to make
sure that the transition happens frequently. Finally, in the previous implementation,
proposals of the parameters were not modified when the mass ordering flips. The absolute
squared mass difference ∆m2

32/|∆m2
31| is known to have different best-fit values in normal

and inverted ordering. Therefore, if we only flip the mass ordering and do not adjust the
value of ∆m2

32/|∆m2
31|, the transition probability would be suppressed.

Updated implementation After finishing the main analysis, we implemented mass
ordering as a binary parameter and added a tunable flipping probability parameter for
normal and inverted ordering.

The integrated autocorrelation time (IAT) of MCMC chains with the updated mass or-
dering implementation for different combinations of flipping probability and multicanoni-
cal β are shown in Fig. C.4. The combination of flipping probability of 0.3 and multicanon-
ical β = 0.2 gives the shortest IAT for these parameters, so we adopt this combination in
the following study.
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Figure C.4. Summary of integrated autocorrelation time of oscillation and systematics
parameters for different values of multicanonical method β and mass ordering flip proba-
bility.

Figure C.5 shows the comparison of posterior distributions with the continuous and
binary mass ordering implementation. Both implementations give very consistent results.

The posterior probabilities for the different combinations of mass ordering and octant
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Figure C.5. Comparison of the posterior distributions with the continuous and binary
implementations of mass ordering.

are shown in Table C.2. It agrees with the continuous implementation results shown in
Table 7.6 within the estimated size of MCMC statistical errors.

In conclusion, the updated binary implementation of mass ordering gave consistent
results with the previous implementation with continuous mass ordering. Therefore, we
will not update our main results and consider this result as just for validation.

Table C.2. Posterior probabilities for different combinations of mass ordering and octant
hypotheses computed with the binary mass ordering implementation. The mass ordering
Bayes factor is shown together.

SK+T2K

Lower octant Upper octant Line total

Normal ordering 0.365 0.535 0.900

Inverted ordering 0.022 0.077 0.100

Column total 0.387 0.613 1.000

MO Bayes factor 9.04± 0.05



Appendix D

Additional material for the robustness
test of the model

This appendix presents the details of the scaled Asimov method and the rest of the model
robustness tests that are not included in Chapter 6.

D.1 Scaled Asimov method
A possible problem of the fake data study described in Section 6.1 is that the change of
statistics in the fake data set could lead to a change of the constraint on the oscillation
parameters, even in the absence of problems in the model itself. Therefore, we introduce
a method called “scaled Asimov” where we apply the same scaling to the model prediction
as the one we apply to the MC when constructing the fake data set.

In this oscillation analysis, the predicted number of events λi at a certain reconstructed
bin i is expressed as follows:

λi =
s

N

N∑

k=1

Ii[xk],

Ii[xk] =

{
1 (xk in bin i)

0 (otherwise)

where N is the total number of events in MC, s is the overall scale factor and xk denotes
any reconstructed variables of event k by which events are binned. In the generation of
the fake data sets, the predicted number of events is modified with event-by-event weights:

λFDS
i =

s

N

N∑

k=1

Ii[xk]× wFDS
k .

During the fit, we use a parameterized model:

λi(θ) = λi ×
∏

p

fi,p(θp),

211
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where the number of events in each bin is scaled by the product of the oscillation probabili-
ties and the response functions of systematic uncertainty parameters (collectively denoted
as f(θ)).

For the nominal Asimov fit, we fit the data set λi with our nominal model λi(θ), while
for fake data fit, the data set λi is replaced with the fake data set λFDS

i . For the scaled
Asimov fit, we also use the fake data set λFDS

i but fit it with the scaled model defined as:

λscaledi (θ) = λFDS
i ×

∏

p

fi,p(θp).

The inputs used in the normal Asimov and scaled Asimov fits are summarized in
Table D.1.

Table D.1. Inputs used in the different types of fits done for fake data study. The fit
model used at the T2K ND is always the nominal model with a nominal central value.

SK data set generation ND data set generation SK fit model

Nominal fit Nominal Asimov Nominal Asimov Nominal

Fake data fit Fake data Fake data Nominal

Scaled Asimov fit Fake data Nominal Asimov Rescaled to fake data

Although the scaled Asimov method can reduce the effect of statistical change between
the nominal Asimov and fake data set, it could also absorb the effects coming from the
alternate models. To avoid this issue, we apply the scaled Asimov method only when
the SK event spectra are well covered by the predictions from the ND fake data fit. For
the determination of whether to use the scaled Asimov method or not, we first construct
the fake data spectra and the ND-predicted error bands by varying the flux and ND-
constrained cross-section parameters according to the Gaussian approximation. Then, we
compute χ2 for each sample as

χ2 =

nbin∑

i=1

(
nFDS
i − nND

i

σND
i

)2

,

where nND
i and σND

i are the mean and standard deviation of the error band at bin i,
respectively. We use the scaled Asimov method when all the beam and sub-GeV atmo-
spheric samples satisfy χ2/ndf < 1 where ndf denotes the number of degrees of freedom
(i.e. the number of bins in the sample nbin). For the beam µ-like samples, we only use the
bins below Erec < 3 GeV to avoid statistical fluctuation in the higher energy bins where
we have much fewer events. Regarding the binning, the Erec projection is used for the
beam samples and the momentum projection is used for the atmospheric samples when
they have momentum binning, otherwise, cosΘz is used. This is because some fake data
sets are produced by reweighting the MC as a function of the energy/momentum, and
the Erec/p binning can capture the difference between the fake data set and prediction
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better than the angular binning. We should note that the error bands for the atmospheric
sub-GeV samples are dominated by the flux systematics which is not constrained by the
near detector fit. Therefore, we tend to overestimate the agreement of fake data sets and
near detector predictions for the atmospheric samples with the definition described above.
A more proper criterion will be investigated for future analysis.

In Section 6.3, the event spectra and the error bands of these predictions for the T2K
and SK atmospheric sub-GeV samples are shown for each fake data set and used to decide
whether we can use the scaled Asimov method or not. When we decide to use the scaled
Asimov method for a certain fake data study, the metrics introduced in Section 6.1.3 are
constructed by comparing the fake data fit results to the scaled Asimov fit results instead
of the nominal Asimov fit results. The choice of whether to use the scaled Asimov or not
for each fake data study is shown in the summary tables such as Table 6.8.

