

DUNE: Instrumentation, Development and Sensitivity

Yifan Chen

SLAC, Stanford University

University of Tokyo 28th March 2024

A massive international collaboration (~1500 collaborators) A next-generation flagship neutrino experiment An accelerator-based neutrino oscillation experiment, and more

DUNE: Instrumentation, Development and Sensitivity

Yifan Chen — SLAC, Stanford University

Liquid Argon Time Projection Chamber (LArTPC)

Primary detector technology for DUNE Record neutrino interaction products

• Charge:

- Charged particles ionize LAr
- Ionization electrons drift to the anode plane along the electric field
- 3D tracking and calorimetry

• Light:

- 128 nm UV photons produced by de-excitation of LAr excimer
- LAr is transparent to its own scintillation
- Scintillation light can help identify the interaction time
- Light detection system O(µs)
 vs. Charge readout O(ms)

Neutrino Oscillation

2015 Nobel Prize

Super-Kamiokande SNO

- Non-zero neutrino mass
- Nature of neutrino mixing

Open Questions for Neutrinos

- Neutrino Mass ordering
 - Charge-parity (CP) violation in the lepton sector
 - Are there more than three neutrinos?
 - Unitarity of PMNS matrix
 - What are the neutrino masses?
 - Are neutrinos Dirac or Majorana? $\nu = \bar{\nu}$?

DUNE

DUNE Neutrino Oscillation Physics Sensitivity 1

DUNE: Instrumentation, Development and Sensitivity

Yifan Chen — SLAC, Stanford University

Synergy with JUNO

DUNE: Instrumentation, Development and Sensitivity

DUNE Neutrino Oscillation Physics Sensitivity 2

9

Current Generation Experiments: T2K, NOvA

- Weak preference for normal ordering
- · Oscillation results are statical limited
- Collaboration initiated T2K-NOvA joint fit
- Mass ordering and CP violation remain unsolved

Next Generation Experiments: Hyper-K, DUNE

- DUNE (1300 km) has a longer oscillation baseline than Hyper-K (295 km), seeing larger matter effect
- DUNE is on-axis and has a broad neutrino beam spectrum;
 Hyper-K is located off-axis and has a narrower neutrino spectrum
- DUNE uses LArTPC (40 kt); Hyper-K uses water Cherenkov detector (188 kt)
- Both have highly capable near detectors to constrain systematic uncertainties

Design of the DUNE Experiment

High intensity neutrino beam

- Near detector complex at Fermilab
 - Large, deep underground far detectors at SURF

The Oscillation Baseline and Flux for DUNE

High Intensity Beam and the Broadband DUNE Flux

1.2 MW proton beam (Phase I)> 2 MW proton beam (Phase II)

DUNE Far Detector

SURF

- Four far detector modules
- Excavation fully completed
- Primary detector technology: LArTPCs, 4 x 17 kt (>10 kt fiducial mass)
- Phase I: one LArTPC with horizontal drift, one LArTPC with vertical drift
- Phase II: 3rd + 4th modules
- Module opportunity workshop: <u>BNL 2019</u>, <u>Valencia 2022</u>

What will DUNE See for Oscillation?

Far Detector 1: LArTPC with Horizontal Drift (HD)

Far Detector 1: Wire Readout Plane

Modularized anode plane (APA) > 3000 wires per anode module Two APA factories: UChicago (US), Daresbury (UK)

Far Detector 1 and 2: Light Detector X-Arapuca

Far Detector 1: Light Detector

Far Detector 2: LArTPC with Vertical Drift (VD)

Far Detector 2: Charge Readout Planes (CRP)

Ground plane (0V) Collection (+1k) Anode 2 Induction 2 (0V) Induction 1 (-0.5kV) Anode 1 Shield (-1.5kV)

A CRP module of 3 m x 3.3 m Two CRP factories: Grenoble (FR), Yale (US)

Far Detector2: Light Readout

ProtoDUNE

DUNE: Instrumentation, Development and Sensitivity

Yifan Chen — SLAC, Stanford University

ProtoDUNE

Detector characterization Reconstruction development

Hadron cross-section

Near Detector Complex (ND)

DUNE PRSIM

Linear combination of ND fluxes to match with FD oscillated spectra

Neutrino Interactions at Few-GeV Range

What we can measure:

The Importance of the DUNE near detector

- DUNE's oscillation analysis will likely to be systematics limited
- Near detector is critical to reduce flux and neutrino interaction uncertainties

The Challenge for DUNE ND-LAr

- ND-LAr is designed to contain hadrons and electrons from the beam neutrino interaction
- Active volume of ~ 5 m (L) \times 7 m (W) \times 3 m (H)

Main challenge: neutrino pile-up

- ~50 neutrino interactions per beam spill
- Existing LArTPCs deal with 0-1 neutrino per beam spill
- Beam spill O(μ s) and LArTPC charge O(ms)

Solution: Modularized LArTPC

- LArTPC light readout O(ns)
- Localized scintillation light
- Light—Charge matching to tackle pile-up