D.2 Alternative models
The list of robustness tests is summarized in Table D.2.

Table D.2. Summary of robustness test studied in the joint SK + T2K analysis.

Alternative model name Model component Description Results

CRPA Nuclear model Section 6.2.1 Section 6.3.1
LFG Nuclear model Section D.2.1 Section D.3
Removal energy Nuclear model Section D.2.2 Section D.3
Axial form factors CCQE Section D.2.3 Section D.3
Martini 2p2h 2p2h Section D.2.4 Section D.3
Pion multiplicity CCnπ Section D.2.5 Section D.3
Energy-dependent σνe/σνµ σνe/σνµ Section D.2.6 Section D.3

Atmospheric CC1π CC1π Section 6.2.2 Section 6.3.2
ND Non-QE CC0π CC0π Section D.2.7 Section D.3
ND CC1π CC1π Section D.2.8 Section D.3

ND extrapolation Fit Section 6.2.3 Section 6.3.3
Pion SI bug fix CC1π, CCnπ Section D.2.9 Section D.3

D.2.1 Nuclear Model: LFG

Local Fermi Gas (LFG) model was proposed by Nieves et al. [115, 116] as a natural exten-
sion of the global Relativistic Fermi Gas (RFG) model. As described in Section 4.3.1.2,
the Fermi momentum pF is assumed to be constant in RFG. LFG is based on the local
density approximation, and the Fermi momentum is assumed to be

pF (r) = (3π2ρ(r))1/3, (D.1)

where ρ(r) is a radial nucleon density function that describes the initial state of nucleons
in a nucleus. As already explained in Section 4.3.1.2, LFG is known to overpredict the
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CCQE cross-section at the low-momentum (energy) transfer. Therefore, it is used with
the random phase approximation (RPA). In the following, the LFG+RPA model is simply
referred to as LFG.

In the analysis, we use the spectral function (SF) as our nominal model for the nuclear
model, but both the LFG and SF give a similar level of precision in the cross-section
predictions. From the T2K ND280 cross-section measurements, it was found that LFG
gives the best description of the events without a proton and SF gives the best description
of the events with one or more protons [122]. Therefore, we cannot simply discard one of
the models and want to test the possible biases using the alternative model.

Similarly to the CRPA fake data set generation procedure described in Section 6.2.1,
the input MC at the Pre-ND (Q2 = 1) tuning is reweighted to obtain the event spectra
predicted by LFG. The reweighting factors are obtained separately for different neutrino
types (neutrino and antineutrino), different neutrino flavors (muon and electron), and
different target nucleus species (carbon and oxygen) by taking the ratio of SF and LFG
cross-section predictions. Since we use the Pre-ND (Q2 = 1) tuning for the generation
of this fake data set, we use the nominal Asimov defined at the same Pre-ND (Q2 = 1)
tuning for the reference fit.

D.2.2 Removal energy

In our systematic model, we have four removal energy systematic uncertainty parameters
for each combination of neutrino and antineutrino, and oxygen and carbon. Figure D.1
shows the probability density distribution for SF for oxygen as a function of the removal
energy. In NEUT, the removal energy distribution is treated as the same for protons and
neutrons. However, an alternative model by Bodek et al. [190] predicts different values
of removal energies for protons and neutrons. The agreement for protons is relatively
good, but the predictions for neutrons differ by up to 4 MeV for oxygen and up to 2 MeV
for carbon. Therefore, the parameters for neutrinos (the main targets are neutrons) are
assigned a nominal value of +4(2) MeV for oxygen (carbon), whereas the nominal values
of 0 MeV are assigned to antineutrinos (the main targets are protons) to take into account
these differences. The size of the systematic uncertainty is defined to be ±6 MeV from
the uncertainties in the electron scattering measurements [191, 192] to which the model
is tuned. For the far detector fit, only the two variables for the oxygen target are used.

A robustness test is performed to test whether this treatment is enough to cover the
effect of having a large deviation in the true removal energy compared to our nominal
value. We generate the fake data set by setting the removal energy at +15 MeV. We
should note that this value is a rather extreme assumption just for the test of the model
and not physical. We use the nominal Asimov defined at the Pre-ND tuning for the
reference fit.

D.2.3 Axial form factors

In our nominal model, the axial form factor of the nucleon is modeled using a dipole
shape form with an axial mass MQE

A as shown in Eq. (4.16). The world average of the
axial mass is known to be MQE

A = 1.026 ± 0.021 GeV [101]. However, as shown in
Fig. D.2, the MiniBooNE νµ CCQE cross-section measurement suggested a much larger
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Fig. 8 The two-dimensional probability density distribution for the
spectral function for oxygen in NEUT [43] (left), and the projection
onto the removal energy axis (right). On the left, the darker colour rep-
resents a higher probability of finding an initial-state nucleon with a
particular removal energy and momentum. The two sharp p-shells at

Ermv ∼ 12 MeV and Ermv ∼ 18 MeV, and the larger diffuse s-shell
at Ermv ∼ 20−65 MeV and |p| < 100 MeV/c, are visible. The pre-
dictions for the shell positions from another model [58] are overlaid on
the right with dashed lines, for protons (red) and neutrons (blue). The
energy in MeV is labelled for each prediction

baryon resonance that decays into a pion and a nucleon, and
makes up about 13% of the 1Rµ selection. These processes
are described in NEUT by the Rein–Sehgal (RS) model [61]
in the outgoing hadronic mass region W < 2.0 GeV,

with additional improvements to the nucleon axial form fac-
tors [62,63] and the inclusion of the final-state lepton mass
in the calculation [64–66]. Whilst ∆(1232) excitations are
the dominant contributors to the SPP cross section, a total
of 18 baryonic resonances are included in addition to a non-
resonant process in the mixed isospin channels. Interference
between the resonances is incorporated, but not between
the resonant and non-resonant components. The initial-state
model for SPP interactions in NEUT is a simple relativistic
Fermi gas.

Coherent scattering off nuclei also contributes to the
SPP cross section, especially at low four-momentum trans-
fer. In this analysis, NEUT models coherent interactions
with the Berger–Sehgal model [67], updated from the RS
model [68], and includes Rein’s model of diffractive pion
production [69].