Simulated neutrino interactions of one beam spill (1.2MW) in ND-LAr

ND-LAr: Modularized LArTPCs

Yifan Chen — SLAC, Stanford University

ND-LAr Module Design

Short drift length (50 cm)

- Significantly reduced cathode voltage and associated risks
- · Simplifies electric field shaping
- Diffusion becomes subdominant

Pixelated charge readout

- True 3D position + charge mitigates ambiguities for reconstructing multineutrino events
- Low channel capacitance reduces noise
- PCB-based construction; mechanically robust; scalable

High-performance light readout

- 30% surface coverage
- O(5cm) spatial resolution

Modularized TPC

- Scintillation light tight
- Isolate potential failures

ND-LAr Full Scale Demonstrator

Scheduled to be tested in Bern in 2024 Cryo run in May; First full system operation in August Current phase: system design and the production of the detector components

ND-LAr Prototype (2x2) in the NuMI Beam

A unique test bench and a realistic R&D Environment

Demonstration of a modularized LArTPC

- Exercise module integration
- Trigger, DAQ, cryogenic systems

Intense v and \overline{v} beam data (DUNE ND-like environment)

• Develop an end-to-end analysis infrastructure

Neutrino cross-section measurements

Improve neutrino interaction models for future accelerator neutrino experiments

Single 2×2 Modules

Module tests in Bern (proof of module integrity)

Module 0 Module 1 Module 2 Module 3

Detector components assembled as modules in Bern Tested and operated for cosmic data taking

Assembled module

2x2 in the MINOS Hall at Fermilab

ND-LAr Pixelated Charge Readout: LArPix

- 4.4 mm pixel pitch
- ~300k channels in 2×2
- Each pixel can be independently self-triggered

DUNE: Instrumentation, Development and Sensitivity

Flexible tile config for scaling

Robust to repeated cryogenic cycling

chip failure

LArPix to Ease Pile-up in ND-LAr

ND-LAr Light Detector: ArCLight and LCM

Instruments **2018**, 2(1), 3

ArCLight

LCM Good at detection efficiency

6 SiPM per light detector block; ~400 SiPM channels for 2×2 8 ArCLight tiles and 8 LCM blocks (24 LCM tiles) per 2×2 Module

DUNE: Instrumentation, Development and Sensitivity

Yifan Chen – SLAC, Stanford University

Photon Detection Efficiency and Position Sensitivity

Yifan Chen — SLAC, Stanford University

Timing Resolution from Module Tests

Standard deviation of the light waveform rising time of the same events from different channels

Time resolution [CH07&CH39]

Michel Electrons in 2×2 Modules

43

DUNE: Instrumentation, Development and Sensitivity

Continuously Resistive Field Shell

Reference design applied in 2×2 modules

Resistive foil laminated on to copper-clad FR4 using epoxy Top, bottom and side panels use Dupont carbon-doped polyimide Kapton sheets (<u>DR8</u>) Cathodes use Kapton <u>XC</u> O(1 M Ω /sq.)

Advantage:

- Minimal footprint in a modular design
- Avoid serial structure, no single point of failure
- Uniform heat dissipation
- No discrete field shaping steps

Material specification:

- Macroscopically uniform sheet resistance
- Cryo-compatibility (conducts and mechanically robust in LAr)
- O(1 GΩ/sq.) sheet resistance at the nominal electric field (0.5 kV/cm)

Successful tests of Module 0 and 1:

- Can be operated stably at 30 kV (1 kV/cm, twice of the nominal electric field)
- Achieved measurable required electric field uniformity; Observed maximum spatial displacement ~1 cm (near the cathode)

Future Possibilities for DUNE

ARIADNE Mc "Reset"						
	Switch	Technology	Option for		LArTPC	
feedbac	k Q-Pix		FD3	FD4	ND	Integration
capacite	or Cf	SoLAr	(√)	1		LArPix, Q-Pix,
		(Integrated				APEX
I		charge-light				
		pixel readout)				
	Charge Sensitive Schmitt	ARIADNE		1		APEX
	Amplifier Trigger	(Dual-phase with				
		optical readout				
	SoLAr	of ionization	8			
		signal)				
		LArPix	(√)	~	~	APEX,
		(Pixel Readout;				SoLAr
		charge)				
		Q-Pix	(√)	~	~	APEX,
		(Pixel Readout;				SoLAr
		charge)				
			6			
			1			
		APEX	~	1		CRP, Q-Pix,
μ^-		(ARAPUCA-based				SoLAr,
		light readout				LArPix
		on field cage				
		with SiPMs)				
VVDLO		WbLS		1	1	None
(Theia)		(Water-based				(complementary
		liquid				to LAr)
		scintillator)				
		/				
			3			

DUNE: Ready to Go

- DUNE is in a phase of refining detector designs, testing prototypes and construction
- The beam tests with DUNE prototypes will help us understanding the detectors and the neutrino interactions
- A concrete path has been laid out for the next generation neutrino physics discoveries