5.1.4 Deep inelastic scattering

Deep inelastic scattering (DIS) describes neutrino interac-
tions with the quark constituents of nucleons. It is a sub-
dominant process in T2K’s oscillation analysis due to the
neutrino energy and the single-ring event selections at the
FD. The cross section in NEUT is calculated using the
GRV98 [70] Parton Distribution Functions (PDFs), which
describe the probability to find a quark of a given type with a
given value of the Bjorken scaling variables, x and y, inside
the target nucleon. Bodek–Yang (BY) modifications [71,72]
are made to extend the validity of this approach to the rela-

tively low four-momentum transfers, Q2 ! 1.5 GeV2, typi-
cal for interactions at T2K.

In NEUT, the modelling of DIS processes begins for inter-
actions where the hadronic invariant mass W > 1.3 GeV.

To avoid double counting the aforementioned non-resonant
single-pion production, only DIS interactions that produce
more than one pion in the final state are considered. The gen-
eration of the hadronic state is split depending on W : for
interactions with W > 2 GeV PYTHIA 5.72 [73] is used,
whilst for W < 2 GeV a custom model interpolating between
the ∆(1232) and DIS interactions is employed, described in
Sec.V C of Ref. [74].

5.1.5 Final-state interactions

The simulated neutrino interaction events produce an out-
going hadronic system at the interaction vertex inside the
nucleus, in addition to the outgoing lepton. These hadrons can
undergo final-state interactions (FSI) in the nuclear medium.
In NEUT, pion FSI are described using the semi-classical
intranuclear cascade model by Salcedo and Oset [75,76],
tuned to modern π − A scattering data [44]. Nucleon
FSI are described in an analogous cascade model [56].
Within the cascade, the outgoing hadrons are individually
stepped through the remnant nucleus where they can elasti-
cally scatter, be re-absorbed, undergo charge-exchange pro-
cesses, and/or emit additional hadrons which are also stepped
through the cascade. Amongst other effects, such cascades
allow for SPP events to have no observable pions in the final
state after FSI, and for 1p1h interactions to appear as pion
production interactions.

123

Figure D.1. Probability density distribution for the spectral function for oxygen as a
function of the removal energy in NEUT [98] (black solid line). The predictions for the
shell positions from Bodek et al. [190] are shown with the vertical dashed lines for protons
(red) and neutrons (blue). The figure is taken from Ref. [37].

value of MQE
A = 1.35± 0.17 GeV [193]. This anomaly suggested the existence of nucleon

correlations inside a nucleus [126], which is known as the 2p2h process. However, at the
same time, the assumption of the dipole form factor is not well-motivated, and some
alternative parameterizations of the form factors have been proposed.

Adamuščín et al. [164] proposed the two-component form factor, in which the form
factor is described as

F 2-comp
A (Q2) = FA(0)(1 + γQ2)−2

[
1− α + α

m2
A

m2
A +Q2

]
, (D.2)

where mA is the mass of the lowest axial meson a1(1260) with IG(JPC) = 1−(1++) and
can be fixed at mA = 1.230 GeV. Ignoring the constant term written as FA(0), Eq. (D.2)
consists of the two components. The first term represents the coupling to the intrinsic
structure of the nucleon with a free parameter γ, and the second term represents the con-
tribution from the axial meson quark-antiquark cloud with a free parameter α. Although
this model gives more freedom to fit data, it still underestimated the cross-section at the
high-Q2 region [196].

As a natural extension of this model, a three-component form factor is also proposed
by adding an exponential term as

F 3-comp
A (Q2) = F 2-comp

A (Q2) + FA(0)
[
θ′CQ2e−βQ2

]
, (D.3)

θ′ = sgn(θ)
√

|θ|β. (D.4)

This model allows us to smoothly connect the two-component form factor and the usual
dipole form factor. We should note that θ′ and β were originally implemented as free
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B. Flux-integrated single differential cross section

The flux-integrated, single differential cross section per
neutron, d!

dQ2
QE
, has also been measured and is shown in

Fig. 14. The quantityQ2
QE is defined in Eq. (2) and depends

only on the (unfolded) quantities T" and cos#". It should
be noted that the efficiency for events with T" < 200 MeV
is not zero because of difference between reconstructed
and unfolded T". The calculation of efficiency for these

(low-Q2
QE) events depends only on the model of the detec-

tor response, not on an interaction model and the associ-
ated uncertainty is propagated to the reported results.

In addition to the experimental result, Fig. 14 also
shows the prediction for the CCQE process from the
NUANCE simulation with three different sets of parameters
in the underlying RFG model. The predictions are abso-
lutely normalized and have been integrated over the
MiniBooNE flux. The RFG model is plotted assuming
both the world-averaged CCQE parameters (MA ¼
1:03 GeV, $ ¼ 1:000) [9] and the CCQE parameters ex-
tracted from this analysis (MA ¼ 1:35 GeV, $ ¼ 1:007) in
a shape-only fit. The model using the world-averaged
CCQE parameters underpredicts the measured differential
cross section values by 20%–30%, while the model using
the CCQE parameters extracted from this shape analysis
are within" 8% of the data, consistent within the normal-
ization error ( " 10%). To further illustrate this, the model
calculation with the CCQE parameters from this analysis
scaled by 1.08 is also plotted and shown to be in good
agreement with the data.

C. Flux-unfolded CCQE cross section as a function of
neutrino energy

The flux-unfolded CCQE cross section per neutron

!½EQE;RFG
% $, as a function of the true neutrino energy

EQE;RFG
% , is shown in Fig. 15. These numerical values are

tabulated in Table X in the appendix. The quantity EQE;RFG
%

is a (model-dependent) estimate of the neutrino energy
obtained after correcting for both detector and nuclear
model resolution effects. These results depend on the de-
tails of the nuclear model used for the calculation. The
dependence is only weak in the peak of the flux distribution
but becomes strong for E% < 0:5 GeV and E% > 1:2 GeV,
i.e., in the ‘‘tails’’ of the flux distribution.

In Fig. 15, the data are compared with the NUANCE

implementation of the RFG model with the world average
parameter values, (Meff

A ¼ 1:03 GeV, $ ¼ 1:000) and with
the parameters extracted from this work (Meff

A ¼
1:35 GeV, $ ¼ 1:007). These are absolute predictions
from the model (not scaled or renormalized). At the aver-
age energy of the MiniBooNE flux ( " 800 MeV), the
extracted cross section is " 30% larger than the RFG
model prediction with world average parameter values.
The RFG model, with parameter values extracted from

the shape-only fit to this data better reproduces the data
over the entire measured energy range.
Figure 15(b) shows these CCQE results together with

those from the LSND [56] and NOMAD [10] experiments.
It is interesting to note that the NOMAD results are better
described with the world average Meff

A and $ values. Also
shown for comparison in Fig. 15(b) is the predicted cross
section assuming the CCQE interaction occurs on free
nucleons with the world average MA value. The cross
sections reported here exceed the free nucleon value for
E% above 0.7 GeV.

D. Error summary

As described in Sec. IVE, (correlated) systematic and
statistical errors are propagated to the final results. These
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FIG. 15 (color online). Flux-unfolded MiniBooNE %" CCQE
cross section per neutron as a function of neutrino energy. In (a),
shape errors are shown as shaded boxes along with the total
errors as bars. In (b), a larger energy range is shown along with
results from the LSND [56] and NOMAD [10] experiments.
Also shown are predictions from the NUANCE simulation for an
RFG model with two different parameter variations and for
scattering from free nucleons with the world-average MA value.
Numerical values are provided in Table X in the appendix.

TABLE IV. Contribution to the total normalization uncertainty
from each of the various systematic error categories.

source normalization error (%)

neutrino flux prediction 8.66
background cross sections 4.32
detector model 4.60
kinematic unfolding procedure 0.60
statistics 0.26
total 10.7

A. A. AGUILAR-AREVALO et al. PHYSICAL REVIEW D 81, 092005 (2010)

092005-16

Figure D.2. MiniBooNE νµ CCQE cross-section on neutron as a function of neutrino
energy. The top plot shows the MiniBooNE data in a narrower range, and the bottom
plot shows the data in a wider range along with the data from the LSND [194] and
NOMAD [195] experiments. The model predictions are shown with two values of axial
mass MQE

A = 1.03, 1.35. The figure is taken from Ref. [193].

parameters but they were able to suppress the contribution of the exponential term un-
realistically when β takes a large value. Therefore, instead of treating θ′ itself as a free
parameter, we redefine it as shown above and treat θ and β as the two free parameters.

This fake data study aims to test whether our systematic model can cover the possible
variations due to the different assumptions in the form factor. For the generation of the
fake data study, the weights are calculated by tuning the three-component form factor to
the bubble chamber experiment data, such as ANL [197, 198], BNL [199], FNAL [200],
and BEBC [201]. Then, the weight of each event is calculated as the cross-section ratio
between the three-component form factor and our nominal dipole form factor. We use
the nominal Asimov defined at the Pre-ND tuning for the reference fit.

D.2.4 Martini 2p2h

The 2p2h process is the most important background to the CC0π selection as it bi-
ases the reconstructed neutrino energy if one assumes the CCQE-like topology. We use
the Nieves et al. model [116] as our nominal model for the 2p2h process. However, as
shown in Fig. 4.13, different models give cross-section predictions that differ by a factor
of 2. Therefore, we test the effect of the different model predictions using the Martini
et al. model [127]. SuSAv2 [131, 129] is not used for this test as it has a less significant
difference compared to the Martini et al. model.

The fake data set is generated by simply reweighting the 2p2h events to match the
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predictions from the Martini et al. model. The weights are extracted by taking the ratio
between the Martini and Nieves predictions as a function of the neutrino energy for
neutrinos and antineutrinos as shown in Fig. D.3. When extracting the weights, a cap is
applied at 3 to avoid unphysical weighting. We use the nominal Asimov defined at the
Pre-ND tuning for the reference fit.
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Figure D.3. Ratio between the 2p2h cross-section predictions from the Martini et
al. model [127] and Nieves et al. model [115].

D.2.5 Alternative pion multiplicity model

As described in Section 4.3, the multi-pion process is simulated using the multi-pion mode
for the events with W < 2 GeV and using DIS for W > 2 GeV, where W denotes the
hadron invariant mass. The single-pion production process is handled by the resonance
model at W < 2 GeV. To avoid double-counting, the pion multiplicity model is modified
to simulate only the events with two or mode pions in the final states. The cross-section
for the multi-pion mode is modified accordingly by taking into account the subtraction of
the single-pion process.

In the multi-pion mode, the pion multiplicity model gives the number of pions pro-
duced in the interaction. Our baseline model is based on the KNO scaling [202] and tuned
to the bubble chamber data. However, these measurements show very large variations in
the cross-sections as studied in Ref. [203], which results in different predictions depending
on the model choice. The different model prediction changes not only the number of
pions but also the cross-section of the multi-pion process because the magnitude of the
cross-section subtraction is affected.

The difference in the pion multiplicity is expected to have more impact on the high-
energy atmospheric samples rather than T2K or low-energy atmospheric samples, as there
is a significant fraction of the multi-pion contributions. To test whether the different
choices of the pion multiplicity model could affect the oscillation analysis result, we use
an alternative model proposed by Bronner et al. [204]. The comparison of the cross-
sections from our nominal model and the alternative model is shown in Fig. D.4.
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Figure D.4. Comparison of the multi-pion mode cross-sections predictions from the default
NEUT pion-multiplicity model (red) and an alternative multiplicity model by Bronner et
al. (blue) [204]. The cross-sections of νµ on the proton and neutron targets are shown.

For the construction of the fake data set, we extract three sets of weights by comparing
the nominal model and the alternative model: cross-section ratio as a function of the
neutrino energy (Eν), probability density ratio as a function of the invariant mass (W ) and
the neutrino energy, and probability density ratio as a function of the number of pions (nπ)
and invariant mass. These weights are obtained separately for neutrinos and antineutrinos,
νµ and νe, and protons and neutrons, which results in the eight combinations. Examples
of these weights are shown in Fig. D.5. We use the nominal Asimov defined at the Pre-ND
tuning for the reference fit.

D.2.6 Energy dependent σνe/σνµ
In the T2K analysis, the uncertainty on the νe (ν̄e) cross-sections is known as one of the
main uncertainties when searching for CP violation [6]. Since CP violation in the neutrino
oscillation can be seen in the νµ → νe and ν̄µ → ν̄e appearance probabilities, the effects
of these systematic uncertainties on the νe cross-sections are inevitable. However, a di-
rect measurement of these νe cross-sections is extremely difficult as there is no dedicated
electron neutrino beam. Some measurements have been performed using the intrinsic νe
(ν̄e) components in the νµ (ν̄µ) beam, such as MINERνA [205], T2K [206], and Micro-
BooNE [207, 208]. These measurements still have large uncertainties due to the limited
statistics and large background.

In this analysis, we use a νe (ν̄e) cross-sections estimated from the νµ (ν̄µ) cross-
sections with some theoretical corrections [209]. In the systematic model, two systematic
uncertainty parameters are assigned separately for the σνe/σνµ and σν̄e/σν̄µ ratios. These
parameters are applied to all the νe (ν̄e) events in all the energy regions. In the joint
analysis, we have more νe (ν̄e) events compared to the T2K-standalone analysis. This
implies that if these νe cross-section systematic uncertainty parameters are strongly pulled
by the atmospheric samples, it would affect the constraints on δcp through the changes in
the T2K sample event spectra.
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Figure D.5. Examples of the three sets of weights used for the construction of alternative
pion multiplicity fake data set. The cross-section weights are shown for all combinations
of the neutrino and target types. The probability density functions for W -Eν and nπ-Eν

are shown only for (νµ, p).

The results of the likelihood scan1 for the σνe/σνµ and σν̄e/σν̄µ systematic uncertainty
parameters are shown in Fig. D.6. Here we fix the oscillation parameters at the Asimov
A parameter set and the systematic uncertainty parameters at the Post-ND tuning and
vary the νe cross-section systematics only. It illustrates that these parameters are strongly
constrained by the atmospheric sub-GeV and multi-GeV e-like samples than the T2K e-like
samples. Since the T2K beam and SK atmospheric sub-GeV samples have similar energy
ranges as shown in Fig. 4.15, these samples should affect νe cross-section systematics in
the same way. However, using the same parameters for the high-energy samples can give
unexpected constraints on these parameters if there is an energy-dependent effect in the
νe cross-sections.

This fake data study is therefore aiming to test a possible bias due to using a common
set of νe (ν̄e) cross-section systematic uncertainty parameters in both the low-energy and
high-energy samples. The fake data set is constructed by weighting the νe (ν̄e) events
that have true neutrino energies of Eν > 1.7 GeV with +2.83%, which is the size of
+1σ uncertainty for the σνe/σνµ (σν̄e/σν̄µ) systematic uncertainty parameters. The νe (ν̄e)

1The likelihood scan is described in Section 5.5.2.3.
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Figure D.6. Sample likelihood distributions when varying the σνe/σνµ (σν̄e/σν̄µ) system-
atic uncertainty parameters within [−3σ, 3σ] ranges (σ = 0.0283). While one parameter
is varied, the other oscillation parameters and the systematic uncertainty parameters are
fixed at the Asimov A parameter set and the Post-ND tuning. Only the total likelihood
and likelihood of the five samples with the largest contributions are shown for each pa-
rameter.

events below this energy are left untouched. The choice of Eν = 1.7 GeV was made to
roughly separate the energy spectra of low-energy and high-energy samples in Fig. 4.15.
We use the nominal Asimov defined at the Pre-ND tuning for the reference fit.

D.2.7 ND data-driven non-QE CC0π

As discussed in Section D.2.3, the ND cross-section measurements for the CC0π samples
suggest that the MC underpredicts the data by approximately 10%. In our CCQE cross-
section model, we assign some freedom to account for this difference mainly through the
Q2-dependent normalization parameters. However, the CC0π sample could also have
contributions from the CC non-QE components such as 2p2h and pion absorption (FSI).
It could be possible that the Q2 parameters assigned to the CCQE cross-section are
covering the inadequacy in the non-QE modeling and therefore the predictions for the
non-QE contribution differ from the “true” nature behind the data. We test whether it
could affect our oscillation analysis through a fake data study.

Since this test is mainly motivated by the data/MC discrepancies observed in the ND
measurements, we define a fake data set in a data-driven way using the FGD1 CC0π
data. The fake data set is generated by pushing all the data/MC inconsistencies in the
ND CC0π sample to the non-QE components. This is done by fixing the Q2 parameters to
1, which is the nominal value in SF, and applying the scaling extracted from the data/MC
difference to the non-QE components.

Figure D.7 shows the data and MC comparison in the ND FGD1 CC0π sample where
the Q2 parameters are set to 1.0 in the MC. The MC (red solid line) overpredicts the data
in the low-Q2 region and underpredicts the data in the higher Q2 region. In the fake data
generations, these differences are assumed to be coming from the non-QE components,
and a modification is applied to the non-QE events so that the total prediction matches
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Figure D.7. The ND data and MC predictions in the FGD1 νµ CC0π sample as a func-
tion of the reconstructed momentum transfer Q2

rec. The red solid line and green shaded
histogram show the post-fit spectra of the total and CC0π non-QE events with the Q2

parameters set to 1.0. The red dotted line shows the modified CC0π non-QE event spec-
tra so that the total prediction matches with the data. The right plot shows the obtained
scaling of the CC0π non-QE events as a function of Qrec extracted from the comparison
shown in the left plot. The left figure is taken from Ref. [37].

with the data. The green histogram and red dotted line show the non-QE components
before and after the modification. The obtained scaling is shown in the right plot in
Fig. D.7.

The fake data set is generated by resetting all the Q2 parameters to 1 and applying
the obtained scaling to the true CC0π non-QE events as a function of the true momentum
transfer under the QE hypothesis (Q2

QE). Q2
QE is calculated as

Q2
QE = 2Eν(Eµ − pµ cos θµ)−M2

µ, (D.5)

where Eµ, pµ, θµ, and Mµ are the outgoing muon’s energy, momentum, direction with
respect to the incoming neutrino direction, and mass, respectively. The reconstructed
neutrino energy is calculated using Eq. (4.10). We use the nominal Asimov defined at the
Pre-ND tuning for the reference fit.

D.2.8 ND data-driven CC1π

The CC1π samples in the T2K beam and SK atmospheric analyses are built by selecting
the events with one prompt lepton signal and one delayed signal from a Michel electron
produced in the pion decay2. When a pion has momentum above the Cherenkov threshold,
it can be reconstructed as a ring and classified into the multi-ring samples rather than
the CC1π samples. Therefore, these CC1π samples are targeting the events with pion
momentum below the Cherenkov threshold. The distribution of true pion momentum in
these samples is shown in Fig. D.8.

2Since muons can also create a delayed signal, two or more delayed signals are required for the
atmospheric µ-like CC1π sample. We do not have a dedicated µ-like CC1π sample for the T2K beam
neutrinos in this analysis
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On the other hand, in the T2K ND selection, there are multiple ways to identify pions
such as the TPC PID, FGD PID, and a Michel electron signal. This may give different
selection efficiencies as a function of the pion momentum compared to the selection at
SK. In addition, the current ND fit does not have systematic uncertainties on the pion
kinematics to constrain the CC1π model. We added the Adler angle systematic uncer-
tainties in the SK fit, but they are not used in the ND fit. Therefore, it could be possible
that the absence of the pion kinematics systematic uncertainties in the ND fit causes an
unexpected bias when the ND constraints are extrapolated to the far detector.

As shown in Fig. D.9, a sizable discrepancy has been observed in the pion momen-
tum distributions between the data and MC in the ND CC1π sample. Here the data is
underpredicted by 23% for the events with a pion momentum precπ < 200 MeV, where
the chosen range roughly corresponds to the Michel electron tagging efficiency turn-on as
shown in Fig. D.8.

We perform a fake data study to test whether this discrepancy in the ND CC1π
sample could affect our oscillation analysis. Similarly to the CC0π non-QE fake data
study described in Section D.2.7, this test is also motivated by the observed data/MC
discrepancy and the fake data set is built in a data-driven way. The fake data set is
generated simply by applying an overall normalization of +23% to the true CC1π events
with precπ < 200 MeV, which is then fit with our nominal systematic model. We use the
nominal Asimov defined at the Pre-ND tuning for the reference fit.
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Figure D.8. The true pion momentum distribution for selected simulated signal events
in the T2K CC1π+ sample (left) and the selection efficiency of these events (right). The
red dashed line indicates the Cherenkov threshold for charged pions from Table 3.1. The
figures are taken from Ref. [39].
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Figure D.9. The observed data and MC comparison in the ND FGD1 CC1π sample as a
function of the reconstructed pion momentum where pions are identified using the TPC
PID. The bottom panel shows the ratio of the prefit and postfit MC to data.

D.2.9 Pion SI bug fix

After the T2K part of the analysis was completed, two bugs were found in the input MC.
One bug was that the NEUT cascade model was not properly applied in the MC production
used for the ND fit, resulting in an incorrect cross-section for pion secondary interactions
(SI), especially above pπ > 1 GeV. The second bug was that the radius of the oxygen
nucleus was used in the calculation of FSI for carbon as well. It means that hadrons
produced inside the carbon are propagated longer distances than expected and get more
FSI effects. Although the FSI parameters on carbon are not propagated to SK as it is a
water target, this bug can also have some impacts on the oxygen FSI parameters through
the correlation. The second bug is expected to have a small contribution compared to the
pion SI bug.

Both the T2K beam and SK atmospheric MC at SK are not affected by these bugs,
but it could be possible that pion SI systematics get incorrect constraints from the ND fit
and have a bias in the oscillation parameter measurements at SK. We therefore perform
a fake data study to test whether this is the case. These bugs were fixed by reweighting
the events in the ND MC and repeating the ND fit. In this fake data study, the SK data
set is not modified. Instead, we simply use the covariance matrix from the fixed ND fit
to fit the SK nominal Asimov data set and compare the results with the nomianl fit. We
use the nominal Asimov defined at the Pre-ND tuning for the reference fit.

D.3 Result of the model robustness test
In the following, comparisons of the oscillation parameter ∆χ2 distributions are shown
for the robustness tests that are not presented in Chapter 6. The summary of the results
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can be found in Section 6.3.4.

Nominal

The results of the nominal Asimov fit for different systematic uncertainty parameter
tunings are summarized in Table D.3, Table D.4, and Table D.5. The corresponding plots
are shown in Fig. 6.4.

Table D.3. Summary of the intervals for the nominal Asimov fit at the Pre-ND tuning.

δCP ∆m2
32 sin2 θ23

AsimovA

Middle of the 1σ interval -1.622 0.002517 0.5241

1σ interval size: 1σtot. 1.036 5.422e-05 0.04426

1σ stat-only interval size: 1σstat. 0.8142 4.983e-05 0.03771

1σsyst. =
√
(1σtot.)2 − (1σstat.)2 0.6403 2.138e-05 0.02318

Middle of the 2σ interval -1.639 0.002517 0.5185

2σ interval size: 2σtot. 1.773 0.0001085 0.07194

2σ stat-only interval size: 2σstat. 1.48 9.953e-05 0.06269

2σsyst. =
√
(2σtot.)2 − (2σstat.)2 0.9749 4.33e-05 0.03528

AsimovB

Middle of the 1σ interval 0.1493 0.002515 0.4527

1σ interval size: 1σtot. 0.7437 5.819e-05 0.02398

1σ stat-only interval size: 1σstat. 0.6086 5.334e-05 0.01996

1σsyst. =
√
(1σtot.)2 − (1σstat.)2 0.4275 2.325e-05 0.01329

Middle of the 2σ interval - 0.002515 0.5047

2σ interval size: 2σtot. - 0.0001165 0.09306

2σ stat-only interval size: 2σstat. - 0.0001069 0.07996

2σsyst. =
√
(2σtot.)2 − (2σstat.)2 - 4.637e-05 0.04761
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Table D.4. Summary of the intervals for the nominal Asimov fit at the Pre-ND (Q2 = 1)
tuning.

δCP ∆m2
32 sin2 θ23

AsimovA

Middle of the 1σ interval -1.638 0.002516 0.5246

1σ interval size: 1σtot. 0.9976 4.979e-05 0.04391

1σ stat-only interval size: 1σstat. 0.7897 4.569e-05 0.03608

1σsyst. =
√

(1σtot.)2 − (1σstat.)2 0.6095 1.98e-05 0.02502

Middle of the 2σ interval -1.65 0.002516 0.5195

2σ interval size: 2σtot. 1.705 9.972e-05 0.07033

2σ stat-only interval size: 2σstat. 1.429 9.137e-05 0.06035

2σsyst. =
√

(2σtot.)2 − (2σstat.)2 0.9302 3.995e-05 0.0361

AsimovB

Middle of the 1σ interval 0.1503 0.002515 0.4515

1σ interval size: 1σtot. 0.7133 5.365e-05 0.02201

1σ stat-only interval size: 1σstat. 0.5577 4.868e-05 0.01858

1σsyst. =
√

(1σtot.)2 − (1σstat.)2 0.4446 2.255e-05 0.0118

Middle of the 2σ interval - 0.002515 0.5044

2σ interval size: 2σtot. - 0.0001075 0.09121

2σ stat-only interval size: 2σstat. - 9.76e-05 0.04751 and 0.01616

2σsyst. =
√

(2σtot.)2 − (2σstat.)2 - 4.496e-05 -
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Table D.5. Summary of the intervals for the nominal Asimov fit at the Post-ND tuning.

δCP ∆m2
32 sin2 θ23

AsimovA

Middle of the 1σ interval -1.627 0.002513 0.5231

1σ interval size: 1σtot. 0.9541 4.402e-05 0.0413

1σ stat-only interval size: 1σstat. 0.7224 4.023e-05 0.03422

1σsyst. =
√
(1σtot.)2 − (1σstat.)2 0.6233 1.787e-05 0.02314

Middle of the 2σ interval -1.639 0.002513 0.5183

2σ interval size: 2σtot. 1.599 8.811e-05 0.06558

2σ stat-only interval size: 2σstat. 1.331 8.048e-05 0.05746

2σsyst. =
√
(2σtot.)2 − (2σstat.)2 0.8868 3.586e-05 0.03162

AsimovB

Middle of the 1σ interval 0.1174 0.002515 0.4519

1σ interval size: 1σtot. 0.6372 4.686e-05 0.01965

1σ stat-only interval size: 1σstat. 0.5011 4.285e-05 0.01668

1σsyst. =
√
(1σtot.)2 − (1σstat.)2 0.3936 1.897e-05 0.0104

Middle of the 2σ interval 1.241 0.002515 0.5042

2σ interval size: 2σtot. 2.59 9.37e-05 0.08704

2σ stat-only interval size: 2σstat. 1.569 8.585e-05 0.03846 and 0.007978

2σsyst. =
√
(2σtot.)2 − (2σstat.)2 2.06 3.753e-05 -
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Figure D.10. 1D ∆χ2 distribution for the nominal fit at Pre-ND (Q2 = 1) and the LFG
fake data fit. The top row shows the results at the oscillation parameter set Asimov A
and the bottom row shows the results at Asimov B.
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Figure D.11. 1D ∆χ2 distribution for the nominal fit at Pre-ND and the removal energy
fake data fit. The top row shows the results at the oscillation parameter set Asimov A
and the bottom row shows the results at Asimov B.
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Figure D.12. 1D ∆χ2 distribution for the nominal fit at Pre-ND and the axial form factor
fake data fit. The top row shows the results at the oscillation parameter set Asimov A
and the bottom row shows the results at Asimov B.
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Figure D.13. 1D ∆χ2 distribution for the nominal fit at Pre-ND and the Martini 2p2h
fake data fit. The top row shows the results at the oscillation parameter set Asimov A
and the bottom row shows the results at Asimov B.
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Figure D.14. 1D ∆χ2 distribution for the nominal fit at Pre-ND and the pion multiplicity
fake data fit. The top row shows the results at the oscillation parameter set Asimov A
and the bottom row shows the results at Asimov B.
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Figure D.15. 1D ∆χ2 distribution for the nominal fit at Pre-ND and the energy dependent
σνe/σνµ fake data fit. The top row shows the results at the oscillation parameter set
Asimov A and the bottom row shows the results at Asimov B.
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Figure D.16. 1D ∆χ2 distribution for the nominal fit at Pre-ND and the ND Non-QE
CC0π fake data fit. The top row shows the results at the oscillation parameter set Asimov
A and the bottom row shows the results at Asimov B.
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Figure D.17. 1D ∆χ2 distribution for the nominal fit at Pre-ND and the ND CC1π fake
data fit. The top row shows the results at the oscillation parameter set Asimov A and
the bottom row shows the results at Asimov B.
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Figure D.18. 1D ∆χ2 distribution for the nominal fit at Pre-ND (Q2 = 1) and the pion
SI fake data fit. The top row shows the results at the oscillation parameter set Asimov A
and the bottom row shows the results at Asimov B.



Appendix E

Two-dimensional event distributions

This appendix presents the two-dimensional event distributions for the samples with two-
dimensional binning. The predicted event rates at the oscillation parameters and sys-
tematic uncertainty parameters at the SK+T2K best-fit values are also overlaid. The
atmospheric sub-GeV e-like 1de, µ-like 2 de, and π0-like samples have only the momen-
tum binning, whereas the atmospheric UpMu through-going shower and non-shower sam-
ples have only the cosine zenith binning. Therefore, these samples are not shown in this
appendix. The one-dimensional event distributions can be found in Section 7.1.
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Figure E.1. The two-dimensional event distributions for the samples with two-dimensional
binning. The colored background in the two-dimensional plot shows the expected number
of events at the best-fit values for the oscillation and systematic uncertainty parameters.
The top and left panels show the events projected onto each single dimension, and the
red line is the expected number of events from the best fit.
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Figure E.1. The two-dimensional event distributions for the samples with two-dimensional
binning. The colored background in the two-dimensional plot shows the expected number
of events at the best-fit values for the oscillation and systematic uncertainty parameters.
The top and left panels show the events projected onto each single dimension, and the
red line is the expected number of events from the best fit.
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Figure E.1. The two-dimensional event distributions for the samples with two-dimensional
binning. The colored background in the two-dimensional plot shows the expected number
of events at the best-fit values for the oscillation and systematic uncertainty parameters.
The top and left panels show the events projected onto each single dimension, and the
red line is the expected number of events from the best fit. The background subtraction
(Section A.1) is not applied to the UpMu samples yet.



Appendix F

Comparison to the published results
from the individual experiments

As an additional validation, the ∆χ2 distributions obtained from the T2K-only fit and SK
atmospheric-only fit within the joint analysis framework are compared with the published
results from individual experiments. These studies are performed only for validation pur-
poses, and we will not modify our main analysis results based on these studies. Moreover,
since many changes have been made to the joint analysis, we do not expect a perfect
agreement with the published results. When there is a difference, we try to see whether
we can reproduce the results of individual analyses by reverting the changes we made for
the joint analysis. We use the importance sampling method for the comparison to T2K
and the profiling method for the comparison to SK because these are the methods used
in each published result.

F.1 Comparison with the published T2K analysis
The T2K part of the joint analysis is mostly based on the T2K oscillation analysis reported
in Ref. [37] (denoted as “published” T2K analysis hereafter). However, we have made a
few changes in the analysis model to adapt it to the joint fit. The main changes are the
following:

1. Use the detector systematic uncertainties re-evaluated with correlations between the
T2K beam and SK atmospheric samples, which changes not only the correlation but
also the size of each detector systematic error on the T2K part (Section 4.4).

2. Add additional systematic uncertainty parameters including the Adler angle sys-
tematic uncertainties and low-momentum PID systematic uncertainties to cover the
data/MC excess observed in the atmospheric sub-GeV CC1π sample down-going
events (Section 4.3, Section 4.4.2.3).

3. Add a new decay electron and neutron separation in the SK event selection to reduce
the neutron backgrounds which produces delayed signals and are misidentified as
decay electrons.
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4. Update the definition of the kinematic cut in the SK event selection. It was ap-
plied before shifting the kinematics (e.g. Coulomb correction in Section 4.3.1.3) in
the published T2K analysis, but in the joint analysis, the cut is applied after the
modifications on the kinematics.

The comparison of the joint analysis T2K-only fit and the published T2K standalone
analysis is shown in Fig. F.1. In the joint analysis, we test several options to investigate
the most effective change in the oscillation analysis. The red line shows the result of
the T2K-only fit with our nominal joint analysis model. The blue, green, orange, and
purple lines also show the joint analysis T2K-only fit, but using the original T2K detector
systematic uncertainties (before the revaluation of correlations), turning off the Adler
angle and low-momentum PID systematic uncertainties, using the data and MC without
the new neutron cut, and applying the original kinematic cut definitions, respectively.
The T2K published result is shown with the gray line.

For δcp, the joint analysis T2K-only fit shows a slightly weaker constraint but is mostly
consistent with the published T2K analysis. For ∆m2

32, the best-fit point shifts to a larger
value but the size of the intervals stays roughly the same. Among the options we tested,
the new neutron cut and the new kinematic cut especially have the largest contributions to
the shift in the ∆m2

32 best-fit point. For sin2 θ23, the best-fit point shifts to a larger value,
and the preference for the maximal mixing becomes slightly weaker in the joint analysis.
The size of the confidence intervals is also slightly larger compared to the published T2K
analysis.

Fig. F.2 shows the comparison between the published T2K analysis and the joint
analysis T2K-only fit where all the changes tested in Fig. F.1 are simultaneously reverted
to the original. It reproduces the published T2K results almost perfectly for sin2 θ23 and
∆m2

32. Therefore, we conclude that our analysis framework is fully validated against the
published T2K standalone analysis.
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Figure F.1. Comparison of the T2K published analysis [37] and the joint analysis T2K-
only fit. Several options are tested in the joint analysis to test which change has the
largest impact, as explained in the text and legend. The ∆m2

32 smearing is not applied in
all the cases.
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Figure F.2. Comparison of the T2K published analysis [37] and joint analysis T2K-only fit
where all the changes tested in Fig. F.1 are reverted simultaneously. The ∆m2

32 smearing
is not applied in all the cases.

F.2 Comparison with the published SK analysis
The SK atmospheric part of the joint analysis is mostly based on the SK standalone
analysis reported in Ref. [36], but there have been many updates in every aspect of the
analysis. The differences between the joint analysis and the published SK analysis are
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summarized in Table F.1.

Table F.1. Summary of the changes made for the joint analysis compared to the published
SK analysis.

Analysis SK published analysis [36] Joint analysis

Livetime (day) 3118 3244

fiTQun version v6 v4

Cross-section
CCQE LFG SF
2p2h Hadron tensor Lookup table
DIS Old low-W model New low-W model

Detector Re-evaluated

APFit for PC/UpMu
Improved gain correction

and ID/OD crosstalk

New Michel-e/neutron cut Used

T2K ND Used

Considering the changes made in joint analysis, these two analyses are very different
and we do not expect the same result from both analyses. Therefore, the following
studies are performed to understand the effect of each change, and we do not aim to fully
reproduce the results of the published SK analysis.

The comparison of the joint analysis SK atmospheric-only fit and SK published result
is shown in Fig. F.3. In the joint analysis, we test several options to investigate which
change has the largest impact on the oscillation analysis results. The red line shows
the result of our nominal joint analysis model where we use the low-energy cross-section
model for the atmospheric sub-GeV samples with the T2K near detector constraints. The
green, orange, and blue lines show the joint analysis result where we do not use the
near detector constraints for the low-energy model, use the high-energy model for all the
atmospheric samples, and turn off the Adler angle and low-momentum PID systematic
uncertainties, respectively. The gray line shows the result of the published SK analysis.
In this comparison, we use the profiling method where all the nuisance parameters are
profiled instead of being marginalized. This is because the published SK analysis also
profiles the nuisance parameters.

For δcp, the joint analysis atmospheric-only fit has a stronger constraint in normal
ordering. It also shows a weaker constraint in the upper octant of sin2 θ23 and for the
larger values of ∆m2

32. Among the several options we tested, the closest result to the SK
published result is obtained when we use the high-energy model for all the atmospheric
samples (shown with the orange line). It shows a very good agreement in the δcp ∆χ2

distributions in normal ordering and a similar shape at the upper octant of sin2 θ23. These
differences could be not just because of the difference of the model itself, but also because
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with a common model, sub-GeV samples (which have larger statistics) can constrain the
cross-section systematic uncertainty parameters for the high-energy samples.
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